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Abstract

In this article, we provide a rigorous derivation of an asymptotic formula for the perturba-
tion of eigenvalues associated to the Stokes eigenvalue problem with Dirichlet conditions and in
the presence of small deformable inclusions. Taking advantage of the small sizes of the inclu-
sions immersed in an incompressible Newtonian fluid having kinematic viscosity different from
the background one, we show that our asymptotic formula can be expressed in terms of the
eigenvalue in the absence of the inclusions and in terms of the so-called viscous moment tensor
(VMT). We believe that our results are ambitious tools for determining the locations and/or
shapes of small inhomogeneities by taking eigenvalue measurements.
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1 Introduction

Let Ω be a bounded open C2-domain of Rd (d = 2 or 3) containing a Newtonian incompressible
fluid. We suppose that Ω contains a finite number N of small deformable inclusions, each of the
geometry form

Biα := zi + αBi, 1 ≤ i ≤ N, (1.1)

where α is the shared diameter and Bi ⊂ Rd is a bounded C2-star-shaped domain containing the
origin (e.g., it can represent the rescaled shape of a droplet). The total collection of inclusions

thus takes the form Bα =

N⋃
i=1

Biα and the points zi ∈ Ω, i = 1, . . . , N , that determine the

locations of the inclusions are assumed to satisfy

0 < d0 ≤ |zi − zl| ∀i 6= l ,
0 < d0 ≤ dist(zi, ∂Ω) for i = 1, · · · , N, (1.2)

with d0 is a predefined positive constant.

We denote by µ(x) the smooth background coefficient of kinematic viscosity of the fluid and
we suppose that 0 < c0 ≤ µ(x) ≤ c1 < +∞, ∀x ∈ Ω, for some fixed constants c0 and c1. For
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simplicity, we assume that µ ∈ C∞(Ω), but this condition could be considerably weakened. We
assume that the subdomain Biα contains an isotropic Stokes fluid with kinematic viscosity µi
such that µ(x) 6= µi, for x ∈ Ω, and we set

µα(x) :=

{
µ(x) x ∈ Ω \ Bα,
µi x ∈ Biα,

(1.3)

where µi, i = 1, . . . , N is a set of positive constants.

Here and in all the rest of this paper we denote by I the unit matrix in Rd×d and for a
given two (d × d) matrices A = (aij) and B = (bij) we denote by A : B the contraction, i.e.,

A : B =
∑
ij

aijbij .

Now, it is useful to introduce the stress tensor as follows

σ(u, p) := −pI + 2µe(u); (u, p) ∈ H1(Ω)d × L2(Ω) (1.4)

where u denotes the velocity fluid, the scalar function p is the pressure, µ is a given parameter
representing the kinematic viscosity of the fluid and e(u) is the linear strain tensor for the flow:

e(u) :=
1

2
(∇u+ (∇u)T ) =

(1

2
(
∂ui
∂xj

+
∂uj
∂xi

)
)

1≤i,j≤d
; u = (u1, · · · , ud) ∈ Rd. (1.5)

Here and throughout the paper T denotes the transpose. Moreover, we assume that the
divergence of a matrix-valued function A is denoted Div(A), while the divergence of a vector-
valued function u is denoted div(u).

We consider the following eigenvalue problem for the Stokes system (see, for example,[18,
31]): 

−Div(2µe(v0)) +∇p0 = λ0v0 in Ω,
div(v0) = 0 in Ω,
v0 = 0 in ∂Ω,
‖v0‖ = 1

(1.6)

where (v0, p0, λ0) ∈ (H2(Ω))d × H1(Ω) × R∗+. Here we refer the reader to Boyer and Fabrie
([18], Theorem IV.5.8) for more details about the regularity properties. On the other hand, if
S mens the Stokes operator, it is well know that (see for example, [7, 18, 29, 36]) there exist an
orthogonal projection (the Leray projection) P such that:

S(v) = P (−∆v), ∀v ∈ (H2(Ω))d ∩H(Ω),

where
H(Ω) := {v ∈ (H1

0 (Ω))d : div(v) = 0 in Ω}.

In consequence, the Stokes operator enters the general framework about the well known spectral
properties of −∆.
It is well known that the eigenvalue problem (1.6) admits a sequence of no decreasing positive
eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · tending to infinity as n→ +∞.
The associated eigenfunctions {vn}n≥1 ⊂ (H1

0 (Ω))d and eigenpressures {pn}n≥1 ⊂ L2(Ω) may
be taken so that {vn}n≥1 constitutes an orthonormal basis of H(Ω). The pressure p is deter-
mined up to an additive constant.
On the other hand, it is well known that the spectrum of the Stokes operator is not always
simple, as denoted by Ortega and Zuazua in [31]. This for instance is the case when the domain
is a ball as justified by Watson ([37], pp. 124-127).
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Let now µα be given by (1.3), our main purpose in this work is to develop rigourously asymp-
totic behaviors of the eigenvalues associated to the following (perturbed) eigenvalue problem
with the Dirichlet boundary conditions:

−Div(2µαe(vα)) +∇pα = λαvα in Ω,
div(vα) = 0 in Ω,
vα = 0 in ∂Ω,
‖vα‖ = 1

(1.7)

where (vα, pα, λα) ∈ (H2(Ω))d × H1(Ω) × R∗+. The eigenvalue problem with the Neumann
boundary conditions is of equal interest. The asymptotic results for this case can be obtained
with only minor modifications of the techniques presented here.

