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Summary

The goal of this paper is to investigate the geometry of the warping function on a
n-dimensional compact Legenderian warped product submanifold Mn of Sasakian
space form with free boundary. We establish sharp estimates to the squared norm of
the second fundamental form and the Laplacian of the warping function. Besides, we
provide some triviality results forMn by using the Ricci curvature along the gradient
of the warping function. Taking the clue from the Bochner formula and second-order
ordinary differential equation, we find the characterization for the base of Mn via
the first non-zero eigenvalue of the warping function and proved that it is isometric
to Euclidean space ℝp or Euclidean sphere Sp under some extrinsic conditions.
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1 INTRODUCTION AND MAIN MOTIVATIONS

An outstanding topic in Riemannian geometry is to find the relation between extrinsic and intrinsic invariant on given
warped product manifolds. A promising way for that proposal is to study warping function which arises as solutions of the
Euler-Lagrange equations and partial differential equations for conditions on curvature functionals. Since there are so many Rie-
mannian invariants on a manifold, one can regard, philosophy, the finding of Riemannian invariants as an approach to searching
for the best relationship between intrinsic and extrinsic invariant for the given Riemannian manifolds. In this scenario, Chen8,9

given the inequality for the second fundamental form as main intrinsic invariant and holomorphic constant sectional curvature
and Laplace of the warping function as a main extrinsic invariant for CR-warped products in complex space form and complex
projective spaces. He was also proven the complete classification which satisfied the equality case of this inequality. Several
great successes in warped product submanifolds continue to be achieved for different ambient space forms in1,24,27 through the
work of Chen10,15. Thus, the classifying the second fundamental form of inequality related to the warping functions on warped
product submanifolds or good knowledge of their geometry are important issues in Riemannian geometry. To proceed, let us
recall the definition of warped product manifold considered initially by Bishop and O’Neill4.

Let (N1, g1) and (N2, g2) are two Riemannian manifolds and f ∶ N1 → (0,∞), is a positive differentiable function on N1.
Consider the product manifold N1 × N2 with its canonical projections 1 ∶ N1 × N2 → N1, 2 ∶ N1 × N2 → N2 and the
projection maps defined by 1(x, y) = x, and 2(x, y) = y for every p = (x, y) ∈ N1 ×N2. The warped product Mn = N1 ×f N2
is the product manifold N1 ×N2 equipped with the Riemannian structure such that

||X||

2 = ||1∗(X)||2 + f 2(1(x))||2∗(X)||2, (1.1)

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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for any tangent vector X ∈ X(TxM), where ∗ is the symbol of tangent maps and we have g = g1 + f 2g2. Thus, the function f
is called a warping function on Mn. The following lemma is a direct consequence of warped product manifolds:
Lemma 1.1. 4 Let M = N1 ×f N2 be a warped product manifold, then we have

(i) ∇XY ∈ X(TN1),

(ii) ∇ZX = ∇XZ = (X ln f )Z,

(iii) ∇ZW = ∇′

ZW − g(Z,W )∇ lnf,

for any X, Y ∈ X(TN1) and Z,W ∈ X(TN2), where ∇ and ∇′ denote the Levi-Civita connection on Mn and Nn2
2 ,

respectively. Further, ∇ lnf is the gradient of ln f which is defined as:

g(∇ lnf,X) = X(ln f ). (1.2)

The following remarks are consequences of Lemma 1.1:-

Remark 1.1. A warped product manifold M = N1 ×f N2 is said to be trivial or simply a Riemannian product manifold if the
warping function f is constant function along N1.

Remark 1.2. If M = N1 ×f N2 is a warped product manifold, then N1 is totally geodesic and N2 is totally umbilical
submanifold of Mn, respectively.

From [(3.3) in7], the following relation is obtained.
p
∑

�=1

q
∑

�=1
K(e� ∧ e�) =

qΔf
f

. (1.3)

According to Nash’s theorem29, we know that in a sufficiently high co-dimension, every Riemannian manifold is isometri-
cally immersed in some Euclidean spaces. In particular, every warped product Np

1 ×f N
q
2 can be immersed as a Riemannian

submanifold in some Euclidean space. Moreover, a constant curvature (c) on every Riemannian manifold can be expressed
locally as a warped product whose warping function satisfiesΔf = cf .Based on these concepts, many geometers have obtained
geometric obstruction for CR-warped products in different ambient space forms (for instance14,17,24). Some applications are
also derived on compact Riemannian submanifold considering equality cases with empty boundaries. Chen8 developed a novel
technique to find the relationship between extrinsic and intrinsic invariant for warped product submanifolds of Kaehler geom-
etry and space forms geometry by using the Coddazi equation. From this point of view, by using the Gauss equation instead
of the Coddazi equation in the sense of9. In the first part of the paper, in the spirit of1,9,24 and motivated by the historical
development on the study of the warped function of warped product submanifold, we going to provide a sharp estimate to the
squared norm of second fundamental form in terms of warping function and holomorphic constant sectional curvature c, we
now announce our first result.

Theorem 1.1. Let Ψ ∶ Mn = Np
1 ×f N

q
2 ←→ M̃2+1(c) be an isometric immersion from a Legendrian warped product sub-

manifold Np
1 ×f N

q
2 into a Sasakian space form M̃2n+1(c). If Np

1 is minimal in M̃2n+1(c), then the following equality is
satisfied

‖ℎ(u, v)‖2 = q
{

||∇�||2 +
(c + 3

4

)

p − Δ�
}

, (1.4)

where ∇ and Δ are gradient and the Laplacian of the warping function � = lnf on Np
1 . Moreover, u = {ei}1≤i≤p and v =

{e∗j}1≤j≤q are vector fields on Np
1 and Nq

2 , respectively.

