REFERENCES
1.
Aeschimann, D., Lauber, K., Moser, D.M. & Theurillat, J.-P. (2004).Flora Alpina . Haupt Berne, Switzerland.
2.
Agrawal, A.A., Fishbein, M., Halitschke, R., Hastings, A.P., Rabosky, D.L. & Rasmann, S. (2009). Evidence for adaptive radiation from a phylogenetic study of plant defenses. Proceedings of the National Academy of Sciences of the United States of America , 106, 18067-18072.
3.
Ali, J.G. & Agrawal, A.A. (2012). Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. , 17, 293-302.
4.
Barton, K.E. & Koricheva, J. (2010). The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis.Am. Nat. , 175, 481-493.
5.
Becerra, J.X. (1997). Insects on plants: Macroevolutionary chemical trends in host use. Science , 276, 253-256.
6.
Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing.Journal of the Royal Statistical Society. Series B , 57, 289-300.
7.
Berenbaum, M. & Feeny, P. (1981). Toxicity of angular furanocoumarins to swallowtail butterflies - escalation in a co-evolutionary arms-race.Science , 212, 927-929.
8.
Berenbaum, M. & Neal, J.J. (1985). Synergism between myristicin and xanthotoxin, a naturally cooccurring plant toxicant. J. Chem. Ecol. , 11, 1349-1358.
9.
Berenbaum, M.R., Nitao, J.K. & Zangerl, A.R. (1991). Adaptive significance of furanocoumarin diversity in Pastinaca sativa(Apiaceae). J. Chem. Ecol. , 17, 207-215.
10.
Brown, E.S. & Dewhurst, C.F. (1975). The genus Spodoptera(Lepidoptera, Noctuidae) in Africa and the Near East. Bull. Entomol. Res. , 65, 221-262.
11.
Bryant, J.P., Chapin, F.S. & Klein, D.R. (1983). Carbon nutrient balance of boreal plants in relation to vertebrate herbivory.Oikos , 40, 357-368.
12.
Cacho, N.I., Kliebenstein, D.J. & Strauss, S.Y. (2015). Macroevolutionary patterns of glucosinolate defense and tests of defense-escalation and resource availability hypotheses. New Phytol. , 208, 915-927.
13.
Chapin, F.S. & Korner, C. (1995). Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Springer-Verlag Berlin, p. 332.
14.
Chew, F.S. (1988). Biological effects of glucosinolates. In:Biologically Active Natural Products . American Chemical Society, pp. 155-181.
15.
Coley, P.D. & Barone, J.A. (1996). Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. , 27, 305-335.
16.
Coley, P.D., Bryant, J.P. & Chapin, F.S. (1985). Resource availability and plant antiherbivore defense. Science , 230, 895-899.
17.
de Vos, M., Kim, J.H. & Jander, G. (2007). Biochemistry and molecular biology of Arabidopsis-aphid interactions. Bioessays , 29, 871-883.
18.
Defossez, E., Pellissier, L. & Rasmann, S. (2018). The unfolding of plant growth form-defence syndromes along elevation gradients.Ecol. Lett. , 21, 609-618.
19.
Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S. et al. (2016). The global spectrum of plant form and function. Nature , 529, 167-171.
20.
Dobzhansky, T. (1950). Evolution in the tropics. Am. Sci. , 38, 209-221.
21.
Dray, S. & Dufour, A.B. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software , 22, 1-20.
22.
Duffey, S.S. & Stout, M.J. (1996). Antinutritive and toxic components of plant defense against insects. Arch. Insect Biochem. Physiol. , 32, 3-37.
23.
Durán, S.M., Martin, R.E., Díaz, S., Maitner, B.S., Malhi, Y., Salinas, N. et al. (2019). Informing trait-based ecology by assessing remotely sensed functional diversity across a broad tropical temperature gradient. Science Advances , 5, eaaw8114.
24.
Durka, W. & Michalski, S.G. (2012). Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses.Ecology , 93, 2297-2297.
25.
Dyer, L.A., Philbin, C.S., Ochsenrider, K.M., Richards, L.A., Massad, T.J., Smilanich, A.M. et al. (2018). Modern approaches to study plant–insect interactions in chemical ecology. Nature Reviews Chemistry , 2, 50-64.
26.
Ehrlich, P.R. & Raven, P.H. (1964). Butterflies and plants - a study in coevolution. Evolution , 18, 586-608.
27.
Farrell, B.D. & Mitter, C. (1998). The timing of insect/plant diversification: might Tetraopes (Coleoptera : Cerambycidae) andAsclepias (Asclepiadaceae) have co-evolved? Biol. J. Linn. Soc. , 63, 553-577.