The properties of eigenvalue problems under shape deformations have been a subject of com-
prehensive studies [1, 2, 11, 15, 14, 16, 23, 25, 27, 31, 33, 34, 35] and the area continues to carry
great importance as in [3, 4, 5, 10, 24, 28, 26, 21, 20] and others. A significant portion of these
investigations discusses the possibility of using asymptotic expansions of eigenvalues as an aid
in identifying unknown small objects.
To the best of our knowledge, the present paper is an appropriate extension of those already
derived in [11, 12, 15] for eigenvalues of Laplace operator or of Lamé system. It extends also the
main achievements done for Laplace eigenvalue problem in a domain with oscillating boundary
[2] and for the case of biharmonic operator in a domain with highly indented boundary [28].

The main objective of this paper is to find an asymptotic expansion for the Stokes operator
eigenvalues of such a domain which has not been established before this work, with the aim of
using the formula as help to locate the unknown inclusions. In other words, we would like to
find a method similar to those elaborated in [4, 11, 12] to determine the locations, shape, and/or
size of the small inclusions by taking eigenvalue measurements.
Note that the idea, to get the asymptotic formulas for the eigenvalues, is to use a result which
provides estimates for the convergence of the eigenvalues of a sequence of self-adjoint compact
operators. To the best of readers, this result may be at once obtained by applying a theorem
of Osborn [32] to self-adjoint operators, with substantial simplifications. One can also see the
works of Kato [23], for more details about the convergence of eigenvalues of a sequence of self-
adjoint compact operators.

In this work we focus our attention to the eigenvalues of the Dirichlet boundary value problem
in the presence of small isotropic inclusions, while the rigorous derivation of similar asymptotic
formulas for the case of anisotropic subdomains requires further work. The general schematic
way, presented in this paper, can be extended to other eigenvalue problems such as, eigenvalue
problem for Dirichlet biharmonic operator which describes the characteristic vibrations of a
clamped plate. Moreover, it can be extended to the quad-curl eigenvalue problem which has a
fundamental importance for the analysis and computation of the electromagnetic interior trans-
mission eigenvalues.

This paper is organized as follows. In Section 1, we introduce the adopted notations, we
describe the geometry of the domain with its constitutive parameters and we formulate the
perturbed Stokes eigenvalue problem with Dirichlet boundary conditions. In Section 2, we
present the main results of this paper. In Section 3, we consider an associated Stokes boundary
value problem in the presence of deformable inclusions Biα and using (for example) the Korn’s
inequality, we prove some convergence estimates where one of them is measured in a rescaled
domain Ω̃. These results will be useful to prove our main result. In Section 4, we end our paper
by applying a theorem of Osborn [32] to establish the result which gives the asymptotic formula
for the eigenvalues involving the viscous moment tensors. All these analyzes are of course taken
when the shared diameter α approaches 0, and the deformable inclusions are separated from
each other and do not touch ∂Ω.
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2 Main results

In this paper, we allow inhomogeneities with more general shapes such that deformable inclusions
modeling droplets in Stokes flow and /or inclusions with highly oscillating boundaries. To

state our main result, we introduce the fourth-order, symmetric, positive definite matrix V(i)

associated with the ith inhomogeneity, called viscous moment tensor [6]. For all i = 1, · · · , N ,

the coefficients V
(i)
klpq of V(i) are given by

V
(i)
klpq := 2(µ(zi)− µi)

( |Bi|
2

(δkpδlq + δkqδlp) +

∫
∂Bi

e(v̂(i)
pq )kldy

)
; 1 ≤ k, l, p, q ≤ d, (2.8)

where for 1 ≤ p, q ≤ d the corrector (v̂
(i)
pq , π̂(i)) is the unique solution of:

−Div(2µe(v̂(i)
pq )) +∇π̂(i) = 0 in Rd \Bi,

−Div(2µie(v̂(i)
pq )) +∇π̂(i) = 0 in Bi,

div(v̂
(i)
pq ) = 0 in Rd,

v̂
(i)
pq |+ − v̂

(i)
pq |− = 0 on ∂Bi,

(π̂(i)ν + µi
∂v̂(i)

pq

∂ν ) |−= (π̂(i)ν + µ(zi)
∂v̂(i)

pq

∂ν ) |+ on ∂Bi,

v̂
(i)
pq (y) = O(|y|−1) as |y| → ∞,
π̂(i)(y) = O(|y|−2) as |y| → ∞.

(2.9)

Here ν denotes the outward unit normal to ∂Bi; superscript + and − indicate the limiting
values as we approach ∂Bi from outside Bi, and from inside Bi, respectively. δpq means the
Kronecker’s index and the conormal derivative ∂u

∂ν is given by

∂u

∂ν
:= (∇u+∇uT )ν. (2.10)

Note that the viscous moment tensor depends on the coefficient of kinematic viscosity, size, and
shape of the inclusion.

The first main result of this paper is the following derivation of the asymptotic expansion of

λ
j

α − λ0 as α→ 0, where Ω is a bounded region outside the total collection of inclusions Bα.