An immediate consequence of Theorem 1.1, we consider the warping function ln f is a harmonic function, then

Corollary 1.1. Let Ψ ∶Mn = Np
1 ×f N

q
2 ←→ M̃2n+1(c) be an isometric immersion from a compact Legendrian warped product

submanifold Np
1 ×f N

q
2 into a Sasakian space form M̃2n+1(c) such that Np

1 is minimal in M̃2n+1(c). If ln f is a harmonic
function, then we have

‖ℎ(u, v)‖2 = q||∇�||2 +
(c + 3

4

)

pq. (1.5)

where ∇ is the gradient � = lnf on Np
1 .
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Boundary estimates are classical objects of study in Geometry and Physics. Another goal of our equality (1.4) is to provide
potential applications to the gradient Ricci curvature by considering that a Riemannian manifold is compact, and taking into
account the Green Theorem (see36 for more detail). As a consequence, we give the following:

Theorem 1.2. Assume that Ψ ∶ Mn = Np
1 ×f N

q
2 be an isometric immersion of a compact Legendrian warped product

submanifold Np
1 ×f N

q
2 into a Sasakian space form M̃2n+1(c) such that Np

1 is minimal in M̃2n+1(c). If the following equality is
satisfied for the warped product submanifold Mn

‖ℎ(u, v)‖2 = q

{

(c + 3
4

)

p + ∫
M

ic(∇�, )dV

}

. (1.6)

Then, Legendrian warped product submanifold Np
1 ×f N

q
2 into a Sasakian space form, is simply a Riemannian product of Np

1
and Nq

2 .

A direct consequence of Theorem 1.2 as corollary, we give the following

Corollary 1.2. Assume that Ψ ∶ Mn = Np
1 ×f N

q
2 be an isometric immersion of a compact Legendrian warped product

submanifold Np
1 ×f N

q
2 into a Sasakian space form M̃2n+1(c) such that Np

1 is minimal in M̃2n+1(c). If Mn is Ricci flat and the
following equality is satisfied

‖ℎ(u, v)‖2 =
(c + 3

4

)

pq. (1.7)

Then, Legendrian warped product submanifold Np
1 ×f N

q
2 into a Sasakian space form is simply a Riemannian product of Np

1
and Nq

2 .

The next observation is devoted to the work of Obata31 which is characterized by specific Riemannian manifolds by second-
order ordinary differential equations. He derived the necessary and sufficient condition for an n-dimensional complete and
connected Riemannian manifold (Mn, g) to be isometric to the n-sphere Sn(c) if there exists a non-constant smooth function
' on Mn that satisfies the second-order differential equation H� = −c�g, where H� is stand for Hessian of � and c is a
constant sectional curvature. A great amount of investigations has been devoted to this subject and therefore, characterization
of spaces, the Euclidean space ℝn, the Euclidean sphere Sn and the complex projective space ℂP n, are important topics in
geometric analysis. For example, in25, Lichnerowicz has shown that on a compact manifold (Mn, g) with Ric ≥ n− 1, the first
non-zero eigenvalue �1 of the Laplacian is not less than n, while �1 = n, then (Mn, g) is isometric to the standard sphere. This
means that the Obata’s rigidity theorem can be used to characterize the equality case of Lichnerowicz’s eigenvalue estimates.
By using the techniques of a conformal vector field which plays an important role in obtaining characterizations of spaces but
also have an important role in the general theory of Relativity as well as in Mechanics, Deshmukh-Al-Solamy18 proved that an
n-dimensional compact connected Riemannian manifold whose Ricci curvature satisfies the bound 0 < Ric ≤ (n − 1)(2 − nc

�1
)c

for a constant c and �1 is the first non-zero eigenvalue of the Laplace operator, then Mn is isometric to Sn(c) if Mn admitted a
non-zero conformal gradient vector field. They also proved that if Mn is Einstein manifold with Einstein constant � = (n−1)c,
then Mn is isometric to Sn(c) with c > 0 if it is admitted conformal gradient vector field. Taking into account the Obata
equation31, Barros, et.al3 proved that a compact gradient almost Ricci soliton (Mn, g,∇�, �), whose Ricci tensor is Codazzi
and has constant sectional curvature, is isometric to a Euclidean sphere and � is a height function in this case. Similar results
have been obtained in17,18,20,22.
After these observations, we are ready to state our next result which is characterized version of Theorem 1.1, utilizing an
ordinary differential equation. To be precise, we have obtained the following result.

Theorem 1.3. Let Ψ ∶ Mn = Np
1 ×f N

q
2 be an isometric immersion of a Legendrian warped product submanifold Np

1 ×f N
q
2

into a Sasakian space form M̃2n+1(c) with base Np
1 is minimal in M̃2n+1(c), connected and compact. Then Np

1 is isometric to
the sphere Sp( �1

p
) with constant sectional curvature is equal to �1

p
if and only if the following equality is satisfied

‖

‖

‖

Hess(�)‖‖
‖

2
=
2�1
3pq

{

‖

‖

‖

ℎ(u, v)‖‖
‖

2
−
(c + 3

4

)

pq
}

, (1.8)

where �1 > 0 is a positive eigenvalue associated to the eigenfunction � = lnf and Hess(�) is a Hessian tensor of the function
�.

Motivated by the Bochner formula, we give the following result
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Theorem 1.4. Let Ψ ∶Mn = Np
1 ×f N

q
2 be an isometric immersion of a Legendrian warped productNp

1 ×f N
q
2 into a Sasakian

space form M̃2n+1(c) with base Np
1 is minimal in M̃2n+1(c), connected and compact. Then Np

1 is isometric to the sphere Sp( �1
p
)

with constant sectional curvature is equal to �1
p

if and only if the following equality is satisfied

Ric(∇�,∇�) = �1
(3p + 2
3pq

)

{

(c + 3
4

)

pq − ‖

‖

‖

ℎ(u, v)‖‖
‖

2
}

. (1.9)

where �1 > 0 is a positive eigenvalue associated to the eigenfunction � = lnf .

