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Summary

In this paper, we investigate a fractional p-Laplacian system with different critical
Sobolev-Hardy exponents. By variational methods and the Mountain-Pass lemma,
positiveminimizers of the related best Sobolev constants and the existence of positive
solutions of the system are found.
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1 INTRODUCTION

In this paper we study the existence of nontrivial solutions of the following fractional p-laplacian involving combined critical
non-linearities

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(−Δ)spu =
�1(�1|u|q+�2|v|q)

p∗�
q −1

|u|q−2u
|x|�

+ ��
�+�

|u|�−2|v|�u
|x|�

+ � |u|
d−2u
|x|�

, x ∈ Ω,

(−Δ)spv =
�2(�1|u|q+�2|v|q)

p∗�
q −1

|v|q−2v
|x|�

+ ��
�+�

|u|� |v|�−2v
|x|�

+ � |v|
d−2v
|x|�

, x ∈ Ω,

u = v = 0, x ∈ ℝN ⧵Ω,

(1)

where s ∈ (0, 1) is fixed, N > sp, 1 < p < ∞, 0 < �, �1, �2 < ∞, 1 < q < p∗� , 1 < d < p, �, � > 1 such that � + � = p∗� ,
where p∗� =

(N−�)p
N−sp

is the fractional critical Sobolev exponent and (−Δ)sp is the fractional p-Laplacian operator which, up to
normalization factors, may be defined along u ∈ C∞0 (ℝ

N ) as

(−Δ)spu(x) = 2 lim"→0+ ∫
ℝN⧵B"(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps

dy

for x ∈ ℝN , where B"(x) ∶= {y ∈ ℝN ∶ |x − y| < "}. As for some recent results on the fractional p-Laplacian, we refer to for
example1,2,3 and the references therein.



2 N. Nyamoradi ET AL

In the last years, the fractional and nonlocal problems have been investigated by many researchers, for example,4,5,6,7,8,9,
also10,11,12,13 for fractional p-Laplacian case,14,15,16,18,19,20,21 for the existence of solutions to fractional Laplacian system. Gia-
comoni and Mishra14 by using the idea of Nehari manifold technique and a compactness result based on the classical idea of
the Brezis-Lieb lemma show the existence and multiplicity of positive solutions of the following fractional Kirchhoff system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

M
(

∫Ω |(−△)
s
2 u|2dx

)

(−Δ)su = �f (x)|u|q−2u + 2�
#+�

|u|#−2|v|�u, x ∈ Ω,

M
(

∫Ω |(−△)
s
2 v|2dx

)

(−Δ)sv = �g(x)|v|q−2u + 2��
#+�

|u|#|v|�−2v, x ∈ Ω,

u = v = 0, x ∈ ℝN ⧵Ω

(2)

where �, � > 0, 1 < q < 2 and #, � ≥ 2 with # + � = 2∗s ,M(t) = a + bt with a, b > 0 and f, g are sign-changing continuous
functions. He et al.15 considered the problem (2), whereM,f, g ≡ 1. They proved the multiplicity of solutions using the idea of
a Nehari manifold and harmonic extension for suitable choice of �, � > 0. Also, Chen and Deng in16 obtained the multiplicity
of solutions to problem (2) with the fractional p-Laplacian operator (−Δ)sp, with 1 < q < p and p < # + � < p∗s =

np
n−ps

. In17,
Guo et al. studied the following problem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(−Δ)su − �1u = �1|u|2
∗
s−2u + #


2∗s
|u|#−2|v|�u, x ∈ Ω,

(−Δ)sv − �2v = �2|v|2
∗
s−2u + �


2∗s
|u|#|v|�−2v, x ∈ Ω,

u = v = 0, x ∈ ℝN ⧵Ω

(3)

where �1, �2, �1, �2, 
 > 0. Using variational methods and critical point theory, the authors proved the existence of the ground
state solution to system (3). We also mention18,19,20 in which the author dealt with the existence, multiplicity and concentration
of positive solutions for fractional systems in the whole of ℝN with subcritical and critical nonlinearities.
Notice that as s→ 1−, problem (−Δ)spu = f (x, u) in Ω reduces to the following problems

−Δpu = f (x, u) in Ω, (4)

where Ω ⊂ ℝN is a smooth domain. Recently, Kang22 studied the following quasilinear system
⎧

⎪

⎪

⎨

⎪

⎪

⎩

−Δpu − �1
|u|p−2u
|x|p

= (|u|q + |v|q)
p∗

q
−1
|u|q−2u + 1

p
Q′
s(u, v), in Ω,

−Δpv − �1
|v|p−2v
|x|p

= (|u|q + |v|q)
p∗�
q
−1
|v|q−2v + 1

p
Q′
t(u, v), in Ω,

u = v = 0 on )Ω,

(5)

where Ω ⊂ ℝN is an open bounded domain with smooth boundary such that, p∗ = Np
N−p

is the critical Sobolev exponent, Q′
s, Q

′
t

are partial derivatives of the homogeneous C1-function Q(s, t):

Q(s, t) = a1|s|p + a2p|s|p−2st + a3p|t|p−2st + a4|t|p, (s, t) ∈ ℝ2, p ≥ 2.