Theorem 1 Let Ω be a bounded domain of Rd (d = 2 or 3) with boundary of class C2. Suppose
that we have (1.2)-(1.3) and let λ0 be an eigenvalue of multiplicity m of (1.6), with an L2

orthonormal basis of eigenfunctions {vj0}1≤j≤m. Suppose (λjα) are eigenvalues of (1.7) which

converge to λ0. If we define each V(i) by (2.8) for i = 1 . . . N , the following asymptotic expansion
holds:

λ
j

α − λ0 = αd
1

2λ2

m∑
j=1

N∑
i=1

e(vj0)(zi) : V(i)e(vj0)(zi) + o(αd), (2.11)

where λ
j

α :=
1

m

m∑
j=1

1

λjα
is the average of the set (λjα), λ0 =

1

λ0
and the term o(αd) depends on

the separation d0 but is otherwise independent of the location of the set of points (zi)
N
i=1.

Suppose now that Ω contains single, bounded and smooth inhomogeneity B with C∞-
boundary ∂B but this regularity condition could be considerably weakened. In a neighborhood
O of ∂B we introduce a system of natural curvilinear coordinates (n, s), where n is the distance
to ∂B, taken with the minus sign inside of B, and s is the arclength on ∂B. We assume now
that the background viscosity µ, defined in (1.3), is a constant function and equals to the posi-
tive constant µ0. For d = 2, we suppose that Ω enclosed a deformable inhomogeneity Bα with
rapidly oscillating boundary (see Fig. 1) defined by

∂Bα = {x ∈ O ⊂ Ω : s ∈ ∂B, n = αγH(
s

α
, s)}, (2.12)
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where H is a profile function that is smooth relative to both variables, the slow variable s and
the fast variable η = s/α, and 1-periodic relative to η. Moreover α is a small parameter and γ
is a quantity measuring the regularity of the boundary ∂Bα according to Kozlov and Nazarov
[28].

The viscosity of the subdomain Bα is assumed to be a positive constant µ1 > 0, and then
introduce µBα := µ0χ(Ω\Bα) + µ1χBα where χ is the characteristic function.

The following result holds

Theorem 2 Let Ω ⊂ R2 be a bounded, smooth domain containing the inhomogeneity Bα with
rapidly oscillating boundary defined by (2.12). Let λ0 be a simple eigenvalue of the problem
(1.6) and associated to the eigenfunction v0. Let ve0 = v0|Ω\B and vi0 = v0|B. Then, replacing
µα by µBα , there exists a simple eigenvalue of problem (1.7), denoted by λα such that λα → λ0

as α→ 0, and

λα − λ0 = α(1− µ0

µ1
)

∫
∂B

H̃(s)e(ve0)(s, 0) :
(

(µ1e(vi0)τ)⊗ τ + (µ0e(ve0)ν)⊗ ν
)

(s, 0)ds (2.13)

+O(α1+β)

for some positive β dependant on γ, and where H̃(s) =

∫ 1

0

H(η, s)dη. Here, ν, τ are respectively

the outward normal vector and the tangent vector to ∂B and the term O(α1+β) depends on the
separation d0, the quantity γ but is otherwise independent of H and the location of Bα.

Using the parameterization (n, s) of the neighborhood of the boundary ∂B, the Laplacian op-
erator can be written as

∆x := J(n, s)−1
(
∂nJ(n, s)∂n + ∂sJ(n, s)−1∂s

)
,

where J(n, s) = 1 + nκ(s) is the Jacobian, and κ(s) is the curvature of ∂B at the point s. Let
n̂ and ŝ be the unit vectors of the axes n and s respectively, then the gradient operator can be
given by

∇x· := ∂n · n̂+ J(n, s)−1∂s · ŝ.
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For more details one can refer, for example, to [8, 28, 22]. We omit in this article the detailed
proof of the Theorem 2, while the proof of the main result stated by Theorem 1 will be entirely
given in Section 4.

3 Estimates for an associated boundary value problem

In this section we suppose that the small deformable inclusions having the shape (1.1) are im-
mersed in the viscous fluid, and around which the fluid is flowing in a greater bounded domain
Ω. It is well known that we make the assumption of small size of the objects to use asymptotic
formulae which allows us to get a simple and precise reconstruction method. In connection with
this idea, one can see the main works [9, 10, 13, 17, 30] for example. Eigenvalue expansions
in the presence of small inclusions with Dirichlet or Neumann boundary conditions have been
developed by Ammari et al. in a series of papers [11, 12, 15] for the Laplace operator and in [14]
for the full Maxwell equations. The case of elastic eigenvalue problem it is attentively studied by
Ammari et al. in [4] in terms of elastic moment tensors (EMT). We will use a similar approach,
along with estimates for the convergence of the eigenvalues of a sequence of self-adjoint compact
operators, to develop an asymptotic expansion for the eigenvalues in terms of viscous moment
tensor (VMT).

Let f be in L2
0(Ω)d. In this section we assume that the velocity field, vα satisfies the following

homogeneous Stokes problem, with Dirichlet boundary conditions −Div(2µαe(uα)) +∇pα = f in Ω
div(uα) = 0 in Ω
uα = 0 on ∂Ω

(3.14)

Here the coefficient of kinematic viscosity µα is given by (1.3).