There is another more interesting theorem which a consequence of Theorem 1.4, we find that

Theorem 1.5. LetΨ ∶Mn = Np
1×fN

q
2 be an isometric immersion of a Legendrian warped product submanifoldNp

1×fN
q
2 into

a Sasakian space form M̃2n+1(c) with with base Np
1 is minimal in M̃2n+1(c), connected and complete. If Np

1 has non-negative
Ricci curvature then its is isometric to the sphere Sp( �1

p
) if and only if the following equality is satisfied

‖

‖

‖

ℎ(u, v)‖‖
‖

2
=
(c + 3

4

)

pq, (1.10)

where �1 > 0.

In21, Rio, Kupeli, and Unal characterized Euclidean sphere using a standard differential equation which is another version
of Obata’s differential equation. If a complete Riemannian manifold Mn admits a real-valued non-constant function � such
Δ� + �1� = 0 such that �1 < 0, then Mn is isometric to a warped product of the Euclidean line and a complete Riemannian
manifold whose warping function  satisfies the equation that d

2 
dt2

+ �1 = 0. On these concepts, we give the following result.

Theorem 1.6. Let Ψ ∶ Mn = Np
1 ×f N

q
2 be an isometric immersion of a Legendrian warped product submanifold Np

1 ×f N
q
2

into a Sasakian space form M̃2n+1(c) with base Np
1 is minimal in M̃2n+1(c), complete and has positive Ricci curvature. Then

Np
1 is isometric to a warped product of the Euclidean line and a complete Riemannian manifold whose warping function  

satisfies the equation that d2 
dt2

+ �1 = 0 if and only if the following equality is satisfied

‖

‖

‖

ℎ(u, v)‖‖
‖

2
=
(c + 3

4

)

pq, (1.11)

where �1 < 0 is a negative eigenvalue associated to the eigenfunction � = lnf .

Tashiro34 also proved more general results similar to the results of Obata and Kanai. The following theorem is also of interest
from the viewpoint of this survey in characterizing the Euclidean space via a differential equation.

Theorem 1.7. Let Ψ ∶ Mn = Np
1 ×f N

q
2 be an isometric immersion of a Legendrian warped product submanifold Np

1 ×f N
q
2

into a Sasakian space form M̃2n+1(c) with base Np
1 is minimal in M̃2n+1(c), complete and has positive Ricci curvature. Then

Np
1 is isometric to the Euclidean space ℝp if and only if the following equality is satisfied

‖

‖

‖

ℎ(u, v)‖‖
‖

2
= q2

{

�1
p
+
(c + 3

4

)

p
}

, (1.12)

with �1 > 0 is positive eigenvalue of the non-constant warping function � = lnf .

The present paper, we considered only the non-trivial Legendrian warped product submanifold of the type Mn = Np
1 ×f N

q
2

to be isometrically immersed into a Sasakian space form. Then, we will consider connected, compact Riemannian submanifolds
whose boundaries are non-empty, and provided some new necessary and sufficient conditions for Legendrian warped product
submanifolds, which can be reduced to a Riemannian product manifold.

2 PRELIMINARIES

An (2m + 1)-dimensional manifold M̃ endowed with almost contact structure (�, �, �, g) is called an almost contact metric
manifold when satisfies the following properties:

'2 = −I + � ⊗ �, �(�) = 1, '(�) = 0, �◦' = 0, (2.1)

g('U,'V ) = g(U, V ) − �(U )�(V ), and �(U ) = g(U, �), (2.2)
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for any U, V ∈ X(T M̃), where ', g, � and � are called (1, 1)-tensor fields, a structure vector field and dual 1-form, respectively.
Furthermore, an almost contact metric manifold is known to be a Sasakian manifold (cf.? ) if

(∇̃U')V = g(U, V )� − �(V )U, ∇̃U� = −'U, (2.3)

for any vector fields U, V on M̃ , where ∇̃ denotes the Riemannian connection with respect to g, and we shall use the symbol
X(T M̃) to denote Lie algebra of vector fields on a manifold M̃ .

Assume that Mn be isometrically immersed into an almost Hermitian manifold M̃2m+1 with induced metric g. If ∇ and
∇⟂ are the induced Riemannian connections on the tangent bundle TM and the normal bundle T ⟂M of Mn, respectively, then
the Gauss and Weingarten formulas are given by

∇̃UV = ∇UV + ℎ(U, V ), (2.4)

∇̃UN = −ANU + ∇⟂UN, (2.5)

for each U, V ∈ X(TM) and N ∈ X(T ⟂M), where ℎ and AN are the second fundamental form and the shape operator
(corresponding to the normal vector field N), respectively, for the immersion of Mn into M̃2m+1. They are related as follows:
g(ℎ(U, V ), N) = g(ANU, V ), where g denotes the Riemannian metric on M̃2m+1 as well as the metric induced on Mn. The
Gauss equation for a submanifold Mn is defined as:-

R̃
(

X, Y ,Z,W
)

= R(X, Y ,Z,W ) + g
(

ℎ(X,Z), ℎ(Y ,W )
)

− g
(

ℎ(X,W ), ℎ(Y ,Z)
)

, (2.6)

for any X, Y ,Z,W ∈ X(TM), where R̃ and R are the curvature tensors on M̃m and Mn, respectively. A Sasakian manifold is
said to be Sasakian space form with constant �-sectional curvature c if and only if the Riemannian curvature tensor R̃ can be
written as (see1,27);

R̃(X, Y ,Z,W ) = c + 3
4

{

g(Y ,Z)g(X,W ) − g(X,Z)g(Y ,W )

}

+c − 1
4

{

�(X)�(Z)g(Y ,W ) + �(W )�(Y )g(X,Z)

− �(Y )�(Z)g(X,W ) − �(X)g(Y ,Z)�(W )
+ g('Y ,Z)g('X,W )

− g('X,Z)g('Y ,W ) + 2g(X,'Y )g('Z,W )

}

. (2.7)