28.
Fine, P.V.A., Mesones, I. & Coley, P.D. (2004). Herbivores promote habitat specialization by trees in amazonian forests. Science , 305, 663-665.
29.
Firn, R.D. & Jones, C.G. (1996). An explanation of secondary product ’redundancy”. In: Phytochemical diversity and redundancy in ecological interactions (eds. Romeo, JT, Saunders, IA & Barbosa, P). Plenum Press New York and London, pp. 295-312.
30.
Firn, R.D. & Jones, C.G. (2003). Natural products–a simple model to explain chemical diversity. Nat Prod Rep , 20, 382-391.
31.
Fischbach, M.A. & Clardy, J. (2007). One pathway, many products.Nat. Chem. Biol. , 3, 353-355.
32.
Futuyma, D.J. & Agrawal, A.A. (2009a). Evolutionary history and species interactions. Proceedings of the National Academy of Sciences of the United States of America , 106, 18043-18044.
33.
Futuyma, D.J. & Agrawal, A.A. (2009b). Macroevolution and the biological diversity of plants and herbivores. Proceedings of the National Academy of Sciences of the United States of America , 106, 18054-18061.
34.
Glauser, G., Schweizer, F., Turlings, T.C.J. & Reymond, P. (2012). Rapid profiling of intact glucosinolates in Arabidopsis leaves by UHPLC-QTOFMS using a charged surface hybrid column. Phytochem. Anal. , 23, 520-528.
35.
Hadfield, J.D. (2010). MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R Package. Journal of Statistical Software , 33, 1–22.
36.
Hodkinson, I.D. (2005). Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews , 80, 489-513.
37.
Huang, X.P., Renwick, J.A.A. & Chew, F.S. (1994). Oviposition stimulants and deterrents control acceptance ofAlliaria petiolata byPieris rapae and P. napi oleracea. CHEMOECOLOGY , 5, 79-87.
38.
Hunter, M.D. (2016). The phytochemical landscape: linking trophic interactions and nutrient dynamics . Princeton University Press, Princeton, New Jersey, USA.
39.
Jones, C.G. & Firn, R.D. (1991). On the evolution of plant secondary chemical diversity. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences , 333, 273-280.
40.
Kim, J.H. & Jander, G. (2007). Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J. , 49, 1008-1019.
41.
Kim, J.H., Lee, B.W., Schroeder, F.C. & Jander, G. (2008). Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid).Plant J. , 54, 1015-1026.
42.
Korner, C., Neumayer, M., Menendezriedl, S.P. & Smeetsscheel, A. (1989). Functional-morphology of mountain plants. Flora , 182, 353-383.
43.
Kursar, T.A. & Coley, P.D. (2003). Convergence in defense syndromes of young leaves in tropical rainforests. Biochem. Syst. Ecol. , 31, 929-949.
44.
Laliberté, E., Legendre, P. & Shipley, B. (2014). FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12
45.
Lewinsohn, E. & Gijzen, M. (2009). Phytochemical diversity: The sounds of silent metabolism. Plant Sci. , 176, 161-169.
46.
Moles, A.T., Wallis, I.R., Foley, W.J., Warton, D.I., Stegen, J.C., Bisigato, A.J. et al. (2011). Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes. New Phytol. , 191, 777-788.
47.
Moyes, C.L., Collin, H.A., Britton, G. & Raybould, A.E. (2000). Glucosinolates and differential herbivory in wild populations ofBrassica oleracea . J. Chem. Ecol. , 26, 2625-2641.
48.
Núñez-Farfán, J., Fornoni, J. & Valverde, P.L. (2007). The evolution of resistance and tolerance to herbivores. Annual Review of Ecology Evolution and Systematics , 38, 541-566.
49.
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B. et al. (2013). vegan: Community Ecology Package. http://vegan.r-forge.r-project.org/.
50.
Paradis, E., Claude, J. & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics , 20, 289-290.
51.
Pellissier, L., Moreira, X., Danner, H., Serrano, M., Salamin, N., van Dam, N.M. et al. (2016). The simultaneous inducibility of phytochemicals related to plant direct and indirect defences against herbivores is stronger at low elevation. J. Ecol. , 104, 1116-1125.
52.
R Development Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria.
53.
Rasmann, S. & Agrawal, A.A. (2009). Plant defense against herbivory: progress in identifying synergism, redundancy, and antagonism between resistance traits. Curr. Opin. Plant Biol. , 12, 473-478.
54.
Rasmann, S. & Agrawal, A.A. (2011). Latitudinal patterns in plant defense: evolution of cardenolides, their toxicity and induction following herbivory. Ecol. Lett. , 14, 476-483.