We know that as α approaches zero, the velocity field uα and the pressure pα converge
respectively to the background velocity field u0 and the pressure p0 which satisfy: −Div(2µe(u0)) +∇p0 = f in Ω

div(u0) = 0 in Ω
u0 = 0 in ∂Ω.

(3.15)

In the case of N star-shaped imperfections of type zi + αBi which are sufficiently separated
from each other and the boundary, it has been shown in [17] (one can see [19] for the case of
conductivity imperfections), that the following asymptotic formula holds when d = 2 or 3:

(uα − u0)(y)i = αd
N∑
j=1

ex(Gi)(zj , y) : V (j)ex(u0)(zj) + o(αd+ 1
2 ), for 1 ≤ i ≤ d, (3.16)

where zj is the center of the ith inhomogeneity, and we have denoted by Gi the ith row of G,

where (G,F ) ∈ H1(Ω)d
2×L2

0(Ω)d denote the Green tensors associated with the reference system
(3.15). Precisely, for a fixed z ∈ Ω, G(·, z) = (Gij(·, z))1≤i,j≤d and F (·, z) = (Fi(·, z))1≤i≤d are
the solutions to 

−µ0∆xGij(x, z) +
∂Fi
∂xj

(x, z) = δijδz(x) in Ω

d∑
j=1

∂Gij
∂xj

(x, z) = 0 in Ω

Gij(x, z) = 0 on ∂Ω,

(3.17)

where of course δz is the Dirac mass at the point z while δij is the Kronecker delta.
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The remainder o(αd) in (3.16) is independent of the set of points (zi)
N
i=1 and signifies a term

which goes to zero faster than αd uniformly in y for y bounded away from the inhomogeneities.
For more details we refer the readers to [17]. For the conductivity case, similar results have
been shown rigorously in [9, 19]. Notice that the achievements in this section will help us to
prove our main result in this paper, then we introduce firstly the following remark.

Remark 3.17 Let v0 and vα solutions to (1.6), (1.7) respectively. Then by replacing f in
(3.15) (resp. in (3.14)) by λ0v0 (resp. by λαvα), the estimation properties of vα − v0 can be
easily deduced from those of uα − u0.

Next we will prove, using Korn’s inequality, the following lemma which describes the H1-
norm convergence of uα to u0.

Lemma 1 Assume d = 2 or 3 and suppose that we have (1.2)-(1.3). Let uα be the solution
to (3.14) and u0 the solution to (3.15) for a given f ∈ L2(Ω)d. Then for some constant C,
depending on u0 but independent of α and the set of points (zi)

N
i=1, the following estimate holds:

‖uα − u0‖H1(Ω)d ≤ Cα
d
2 .

Proof. Let uα be the solution to (3.14) and u0 the solution to (3.15) respectively. Expanding
the following∫

Ω

2µαe(u0) : e(uα−u0)dx =

∫
Ω

2µ(x)e(u0) : e(uα−u0)dx−
∫

Ω

2(µ(x)−µα)e(u0) : e(uα−u0)dx.

An integration by parts yields∫
Ω

2µαe(u0) : e(uα − u0)dx =

∫
∂Ω

(2µ(x)e(u0)− p0I)νx · (uα − u0)dσ(x)

−2

N∑
i=1

∫
Biα

(µ(x)− µi)e(u0) : e(uα − u0)dx

= −2

N∑
i=1

∫
Biα

(µ(x)− µi)e(u0) : e(uα − u0)dx. (3.18)

On the other hand, choosing uα − u0 as a test function in (3.14) yields∫
Ω

2µαe(uα) : e(uα − u0)dx =

∫
∂Ω

(2µαe(uα)− pαI)νx · (uα − u0)dσ(x) = 0. (3.19)

The last relation was deduced by using the Dirichelet conditions on ∂Ω and the fact that
div(uα) = 0.
Using equalities (3.18) and (3.19), we immediately obtain∫

Ω

2µα|e(uα − u0)|2dx = −
∫

Ω

2µαe(u0) : e(uα − u0)dx+

∫
Ω

2µαe(uα) : e(uα − u0)dx

= 2

N∑
i=1

∫
Biα

(µ(x)− µi)e(u0) : e(uα − u0)dx.

But, the Cauchy-Schwarz inequality and the fact that vector valued function u0 is bounded in
Ω shows that∫

Ω

2µα|e(uα − u0)|2dx ≤
N∑
i=1

∫
Biα

|µ(x)− µi|‖e(u0)‖L2(Biα)d2‖e(uα − u0)‖L2(Biα)d2

≤ Cαd/2‖e(uα − u0)‖L2(Ω)d2 ,
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which, by invoking the Korn inequality [29], yields the desired result.