Moreover, ℝ2m+1 and S2m+1 with standard Sasakian structures can be given as typical examples of Sasakian space forms. An
n-dimensional Riemannian submanifold Mn of M̃2m+1(�) is referred to as totally real if the standard almost contact structure
� of M̃2m+1(�) maps any tangent space of Nn into its corresponding normal space (see1,27,32). Now, let Mn be an isometric
immersed submanifold of dimension n in M̃2m+1(�). Then Mn is referred to as a Legendrian submanifold if � is a normal
vector field on Mn, i.e., Mn is a C- totally real submanifold, and m = n1,27,32. Legendrian submanifolds play a substantial role
in contact geometry. From Riemannian geometric perspective, studying Legendrian submanifolds of Sasakian manifolds was
initiated in 1970’s. Many geometers have drawn significant attention to minimal Legendrian submanifolds in particular. The
mean curvature vector H for an orthonormal frame {e1, e2,⋯ , en} of tangent space TM on Mn is defined by

 = 1
n
trace(ℎ) = 1

n

n
∑

i=1
ℎ
(

ei, ei
)

, (2.8)

where n = dimM . In addition, we set

(i) ||ℎ||2 =
n
∑

i,j=1
g(ℎ(ei, ej), ℎ(ei, ej)) and (ii) S =

p
∑

�=1

n
∑

�=p+1

(

ℎr��
)2. (2.9)

Now, we define an important Riemannian intrinsic invariant called the scalar curvature of Mn and it is denoted by �̃(TxMn),
that is

2�̃(TxMn) =
∑

1≤�<�≤n
K(e� ∧ e�). (2.10)
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Let K�� and K̃�� denotes the sectional curvature of the plane section spanned and e� at x in the submanifold Mn and at the
Riemannian space form M̃m(c), respectively. Thus K�� and K̃�� are the intrinsic and extrinsic sectional curvatures of the span
{e� , e�} at x, thus from Gauss equation (2.7), we have

2�(TxMn) = K�� = 2�̃(TxMn) +
2m+1
∑

r=n+1

(

ℎr��ℎ
r
�� − (ℎ

r
��)

2
)

= K̃�� +
2m+1
∑

r=n+1

(

ℎr��ℎ
r
�� − (ℎ

r
��)

2
)

. (2.11)

The following consequences are obtained from (2.7) and (2.11) as:

�(TxN
p
1 ) =

2m+1
∑

r=n+1

∑

1≤i<j≤p

(

ℎriiℎ
r
jj − (ℎ

r
ij)
2
)

+ �̃(TxN
p
1 ). (2.12)

Similarly, we have

�(TxN
q
2 ) =

2m+1
∑

r=n+1

∑

p+1≤a<b≤n

(

ℎraaℎ
r
bb − (ℎ

r
ab)

2
)

+ �̃(TxN
q
2 ). (2.13)

If ' preserves any tangent space of Mn, that is, '(TxM) ⊆ TxM , for each x ∈ Mn, then Mn is called a invariant
submanifold. Similarly, the totally real submanifold is defined as:- ' maps any tangent space of Mn into normal space, that is,
'(TxM) ⊆ T ⟂M , for each x ∈Mn.

Therefore, we shall prove interesting result which be very useful in geometry,

2.1 Proof of Theorem 1.1
Proof. In view of Gauss equation (2.6), we get

n2||||

2 = ||ℎ||2 + 2�(TxM ) − 2�̃(TxMn). (2.14)

We assume that {e1… , ep, ep+1,… , en} and {en+1… , e2m+1} be an orthonormal frames of X(TxMn) and X(T ⟂Mn), such
that {e1,… , ep} and
{ep+1,… , en} are the frames of X(TNp

1 ) and X(TNq
2 ). From (2.10), we have

�(TxMn) =
∑

1≤�<�≤n
K�� =

p
∑

�=1

n
∑

A=p+1
K�A +

∑

1≤i<j≤p
Kij +

∑

p+1≤a<b≤n
Kab (2.15)

Using the virtues (1.3) and (2.10), we derive the following relation

�(TxMn) =
qΔf
f

+ �(TxN
p
1 ) + �(TxN

q
2 ). (2.16)

It follows from (3.6), (2.12) and (2.13), we have

�(TxMn) =
qΔf
f

+ �̃(TxN
p
1 ) +

2n+1
∑

r=n+1

∑

1≤�<�≤p
ℎr��ℎ

r
�� −

2n+1
∑

r=n+1

∑

1≤�<�≤p
(ℎr��)

2 + �̃(TxN
q
2 )

+
2n+1
∑

r=n+1

∑

p+1≤a<b≤n
ℎraaℎ

r
bb −

2n+1
∑

r=n+1

∑

p+1≤a<b≤n
(ℎrab)

2. (2.17)
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Follows from (2.14) and (2.17), we get
( n
∑

i=1
ℎn+1ii

)2

=
2n+1
∑

r=n+1

n
∑

i=1
(ℎii)2 +

2qΔf
f

+ 2�̃(TxN
p
1 ) + 2�̃(TxN

q
2 )

+ 2
2n+1
∑

r=n+1

∑

1≤�<�≤p
ℎr��ℎ

r
�� − 2�̃(TxM

n) − 2
2n+1
∑

r=n+1

∑

1≤�<�≤p
(ℎr��)

2

+ 2
2n+1
∑

r=n+1

∑

p+1≤a<b≤n
ℎraaℎ

r
bb − 2

2n+1
∑

r=n+1

∑

p+1≤a<b≤n
(ℎrab)

2. (2.18)

After some computation, we derive
( n
∑

i=1
ℎn+1ii

)2

=
2n+1
∑

r=n+1

p
∑

i=1
(ℎii)2 +

2n+1
∑

r=n+1

n
∑

j=p+1
(ℎjj)2 + 2

2n+1
∑

r=n+1

n
∑

i,j=1
i≠j

(ℎij)2

+
2qΔf
f

+ 2�̃(TxN
p
1 ) + 2

2n+1
∑

r=n+1

∑

1≤�<�≤p
ℎr��ℎ

r
��

− 2
2n+1
∑

r=n+1

∑

1≤�<�≤p
(ℎr��)