55.
Rasmann, S., Buri, A., Gallot-Lavallée, M., Joaquim, J., Purcell, J. & Pellissier, L. (2014a). Differential allocation and deployment of direct and indirect defences by Vicia sepium along elevation gradients.J. Ecol. , 102, 930-938.
56.
Rasmann, S., Chassin, E., Bilat, J., Glauser, G. & Reymond, P. (2015). Trade-off between constitutive and inducible resistance against herbivores is only partially explained by gene expression and glucosinolate production. J. Exp. Bot. , 66, 2527–2534.
57.
Rasmann, S., Pellissier, L., Defossez, E., Jactel, H. & Kunstler, G. (2014b). Climate-driven change in plant–insect interactions along elevation gradients. Funct. Ecol. , 28, 46-54.
58.
Renwick, J.A.A., Radke, C.D., Sachdev-Gupta, K. & Städler, E. (1992). Leaf surface chemicals stimulating oviposition by Pieris rapae(Lepidoptera: Pieridae) on cabbage. CHEMOECOLOGY , 3, 33-38.
59.
Richards, L.A., Dyer, L.A., Forister, M.L., Smilanich, A.M., Dodson, C.D., Leonard, M.D. et al. (2015). Phytochemical diversity drives plant-insect community diversity. Proceedings of the National Academy of Sciences of the United States of America , 112, 10973-10978.
60.
Richards, L.A., Lampert, E.C., Bowers, M.D., Dodson, C.D., Smilanich, A.M. & Dyer, L.A. (2012). Synergistic effects of iridoid glycosides on the survival, development and immune response of a specialist caterpillar, Junonia coenia (Nymphalidae). J. Chem. Ecol. , 38, 1276-1284.
61.
Rodman, J.E. & Chew, F.S. (1980). Phytochemical correlates of herbivory in a community of native and naturalized cruciferae. Biochem. Syst. Ecol. , 8, 43-50.
62.
Romeo, J.T., Saunders, J.A. & Barbosa, P. (1996). Phytochemical diversity and redundancy in ecological interactions. Plenum Press, New York New York, USA.
63.
Salazar, D., Jaramillo, M.A. & Marquis, R.J. (2016). Chemical similarity and local community assembly in the species rich tropical genus Piper . Ecology , 97, 3176-3183.
64.
Schemske, D.W. (2009). Biotic interactions and speciation in the tropics. In: Speciation and Patterns of Diversity (eds. Butlin, RK, Bridle, JR & Schluter, D). Cambridge Univ. Press Cambridge, United Kingdom, pp. 219–239.
65.
Schlaeppi, K., Bodenhausen, N., Buchala, A., Mauch, F. & Reymond, P. (2008). The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis . The Plant Journal , 55, 774-786.
66.
Schweiger, R., Heise, A.M., Persicke, M. & Muller, C. (2014). Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types.Plant Cell Environ , 37, 1574-1585.
67.
Steppuhn, A. & Baldwin, I.T. (2007). Resistance management in a native plant: nicotine prevents herbivores from compensating for plant protease inhibitors. Ecol. Lett. , 10, 499-511.
68.
Swenson, N.G. (2019). Phylogenetic ecology : a history, critique, and remodeling . The University of Chicago Press, Chicago ; London.
69.
van Dam, N., Tytgat, T. & Kirkegaard, J. (2009). Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem. Rev. , 8, 171-186.
70.
van Emden, H.F., Eastop, V.F., Hughes, R.D. & Way, M.J. (1969). The Ecology of Myzus persicae . Annu. Rev. Entomol. , 14, 197-270.
71.
Venables, W.N. & Ripley, B.D. (2002). Modern Applied Statistics with S . Fourth Edition edn. Springer, New York., USA.
72.
Vermeij, G.J. (1994). The evolutionary interaction among species: selection, escalation, and coevolution. Annu. Rev. Ecol. Syst. , 25, 219-236.
73.
Wetzel, W.C. & Whitehead, S.R. (2020). The many dimensions of phytochemical diversity: linking theory to practice. Ecol. Lett. , 23, 16-32.
74.
Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry , 64.
75.
Wink, M. & Mohamed, G.I.A. (2003). Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene. Biochem. Syst. Ecol. , 31.
76.
WInkler, I.S. & Mitter, C. (2008). The phylogenetic dimension of insect-plant interactions: a review of recent evidence. In:Specialization, Speciation and Radiation: The Evolutionary Biology of Herbivorous Insects (ed. Tilmon, KJ). University of California Press Berkeley, pp. 240-263.
77.
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F. et al. (2004). The worldwide leaf economics spectrum.Nature , 428, 821-827.