Now we make the change of variables y := x−xi
α , and we set Ω̃ = 1

αΩ. Note, here we use
similar approach as done in [12, 19] for the conductivity problems and in [17] for the case of a
dilute suspension of droplets with interfacial tension. Let (V,Q) ∈ H1(Rd)dloc × L

2(Rd)dloc be
the unique solution to

−Divy(2µey(V )) +∇yQ = 0 in Rn \Bi,
−Divy(2µiey(V )) +∇yQ = 0 in Bi,
divy(V ) = 0 in Rn,
V |+ − V |− = 0 on ∂Bi,

(Qν + µ(zi)
∂V
∂ν ) |+ −(Qν + µi

∂V
∂ν ) |− = −(µ(zi)− µi)ex(u0(zi))ν on ∂Bi,

V (y) = O(|y|−1) as |y| → ∞,
Q(y) = O(|y|−2) as |y| → ∞,

(3.20)

where the subscripts + and − indicate the limits from outside and inside of Bi, respectively.
The reader may be referred, for example, to [17] for the existence and uniqueness of V by

using single layer potentials with suitably chosen densities.
The following result will be useful to develop the asymptotic expansion of the eigenvalues.

Theorem 3 Assume d = 2 or 3 and suppose that we have (1.2)-(1.3). Let uα be the solution
to (3.14) and u0 the solution to (3.15) for a given f ∈ L2(Ω)d. Then for some constant C,
depending on u0 but independent of α and the set of points (zi)

N
i=1, the following estimate holds:

‖ey (uα(zi + αy)− u0(zi + αy)− αV (y)) ‖L2(Ω̃)d2 ≤ Cα
3
2 . (3.21)

Proof. In order to verify the above estimate, we introduce firstly (Vα, Qα) ∈ H1(Ω̃)d × L2
0(Ω̃)

to be the unique solution to
−Divy(2µey(Vα)) +∇yQα = 0 in Ω̃,

div(Vα) = 0 in Ω̃,

Vα = 0 on ∂Ω̃.

(3.22)

We set Rα(y) := uα(zi + αy)− u0(zi + αy)− αVα(y) for y ∈ Ω̃. Integration by parts gives∫
Ω̃

µ|ey(Rα(y))|2dy = −
∫

Ω̃

µey(Rα(y)) : ey(u0(zi + αy))dy

+

∫
Ω̃

µey(Rα(y)) : ey(uα(zi + αy))dy

−α
∫

Ω̃

µey(Rα(y)) : ey(Vα(y))dy. (3.23)

For the second term, in the right-hand side of the previous equality, one may use change of
variables and integration by parts to find that

−
∫

Ω̃

µey(Rα(y)) : ey(u0(zi + αy))dy = −α2−d
∫

Ω

µex(Rα(
x− zi
α

)) : ex(u0(x))dx

= −α2−d
∫

Ω

µ(zi)ex(Rα(
x− zi
α

)) : ex(u0(x))dx

−α2−d
N∑
i=1

∫
Biα

(
µi − µ(zi)

)
ex(Rα(

x− zi
α

)) : ex(u0(x))dx

= α2
N∑
i=1

∫
Bi

(
µ(zi)− µi

)
ey(Rα(y)) : ex(u0(zi + αy))dy.(3.24)
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On the other hand, since Rα is divergence free and and Rα(x−ziα )|∂Ω = 0, we may use integration
by parts to obtain∫

Ω̃

µey(Rα(y)) : ey(uα(zi + αy))dy = α2−d
∫

Ω

µex(Rα(
x− zi
α

)) : ex(uα(x))dx

= α2−d
∫
∂Ω

µex(Rα(
x− zi
α

)) · (2µex(uα)− pαI)νxdσ(x)

= 0. (3.25)

Using now Rα as a test function in (3.20 ), we may use integration by parts again to find that

−α
∫

Ω̃

µey(Rα(y)) : ey(Vα(y))dy = 0. (3.26)

Inserting all equalities (3.24), (3.25) and (3.26) into (3.23), the following holds∫
Ω̃

µ|ey(Rα(y))|2dy = α2
N∑
i=1

∫
Bi

(
µ(zi)− µi

)
ey(Rα(y)) : ex(u0(zi + αy))dy. (3.27)

But u0 is a bounded vector-valued function in Ω, therefore the Cauchy-Schwarz inequality
applied to (3.27) immediately gives

‖ey(uα(zi + αy)− u0(zi + αy)− αVα(y))‖
L2(Ω̃)d

:= ‖ey(Rα)‖
L2(Ω̃)d2

≤ Cα2. (3.28)

Next, if we set
Uα := Vα − V and Πα := Qα −Q,

where Vα, V are the solutions of (3.22), (3.20) respectively, we get (Uα,Πα) ∈ H1(Ω̃)d × L2
0(Ω̃)

and 
−Divy(2µey(Uα)) +∇yΠα = 0 in Ω̃,

div(Uα) = 0 in Ω̃,

Uα = −V on ∂Ω̃.

(3.29)

Integration by parts immediately gives∫
Ω̃

2µey(Uα(y)) : ey(U(y))dy =

∫
∂Ω̃

V · (2µey(Uα)−ΠαI)νydσ(y)

= −α1−d
∫
∂Ω

V (
x− zi
α

) · (2αµex(Uα)(
x− zi
α

)

−Πα(
x− zi
α

)I)νxdσ(x). (3.30)

Using Cauchy-Schwarz inequality, and the corresponding decay of V (see for example Appendix
B in [17]) one may compute that∣∣∣ ∫

Ω̃

2µey(Uα(y)) : ey(U(y))dy
∣∣∣ ≤ Cα1/2‖ey(Uα(y))‖

L2(Ω̃)d2
.