2 + 2�̃(TxN
q
2 ) − 2�̃(TxM

n)

+ 2
2n+1
∑

r=n+1

∑

p+1≤a<b≤n
ℎraaℎ

r
bb − 2

2n+1
∑

r=n+1

∑

p+1≤a<b≤n
(ℎrab)

2. (2.19)

As we assumed that Mn is a N1-minimal Legendrian warped product submanifold, then

2
2n+1
∑

r=n+1

∑

1≤�<�≤p
ℎr��ℎ

r
�� +

2n+1
∑

r=n+1

n
∑

i=1
(ℎii)2 = 0. (2.20)

From the above, we find that

2
2n+1
∑

r=n+1

∑

p+1≤a<b≤n
ℎraaℎ

r
bb +

2n+1
∑

r=n+1

n
∑

j=p+1
(ℎjj)2 =

(

n
∑

A=1
ℎAA

)2
(2.21)

Substitute (2.20) and (2.21) in (2.19), we get

2�̃(TxMn) =
2qΔf
f

+ 2�̃(TxN
p
1 ) + 2�̃(TxN

q
2 )

− 2
2n+1
∑

r=n+1

{

∑

1≤�<�≤p
(ℎr��)

2 +
∑

p+1≤a<b≤n
(ℎrab)

2 −
n
∑

i,j=1
i≠j

(ℎij)2
}

(2.22)

Thus from binomial properties, we arrive at

∑

1≤�<�≤p
(ℎr��)

2 +
∑

p+1≤a<b≤n
(ℎrab)

2 −
n
∑

i,j=1
i≠j

(ℎij)2 =
p
∑

�=1

n
∑

�=p+1

(

ℎr��
)2. (2.23)

For Legendrian warped product submanifolds, let us substituting X = W = ei and Y = Z = ej in (2.7), we get

R̃(ei, ej , ej , ei) =
c + 3
4

{

g(ei, ei)g(ej , ej) − g(ei, ej)g(ej , ei)

}

.

Summing up over basis vectors of TM such that 1 ≤ i ≠ j ≤ n, it is easy to obtain that

2�̃(TM) =
(

c + 3
4

)

n(n − 1). (2.24)
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Similarly, for TNp
1 , we derive

�̃(TNp
1 ) =

(

c + 3
8

)

p(p − 1). (2.25)

Now, one derives for TNq
2 , we have

�̃(TNq
2 ) =

(

c + 3
8

)

q(q − 1). (2.26)

Therefore, combining the Eqs. (2.22), (2.23), (2.25) and (2.26), we get the required result (1.4). Thus, the proof is completed.

3 CLASSIFICATIONS OF THE RICCI CURVATURE AND DIVERGENCE OF THE
HESSIAN TENSOR

In this section, we studied some applications of the derived inequality with equality cases. Let identify any (0, 2)-tensor T on
M with a (1, 1)-tensor by equation

g(T (Z), Y ) = T (Z, Y ).

for all Y ,Z ∈ Γ(TM). Thus , we get

div(�T ) = 'divT + T (∇�, ∙) and ∇(�T ) = �∇T + d� ⊗ T ,

for all � ∈ C∞(M). In particular, we have div(�g) = d�. Moreover, the following general facts are well known in the literature

(1) div∇2� = Ric(∇�, ∙) + dΔ� and (ii) 1
2
d‖∇'‖2 = ∇2�(∇, ∙). (3.1)

3.1 Proof of Theorem 1.2
Proof. We use the Ricci identity (3.1). Applying these Ricci identity on the warping function � = � = lnf , which implies that

div∇2� = d
(

Δ�
)

+ic(∇�, ). (3.2)

From the hypothesis, Mn is a compact warped product submanifold with free boundary, and then taking integration along the
volume element dV, we get

Δ� = ∫
Mn

(

div∇2�
)

dV − ∫
Mn

ic(∇�, )dV. (3.3)

Using the Green theorem on a compact manifoldMn, one gets ∫Mn ΔfdV = 0. Using the results of Yano and Kon from (see35),
it follows Δf = −div(∇f ) and from the Green lemma ∫Mn div(X)dV = 0 for an arbitrary vector field X on Mn. Thus, we get
∫Mn div∇2�dV = 0. Therefore, (3.3) implies that

Δ� = −∫
Mn

ic(∇�, )dV. (3.4)

On the other hand, from (1.4) we have

‖ℎ(u, v)‖2 = q‖∇�||2 +
(c + 3

4

)

pq − qΔ�. (3.5)

From (3.4) and (3.5), we obtaine

‖ℎ(u, v)‖2 = q‖∇�||2 +
(c + 3

4

)

pq + q ∫
Mn

ic(∇�, )dV. (3.6)

If the equality (1.6) is satisfied, then from (3.6) we get the following condition

q||∇�||2 = 0,
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which is equivalent to ||∇�||2 = 0 ⇐⇒ ∇� = 0. This means that grad ln f = 0. it shows that f is a constant function on Mn.
Hence, from Remark 6.1, we conclude that Mn is a trivial Legendrian warped product submanifold of a Sasakian Space form
M̃2m+1(c). This is proof of Theorem 1.2.

3.2 Proof of Corollary 1.2
As we have considered that Mn is a Ricci flat. This means that Ricci curvature of Mn is vanished everywhere, that is

ic(∇�, ) = 0.

Substituting the above equation in (1.6) , we get required proof of the corollary.

4 APPLICATION TO THE ORDINARY DIFFERENTIAL EQUATIONS

4.1 Proof of Theorem 1.3
Proof. Let we define the following equation as

‖

‖

‖

Hess(�) + t�I‖‖
‖

2
= ‖Hess(�)‖2 + t2(�)2‖I‖2 + 2t�g(Hess(�), I).