Thus,
‖ey(Vα − V )‖

L2(Ω̃)d2
= ‖ey(Uα(y))‖

L2(Ω̃)d2
≤ Cα1/2. (3.31)

To establish the theorem, it now suffices to remark that

uα(zi + αy)− u0(zi + αy)− αV (y) = uα(zi + αy)− u0(zi + αy)− αVα(y) + α(Vα − V )(y)

and to use both relations (3.28) and (3.31).

9



4 Asymptotic formulas for the eigenvalues

In this section we may detail the proof of Theorem 1, while the proof of Theorem 2 is dedicated
to a separately work [22]. Our method is deeply based on the theorem of Osborn [32] which
gives estimates for the convergence of the eigenvalues of a sequence of self-adjoint compact
operators. For simplicity we will not state the theorem in its full generality, and we refer the
reader to [12, 25] for example, for considerable simplifications and applications of this theorem.
A simplified statement of the Osborn’s Theorem is as follows: Let H be a (real) Hilbert space
and suppose we have a compact, self-adjoint linear operator T : H → H along with a sequence
of compact, self-adjoint linear operators Tα : H → H such that Tα → T pointwise as α→ 0 and
the sequence {Tα} is collectively compact. Let ω0 be a nonzero eigenvalue of T of multiplicity
m. Then we know that for small α, each Tα has a set of m eigenvalues counted according to
multiplicity, {ω1

α, . . . , ω
m
α } such that for each j, ωjα → ω0 as α→ 0. Define the average

ωα =
1

m

m∑
j=1

ωjα.

If ψ1, ψ2, . . . , ψm is an orthonormal basis of eigenfunctions associated with the eigenvalue ω0,
then there exists a constant C such that for j = 1, . . . ,m the following estimate holds:

∣∣ω0 − ωα −
1

m

m∑
j=1

〈(T − Tα)ψj , ψj〉
∣∣ ≤ C‖(T − Tα)|span{ψj}1≤j≤m‖

2, (4.32)

where (T − Tα)|span{ψj}1≤j≤m denotes the restriction of (T − Tα) to the m-dimensional vector

space spanned by {ψj}1≤j≤m. The above estimate (4.32) is slightly different from what is stated
in the theorem in [32].

For our case, we let H be L2(Ω)d with the standard inner product. For any f ∈ L2(Ω)d,
define

Tαf = uα, (4.33)

where vα is the solution of (1.7), and
Tf = v0, (4.34)

where v0 is the solution to (1.6). Clearly T (:= T0) and {Tα}α>0 are linear and self-adjoint
operators from L2(Ω)d to L2(Ω)d. Using Korn and Poincar’e inequalities, we may prove the
next result which is useful to apply Osborn’s Theorem in order to prove Theorem 1. We recall
the reader the properties of {Tα} are proved before in [9] but for the Stokes operator, it is
introduced as follows for the first time.

Proposition 4.1 Let α > 0 and Tα, T be defined by (4.33), (4.34) respectively. Then the
family of operators {Tα} is collectively compact such that Tα → T pointwise as α→ 0.

Proof. To prove that Tα is a compact operator, we may use standard energy estimates based
on Korn and Poincaré inequalities. For all α ≥ 0 we have

‖Tαf‖H1(Ω)d = ‖vα‖H1(Ω)d ≤ C‖e(vα)‖L2(Ω)d2 ≤ C‖f‖L2(Ω)d ,

where the constant C is independent of α. Moreover, due to the fact that the embedding of
H1(Ω) into L2(Ω) is compact, we conclude that the perturbed operator Tα is compact. The
compactness of T follows exactly by same arguments.
Now, since the constant C is independent of α, the sequence of operators (Tα)α≥0 is collectively
compact. To show that Tα → T pointwise as α → 0, one may prove that Tαf converges to Tf
in L2(Ω)d for every f ∈ L2(Ω)d. In the presence of the total collection Bα satisfying (1.1)-(1.2),
we set uα = Tαf and u0 = Tf . For any w ∈ H1

0 (Ω)d, we have:∫
Ω

Div(µαe(uα)− pαI).w =

∫
Ω

f.w.
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So, ∫
Ω

(µαe(uα)− pαI) : e(w) = −
∫

Ω

f.w.

Similarly, ∫
Ω

(µe(u0)− p0I) : e(w) = −
∫

Ω

f.w.

Consequently, choosing w = uα − u0 and subtracting these two equations we get∫
Ω

(
µαe(uα)− µe(u0)− (pα − p0)I

)
: e(uα − u0) = 0,

which gives ∫
Ω

µαe(uα − u0) : e(uα − u0) = −
∫

Ω

(µα − µ)e(u0) : e(uα − u0).

Hence, by using successively Korn inequality and Hölder’s one, we may obtain

‖e(uα − u0)‖L2(Ω)d2 ≤ C‖e(u0)‖L2(Bα)d2 .

It then follows by the Poincaré inequality that

‖Tαf − Tf‖H1(Ω)d = ‖uα − u0‖H1(Ω)d ≤ C‖e(u0)‖L2(Bα)d2 .

Consequently, using the last inequality and the fact that |Bα| → 0 as α → 0 and that u0 is a
smooth vector-valued function in Ω, we obtain that Tα → T pointwise as α→ 0 in L2(Ω)d.