But we know that ‖I‖2 = trace(II∗) = p and g(Hess(�), I∗) = tr(Hess(�)I∗) = trHess(�). Then the proceeding equation
takes the form taking clue from definition of the Laplacian, we have

‖

‖

‖

Hess(�) + t�I‖‖
‖

2
= ‖Hess(�)‖2 + pt2(�)2 − 2t�Δ�. (4.1)

Let �1 is an eigenvalue of the eigenfunction � = lnf , then Δ� = �1�. Thus we get

‖

‖

‖

Hess(�) + t�I‖‖
‖

2
= ‖Hess(�)‖2 +

(

pt2 − 2t�1
)

(�)2. (4.2)

On the other hand, we obtain

Δ
(�2

2
)

= −div
(

∇
(�2

2
)

)

= −div
(

�∇�
)

= −�Δ� + ‖∇�‖2.

Then setting � = � = lnf , we have

Δ
(�2

2
)

= −�Δ� + ‖∇�‖2.

For eigenvalue �1 > 0, and Δ� = �1�, we have

�1�2

2
= −�1�2 + ‖∇�‖2.

which implies that

�2 = 2
3�1

‖∇�‖2. (4.3)

It follows from (4.2) and (4.3), we find that

‖Hess(�) + t�I‖2 = ‖Hess(�)‖2 + 2
3

(pt2

�1
− 2t

)

‖∇�‖2. (4.4)

In particular, t = �1
p

on (4.4) by taking integration, we get

∫
Np
1×{q}

‖

‖

‖

Hess(�) +
�1
p
�I‖‖

‖

2
dV = ∫

Np
1×{q}

‖Hess(�)‖2dV −
2�1
3p ∫

Np
1×{q}

‖∇�‖2dV . (4.5)

Again taking integration on (1.4) and involving the Green lemma, we have

∫
Np
1×{q}

‖∇�‖2dV = 1
q ∫
Np
1×{q}

{

‖

‖

‖

ℎ(u, v)‖‖
‖

2
−
(c + 3

4

)

pq

}

dV . (4.6)
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From (4.5) and (4.6), we derive

∫
Np
1×{q}

‖

‖

‖

Hess(�) +
�1
p
�I‖‖

‖

2
dV = ∫

Np
1×{q}

‖Hess(�)‖2dV

−
2�1
3p ∫

Np
1×{q}

{

1
q
‖

‖

‖

ℎ(u, v)‖‖
‖

2
−
(c + 3

4

)

p
)

}

dV . (4.7)

If the Eq. (1.8) is satisfied, then from (4.7), we get

‖

‖

‖

Hess(�) +
�1
p
�I‖‖

‖

2
= 0 ⇐⇒ Hess(�) = −

�1
p
�I. (4.8)

Since, the warping function � = lnf is non-constant because of warped product manifold Mn is non-trivial, Eq (4.8), gives
Obata’s30 differential equation with constant c = �1

p
> 0 as �1 > 0, and therefore Np

1 is isometric to the sphere Sn( �1
p
) with a

constant sectional curvature is �1
p

. The converse part is straightforward from (4.8). This complete the proof of the theorem.

5 APPLICATION OF BOCHNER FORMULA AS PROOF OF THEOREM ??

We recall now Bochner formula (see e.g.6) which states that for a differential function � = lnf defined on a Riemannian
manifold, the following relation holds:

1
2
Δ‖∇�‖2 = ‖Hess(�)‖2 + Ric(∇�,∇�) + g

(

∇�,∇(Δ�)
)

.

Integrating above equation with the aid of Stokes theorem, we get

∫
Np
1×{q}

‖Hess(�)‖2dV + ∫
Np
1×{q}

Ric(∇�,∇�)dV + ∫
Np
1×{q}

g
(

∇�,∇(Δ�)
)

dV = 0. (5.1)

Now by using Δ� = �1� and some rearrangement in (5.1), we derive

∫
Np
1×{q}

‖Hess(�)‖2dV = − �1 ∫
Nn1
1 ×{q}

‖∇�‖2dV − ∫
Np
1×{q}

Ric(∇�,∇�)dV . (5.2)

Inserting (5.2) into (4.5), we get

∫
Np
1×{q}

‖

‖

‖

Hess(�) +
�1
p
�I‖‖

‖

2
dV = − �1 ∫

Np
1×{q}

‖∇�‖2dV −
2�1
3p ∫

Np
1×{q}

‖∇�‖2dV − ∫
Np
1×{q}

Ric(∇�,∇�)dV ,

which implies that

∫
Np
1×{q}

‖

‖

‖

Hess(�) +
�1
p
�I‖‖

‖

2
dV = − �1

(3p + 2
3p

)

∫
Np
1×{q}

‖∇�‖2dV − ∫
Np
1×{q}

Ric(∇�,∇�)dV . (5.3)

It follows from (4.6) and (5.3), we find that

∫
Np
1×{q}

‖

‖

‖

Hess(�) +
�1
p
�I‖‖

‖

2
dV = − �1

(3p + 2
3pq

)

∫
Np
1×{q}

‖

‖

‖

ℎ(u, v)‖‖
‖

2
dV − ∫

Np
1×{q}

Ric(∇�,∇�)dV

+ �1
(3p + 2
3pq

)

∫
Np
1×{q}

(c + 3
4

)

pqdV .

It is equivalent to the following

∫
Np
1×{q}

‖

‖

‖

Hess(�)+
�1
p
�I‖‖

‖

2
dV + ∫

Np
1×{q}

Ric(∇�,∇�)dV = �1
(3p + 2
3pq

)

∫
Np
1×{q}

{

(c + 3
4

)

pq − ‖

‖

‖

ℎ(u, v)‖‖
‖

2
}

dV . (5.4)
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The equality in (1.9) is satisfied if and only if the following equality holds in (5.4), that is

∫
Np
T×{q}

‖

‖

‖

Hess(�) +
�1
p
�I‖‖

‖

2
dV = 0,

which means that

∇2� = −
�1
p
�I. (5.5)

Therefore, we again invoke the result of Obata’s30 differential equation with constant c = �1
p
> 0 as �1 > 0, and therefore Np

1

is isometric to the sphere Sn( �1
p
). The converse part immediately follows from (5.5). This complete proof of theorem.

5.1 Proof of Theorem 1.5
Proof. Now consider the Eq. (5.4), we have

∫
Np
1×{q}

‖

‖

‖

Hess(�) +
�1
p
�I‖‖

‖

2
dV = − �1

(3p + 2
3pq

)

∫
Np
1×{q}

‖

‖

‖

ℎ(u, v)‖‖
‖

2
dV − ∫

Np
T×{q}

Ric(∇�,∇�)dV

+ �1
(3p + 2
3pq

)

∫
Np
1×{q}

(c + 3
4

)

pqdV . (5.6)

As we considered the Ricci curvature of Np
1 is non-negative Ric ≥ 0, then

∫
Np
1×{q}

Ric(∇�,∇�)dV ≥ 0 ⇐⇒ − ∫
Np
1×{q}

Ric(∇�,∇�)dV ≤ 0.

Using the proceeding in (5.6), we get

∫
Nq
1×{n2}

‖

‖

‖

Hess(�) +
�1
n
�I‖‖

‖

2
dV + �1

(3p + 2
3pq

)

∫
Np
1×{q}

(c + 3
4

)

pqdV − �1
(3p + 2
3pq

)

∫
Np
1×{q}

‖

‖

‖

ℎ(u, v)‖‖
‖

2
dV . (5.7)

The following inequality holds from (5.7) if and only if the condition (1.10) is satisfied of Theorem 1.5, as p ≠ − 2
3
, we get

‖

‖

‖

Hess(�) +
�1
p
�I‖‖

‖

2
≤ 0. (5.8)

On the other hand, we known that

‖

‖

‖

Hess(�) +
�1
p
�I‖‖

‖

2
≥ 0. (5.9)

Combining (5.8) and (5.9), we arrive at

Hess(�) = −
�1
p
�I. (5.10)

From30, Np
1 is isometric to the sphere Sp( �1

p
). This complete the proof the theorem.

5.2 Proof of Theorem 1.6
In hypothesis of the theorem, we assumed that the Ricci curvature of base manifold Np

1 is positive and hence from Myers’s
theorem which stat that a complete Riemannian manifold with positive Ricci curvature is compact. Therefore, Np

1 is connected
and compact base manifold. Then from (5.6), we get

∫
Np
1×{q}

‖

‖

‖

Hess(�) +
�1
n
�I‖‖

‖

2
dV < �1

(3p + 2
3pq

)

∫
Np
1×{q}

{

(c + 3
4

)

pq − ‖

‖

‖

ℎ(u, v)‖‖
‖

2
}

dV . (5.11)
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Follows the statement of the theorem and the equation (1.11) is satisfied, then

‖

‖

‖

Hess(�) +
�1
p
�I‖‖

‖

2
< 0.

which implies that

Hess(�) = −
�1
p
�I. (5.12)

As we assumed that �1 < 0 in the hypothesis of theorem, therefore we invoke the result from21. Then, Np
1 is isometric to

a warped product of the Euclidean line and a complete Riemannian manifold, where warping function satisfies the equation
d2�
dt2
+ �1� = 0, where � is a warping function. This complete the proof of theorem.

6 PROOF OF THEOREM ??

Let the equation can be expressed as

‖

‖

‖

Hess(�) − tI‖‖
‖

2
= ‖Hess(�)‖2 + t2‖I‖2 − 2tg(Hess(�), I). (6.1)

which implies that the fact of Hessian Hess(�) and identity operator I , that is

‖

‖

‖

Hess(�) − tI‖‖
‖

2
= ‖Hess(�)‖2 + t2p − 2tΔ�.

In particular, t = �1
p

putting in the above equation with integrated along volume element dV , we derive

∫
Np
1×{q}

‖

‖

‖

Hess(�) −
�1
p
I‖‖
‖

2
dV = ∫

Np
1×{q}

(

‖Hess(�)‖2 +
�21
p

)

dV (6.2)

Taking the help from virtue (5.2), we obtain

∫
Np
1×{q}

‖

‖

‖

Hess(�) −
�1
p
I‖‖
‖

2
dV = − �1 ∫

Np
1×{q}

‖∇�‖2dV − ∫
Np
1×{q}

Ric(∇�,∇�)dV + ∫
Np
1×{q}

�21
p
dV . (6.3)

Taking account of (4.6) and from the above equation, we get

∫
Np
1×{q}

‖

‖

‖

Hess(�) −
�1
p
I‖‖
‖

2
dV = −

�1
q ∫
Np
T×{q}

‖

‖

‖

ℎ(u, v)‖‖
‖

2
dV − ∫

Np
1×{q}

Ric(∇�,∇�)dV

+ �1 ∫
Np
1×{q}

{

�1
p
+
(c + 3

4

)

pq
}

dV (6.4)

In view our assumption that the Ricci curvature is non-negative, then the above equation implies that

∫
Np
1×{q}

‖

‖

‖

Hess(�) −
�1
p
I‖‖
‖

2
dV ≤�1 ∫

Np
1×{q}

{

�1
p
+
(c + 3

4

)

pq
}

dV −
�1
q ∫
Np
1×{q}

‖

‖

‖

ℎ(u, v)‖‖
‖

2
dV . (6.5)

If Eq. (6.13) is satisfied then from (6.5), we arrive at

∫
Np
T×{q}

‖

‖

‖

Hess(�) −
�1
p
I‖‖
‖

2
dV ≤ 0.