Now we can proceed with the proof of Theorem 1 as follows.
Proof of Theorem 1. By means of Proposition 4.1, we see that the family of operators {Tα}
is collectively compact. For this reason all hypotheses hold for writing (4.32). Let (v0, λ0), and
(vα, λα) be normalized eigenpairs of (1.6) and (1.7) respectively. Then according to (4.34), we
have  −Div(2µe(v0)) +∇p0 = f in Ω

div(v0) = 0 in Ω
v0 = 0 in ∂Ω,

(4.35)

and by (4.33), we have  −Div(2µαe(vα)) +∇pα = f in Ω
div(vα) = 0 in Ω
vα = 0 on ∂Ω.

(4.36)

Notice that, the boundary value problems (4.36) and (4.35) are similar to those (3.14) and (3.15)
respectively. Then all estimates established for the difference uα−u0, in Section 3, hold exactly
for vα − v0.

Now if we set

ω0 =
1

λ0
and ωα =

1

λα
,

then according to problems (4.36) and (4.35) one can see that (vα, ωα) and (v0, ω0) are the
normalized eigenpairs of Tα and T respectively. Throughout this proof we suppose that λ0 is
an eigenvalue of (1.6) with multiplicity m and with a corresponding set of orthonormal eigen-
functions {vj0}1≤j≤m. Since the set {vj0} is orthonormal,

‖(T − Tα)|span{vj0}1≤j≤m
‖ = max

j
‖Tvj0 − Tαv

j
0‖L2(Ω)d . (4.37)
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Now we need to express the term Tαv
j
0, but one may use the definition of Tα to see that there

exists a vector-valued function vjα solving the following boundary value problem −Div(2µαe(vjα)) +∇pα = vj0 in Ω
div(vjα) = 0 in Ω
vjα = 0 on ∂Ω.

(4.38)

such that
Tαv

j
0 = vjα.

Then (4.37) it transforms to,

‖(T − Tα)|span{vj0}1≤j≤m
‖ = max

j
‖ 1

λ0
vj0 − vjα‖L2(Ω)d .

On the other hand, since vj0 satisfies (1.6), we can use directly Lemma 1 to obtain the
estimate

‖ 1

λ0
vj0 − vjα‖L2(Ω)d ≤ Cα

d
2 .

Consequently, inserting all of this information into the relation (4.32), the following holds

1

λ0
− 1

m

m∑
j=1

1

λjα
=

1

m

m∑
j=1

〈 1

λ0
vj0 − vjα, v

j
0〉+O(αd). (4.39)

We focus our attention now on the term

〈 1

λ0
vj0 − vjα, v

j
0〉 :=

∫
Ω

(
1

λ0
vj0 − vjα

)
vj0dx.

Since vj0 solves (1.6), we immediately get

〈 1

λ0
vj0 − vjα, uj〉 =

∫
Ω

(
1

λ0
vj0 − vjα

)
∇ · γ∇

(
1

λ0
vj0

)
dx (4.40)

=

∫
Ω\Bα

(
1

λ0
vj0 − vjα

)
∇ · γ∇

(
1

λ0
vj0

)
dx+

∫
Bα

(
1

λ0
vj0 − vjα

)
∇ · γ∇

(
1

λ0
vj0

)
dx.

Let’s use integration by parts twice on Ω\Bα and on Bα successively, taking into account that
vj0 and vjα are already two solutions of (1.6) and (4.38) respectively, and recall that Bα :=
N⋃
i=1

(zi + αBi) =

N⋃
i=1

Biα. Then, by carefully calculus, the following holds

〈 1

λ0
vj0 − vjα, v

j
0〉 =

1

λ0

N∑
i=1

∫
∂Biα

((
2µ(zi)e(vjα)− pI

)
νx|− −

(
2µ(x)e(vjα)− pI

)
νx|+

)
· vj0dσx

+
1

λ0

N∑
i=1

∫
Biα

(µ(x)− µ(zi)) e(vjα) : e(vj0)dx

+

N∑
i=1

µi − µ(zi)

µiλ0

∫
Biα

|vj0|2dx.

Now, by the change of variables y = x−zi
α and the fact that vj0 is bounded, we can see easily

that the last term above is of the order αd+1. Hence by the conjugation condition for vjα this
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gives us

〈 1

λ0
vj0 − vjα, v

j
0〉 =

1

λ0

N∑
i=1

∫
∂Biα

(µ(zi)− µi)σ(vjα, p)νx|− · v
j
0dσx

+
1

λ0

N∑
i=1

∫
Biα

(µ(x)− µ(zi)) e(vjα) : e(vj0)dx

+ O(αd). (4.41)

Now we introduce the following vector-valued function

rα(x) = vjα(x)− 1

λ0
vj0(x)− αV (

x− zi
α

),

where V (y) is the solution of (3.20), (with 1
λ0
vj in place of u). Inserting this into the above

formula, we immediately get

〈 1

λ0
vj0 − vjα, v

j
0〉 =

1

λ0

N∑
i=1

∫
Biα

(µ(x)− µ(zi)) e(
1

λ0
vj0 + αV (

x− zi
α

)) : e(vj0)dx

+
1

λ0

N∑
i=1

∫
Biα

(µ(x)− µ(zi)) e(rα) : e(vj0)dx

+
1

λ0

N∑
i=1

∫
∂Biα

(µ(zi)− µi)σ(rα, p)νx|− · vj0dσx

+
1

λ0

N∑
i=1

∫
∂Biα

(µ(zi)− µi)
(
σ(

1

λ0
vj0, p)νx + σ(V,Q)νy|−

)
· vj0dσx

+ O(αd). (4.42)