It follows from the definition of the norm

Hess(�) =
�1
p
I,

which implies that

Hess�(X,X) =
�1
p
g(X,X), (6.6)
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for any X ∈ X(N1). Note that if the potential function � = ln f is a constant then Mn is a trivial warped product submanifold
that leads to a contradiction as Mn is non-trivial. Hence equation (6.6) is Tashiro34 differential equation and therefore Np

1 is
isometric to the Euclidean space ℝp 33,34 with positive constant c = �1

p
> 0, as �1 > 0. This complete the proof of the theorem.

Remark 6.1. Assume that S2m+1 be a (2m + 1)-sphere, we put Jz = �, for any point z ∈ S2m+1 and J is an almost complex
structure of complex n + 1-space ℂm+1. Let us consider the orthogonal projection map � ∶ Tzℂm+1 → TzS2m+1 such that
' = �◦J , it can be easily seen that (', �, �, g) is a Saskian structure in S2m+1, where � is a one-form dual to �, and g is standard
metric tensor field on S2m+1. Therefore, the odd-dimension sphere S2m+1 can be considered a Sasakian manifold of constant
'-sectional curvature one. Let Mn be a submanifold in S2n+1, then Mn is a Legendrian submanifold in S2n+1(1) if and only if
it is a Legendrian submanifold in S2n+1(�).

Motivated by above Remark and Theorems 1.1, 1.2,1.3, 1.4, 1.5, 1.6 and 1.7, we have following corollaries.

Corollary 6.1. Let Ψ ∶ Mn = Np
1 ×f N

q
2 ←→ M̃2+1(c) be an isometric immersion from a Legendrian warped product

submanifold Np
1 ×f N

q
2 into a Sasakian space form S2n+1. If Np

1 is minimal in S2n+1, then the following equality is satisfied

‖ℎ(u, v)‖2 = q
{

||∇�||2 + p − Δ�
}

, (6.7)

where ∇ and Δ are gradient and the Laplacian of the warping function � = lnf on Np
1 . Moreover, u = {ei}1≤i≤p and v =

{e∗j}1≤j≤q are vector fields on Np
1 and Nq

2 , respectively.

Corollary 6.2. Let Ψ ∶ Mn = Np
1 ×f N

q
2 be an isometric immersion of a compact Legendrian warped product submanifold

Np
1 ×fN

q
2 into a Sasakian space form S2n+1 such thatNp

1 is minimal in S2n+1 If the following equality is satisfied for the warped
product submanifold Mn

‖ℎ(u, v)‖2 = q

{

p + ∫
M

ic(∇�, )dV

}

. (6.8)

Then, Legendrian warped product submanifold Np
1 ×f N

q
2 into a Sasakian space form, is simply a Riemannian product of Np

1
and Nq

2 .

Corollary 6.3. Let Ψ ∶Mn = Np
1 ×f N

q
2 be an isometric immersion of a Legendrian warped product submanifold Np

1 ×f N
q
2

into a Sasakian space form S2n+1 with baseNp
1 is minimal in S2n+1, connected and compact. ThenNp

1 is isometric to the sphere
Sp( �1

p
) with constant sectional curvature is equal to �1

p
if and only if the following equality is satisfied

‖Hess(�)‖2 =
2�1
3pq

{

‖ℎ(u, v)‖2 − pq
}

, (6.9)

Theorem 1.4 implies that

Corollary 6.4. LetΨ ∶Mn = Np
1 ×fN

q
2 be an isometric immersion of a Legendrian warped productNp

1 ×fN
q
2 into a Sasakian

space form S2n+1 with base Np
1 is minimal in S2n+1, connected and compact. Then Np

1 is isometric to the sphere Sp( �1
p
) with

constant sectional curvature is equal to �1
p

if and only if the following equality is satisfied

Ric(∇�,∇�) = �1
(3p + 2
3pq

)

{

pq − ‖

‖

‖

ℎ(u, v)‖‖
‖

2
}

. (6.10)

where �1 > 0 is a positive eigenvalue associated to the eigenfunction � = lnf .

Theorem 1.5 gives the following

Corollary 6.5. Let Ψ ∶Mn = Np
1 ×f N

q
2 be an isometric immersion of a Legendrian warped product submanifold Np

1 ×f N
q
2

into a Sasakian space form S2n+1 with with baseNp
1 is minimal in S2n+1, connected and complete. IfNp

1 has non-negative Ricci
curvature then its is isometric to the sphere Sp( �1

p
) if and only if the following equality is satisfied

‖ℎ(u, v)‖2 = pq, (6.11)

where �1 > 0.

Similarly, from Theorem 1.6, we have
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Corollary 6.6. Let Ψ ∶Mn = Np
1 ×f N

q
2 be an isometric immersion of a Legendrian warped product submanifold Np

1 ×f N
q
2

into a Sasakian space form S2n+1 with base Np
1 is minimal in S2n+1, complete and has positive Ricci curvature. Then Np

1 is
isometric to a warped product of the Euclidean line and a complete Riemannian manifold whose warping function  satisfies
the equation that d2 

dt2
+ �1 = 0 if and only if the following equality is satisfied

‖ℎ(u, v)‖2 = pq, (6.12)

where �1 < 0 is a negative eigenvalue associated to the eigenfunction � = lnf .

At the last result follows from Theorem 1.7, we get

Corollary 6.7. Let Ψ ∶Mn = Np
1 ×f N

q
2 be an isometric immersion of a Legendrian warped product submanifold Np

1 ×f N
q
2

into a Sasakian space form S2n+1 with base Np
1 is minimal in S2n+1, complete and has positive Ricci curvature. Then Np

1 is
isometric to the Euclidean space ℝp if and only if the following equality is satisfied

‖

‖

‖

ℎ(u, v)‖‖
‖

2
= q2

{�1
p
+ p

}

, (6.13)

with �1 > 0 is positive eigenvalue of the non-constant warping function � = lnf .
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