Note that by change of variables and since e(vj0)(αy + zi) is uniformly bounded for α small
enough, in view of Theorem 3, we get that

∣∣ N∑
i=1

∫
Biα

(µ(x)− µ(zi)) ex(rα) : e(vj0)dx
∣∣ = αd

∣∣ N∑
i=1

∫
Bi

(µi − µ(zi)) ey(rα) : e(vj0)(αy + zi)dy
∣∣

≤ cαd+3/2. (4.43)

At the same time, by a rescaling a Taylor expansion of vj0(αy + zi) about x = zi and using
Lemma 1, we obtain

∣∣ N∑
i=1

∫
∂Biα

(µ(zi)−µi)σ(rα, p)νx|−·vj0dσx+

N∑
i=1

∫
∂Biα

(µ(zi)−µi)
(
σ(

1

λ0
vj0, p)νx+σ(V,Q)νy|−

)
·vj0dσx

∣∣
= O(αd).

Thus, considering the above estimate and (4.43), so from (4.42) we obtain that

〈 1

λ0
vj0 − vjα, v

j
0〉 =

1

λ0

N∑
i=1

∫
Biα

(µ(x)− µ(zi)) e(
1

λ0
vj0 + αV (

x− zi
α

)) : e(vj0)dx+O(αd)

= αd
1

λ0

N∑
i=1

∫
Bi

(µi − µ(zi))
(
e(

1

λ0
vj0)(αy + zi) + ey(V )(y)

)
: e(vj0)(αy + zi)dy

+ O(αd) (4.44)
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where the term O(αd) is uniformly bounded by cαd, for some constant c that depends on µ, but
is independent of α. On the other hand, a Taylor expansion of e(vj0)(αy + zi) at x = zi yields

αd
∫
Bi

(µi − µ(zi))
(
e(

1

λ0
vj0)(αy + zi) + ey(V )(y)

)
: e(vj0)(αy + zi)dy

= αd
∫
Bi

(µi − µ(zi))
(
e(

1

λ0
vj0)(zi) + ey(V )(y)

)
: e(vj0)(zi)dy +O(αd).

Therefore (4.44) becomes

〈 1

λ0
vj0 − vjα, v

j
0〉 = αd

1

λ0

N∑
i=1

∫
Bi

(µi − µ(zi)) e(vj0)(zi) :
(
e(

1

λ0
vj0)(zi) + ey(V )(y)

)
dy (4.45)

+O(αd).

Noting that the pair (V,Q) solution of (3.20) is an affine function of e(vj0)(zi), and can be
rewritten as

V (y) =

d∑
k,l=1

e(
1

λ0
vj0)(zi)klv̂

(i)
kl (y) and Q(y) =

d∑
k,l=1

e(
1

λ0
vj0)(zi)klπ̂

(i)(y), (4.46)

where (v̂
(i)
kl , π̂

(i)) are solutions to (2.9). Thus, by inserting the first term of (4.46) into relation
(4.45) one can obtain that

〈 1

λ0
vj0−vjα, v

j
0〉 = αd

1

λ0

N∑
i=1

(µi − µ(zi)) e(vj0)(zi) :

∫
Bi

(
e(

1

λ0
vj0)(zi)+

d∑
k,l=1

e(
1

λ0
vj0)(zi)kle(v̂

(i)
kl )
)
dy

(4.47)
+O(αd)

which, by using the notation (2.8), allows us to conclude that

〈 1

λ0
vj0 − vjα, v

j
0〉 =

αd

2λ2
0

N∑
i=1

e(vj0)(zi) : V(i)e(vj0)(zi) +O(αd). (4.48)

The proof of Theorem 1 is then achieved by inserting (4.48) into (4.39).

Now suppose that m = 1, then the following result holds.

Corollary 1 Suppose that λ0 is a simple eigenvalue of (1.6) with the corresponding eigenfunc-

tion v0, and suppose that λα is the eigenvalue of (1.7) which converge to λ0. Let V(i) be defined
by (2.8) for i = 1 . . . N . Then, there exist a positive constant α0 such that for |α| < α0, the
following asymptotic expansion holds:

λα − λ0 =
αd

2

N∑
i=1

e(v0)(zi) : V(i)e(v0)(zi) + o(αd), (4.49)

where the term o(αd) depends on the separation d0 but is otherwise independent of the location
of the set of points (zi)

N
i=1.

Proof. The fact that λα tends to λ0 allows us to find a small positive constant α0 such that

λ0λα = λ2
0 + o(1), for |α| < α0. (4.50)
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On the other hand rewriting (2.11), given by Theorem 1, with respect to m = 1,

1

λ0
− 1

λα
=

αd

2λ2
0

N∑
i=1

e(v0)(zi) : V(i)e(v0)(zi) + o(αd).

The proof is then achieved by writing the left-hand side of the above equality as follows

λα − λ0 = λ0λα(
1

λ0
− 1

λα
),

and by considering (4.50).
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