He obtained positive minimizers of the related best Sobolev constants and the existence of positive solutions of the system. By
the use of variational methods and asymptotic properties of solutions at the singular point are established by the Moser iteration
method, the author in23 studied the existence of positive solutions to (5) with p = 2.
Kang and Yu24 studied the following system of elliptic equations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−Δu − �1(x)
|u|
|x|2

= �1(�1|u|q + �2|v|q)
2∗

q
−1
|u|q−2u, in ℝN ,

−Δv − �2(x)
|v|
|x|2

= �2(�1|u|q + �2|v|q)
p∗�
q
−1
|v|q−2v, in ℝN ,

u, v ∈ D1,2(ℝN ),

(6)

where D1,2(ℝN ) is the completion of C∞0 (ℝ
N ) with respect to ‖u‖ ∶= (∫ℝN |∇u|2dx)

1
2 , 2∗ = 2N

N−2
, �1, �2 > 0, 1 < q ≤ 2∗

and �1(x), �2(x) ∈ C(ℝN ). By using analytic techniques and variational arguments, the authors established the existence of
minimizers to Rayleigh quotients and ground state solutions to systems (6).
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The paper is organized into three sections. In Section 2, we recall some basic definitions of fractional Sobolev space and we
give some useful auxiliary lemmas. Also, we state the main results of this paper and we give the proof of main results in this
Section.

2 PRELIMINARY LEMMAS

Let 0 < s < 1 < p <∞ be real numbers. The fractional Sobolev spaceW s,p(ℝN ) is defined by

W s,p(ℝN ) =

⎧

⎪

⎨

⎪

⎩

u ∈ Lp(ℝN ) ∶ [u]ps,p ∶= ∫ ∫
ℝ2N

|u(x) − u(y)|p

|x − y|N+ps
dxdy <∞

⎫

⎪

⎬

⎪

⎭

.

Set Q = ℝ2N ⧵ , where  = (ℝN ⧵Ω) × (ℝN ⧵Ω). We denote the setW s,p(Ω) by

W s,p(Ω) =

⎧

⎪

⎨

⎪

⎩

u ∶ ℝN → ℝ ∶ u|Ω ∈ Lp(Ω), ∫ ∫
Q

|u(x) − u(y)|p

|x − y|N+ps
dx dy < ∞

⎫

⎪

⎬

⎪

⎭

,

where u|Ω represents the restriction toΩ of function u(x). Also, we denote byW s,p
0 (Ω) the following linear subspace ofW s,p(Ω)

W s,p
0 (Ω) =

{

g ∈ W s,p(Ω) ∶ g = 0 a.e. in ℝN ⧵Ω
}

.

The linear spaceW s,p(Ω) is endowed with the norm

‖u‖W s,p(Ω) ∶= ‖u‖L2(Ω) +
⎛

⎜

⎜

⎝

∫ ∫
Q

|u(x) − u(y)|p

|x − y|N+ps
dx dy

⎞

⎟

⎟

⎠

1
p

.

Also, we know thatW s,p
0 (Ω), endowed with the norm

‖u‖W0
=
⎛

⎜

⎜

⎝

∫ ∫
Q

|u(x) − u(y)|p

|x − y|N+ps
dx dy

⎞

⎟

⎟

⎠

1
p

for all v ∈ W s,p
0 (Ω), (7)

is a uniformly convex Banach space and a reflexive Banach space (see, Remark 2.1 and Lemma 2.4 of26).
The embeddingsW s,p

0 (Ω) → Lr(Ω, dx
|x|�
) is continuous for r ∈ [1, p∗�] and compactly for r ∈ [1, p∗�); see

27 for details.
Now, we define the spaceW = W s,p

0 (Ω) ×W s,p
0 (Ω) with the norm

‖(u, v)‖p = ‖u‖pW0
+ ‖v‖pW0

.

For any " > 0 and U ∈ Ds,p(ℝN ), we know that

U"(x) =
1

"
N−sp
p

U
(

|x|
"

)

, (8)

is a solution to

(−△)spU = S∗U p∗s−1 in ℝN ,

where Ds,p(ℝN ) is the fractional Beppo-Levi space, that is the completion of C∞0 (ℝ
N ) with respect to [⋅]s,p.

Moreover, as showed in29, U ∈ L∞(ℝN )
⋂

C0(ℝN ) is a positive, radially symmetric, decreasing function, and there exist
constants c1, c2 > 0 and � > 1 such that for all r ≥ 1,

c1

r
N−sp
p−1

≤ U (r) ≤
c2

r
N−sp
p−1

and U (�r)
U (r)

≤ 1
2
. (9)

If � = �(N, s, p) is the above constant, then for ", � > 0, as in28, set

m",� =
U"(�)

U"(�) − U"(��)
,



4 N. Nyamoradi ET AL

and define u",�(r) = G",�(U"(r)), where

G",�(U"(r)) ∶=

U"(r)

∫
0

(Φ′",�(t))
1
p dt,

and

Φ",�(t) =

⎧

⎪

⎨

⎪

⎩

0, if 0 ≤ t ≤ U"(��),
mp",�(t − U"(��)), if U"(��) ≤ t ≤ U"(�),
t + U"(�)(m

p−1
",� − 1), if t ≥ U"(�).

Also, we can define the best fractional Sobolev constant:

S� ∶= inf
u∈W s,p

0 (Ω)∖{0}

‖u‖pW0

(∫Ω
|u(x)|p∗�
|x|�

dx)
p
p∗�

> 0. (10)

So, S� is attained by a family of functions U" that is

[U"]ps,p = S�‖U"‖
p
Lp(ℝN ). (11)

For any #, � > 1 and # + � = p∗s , by the Young inequality, the following best constant are well defined:

S(�, #, �) ∶= inf
(u,v)∈W⧵{(0,0)}

‖u‖pW0
+ ‖v‖pW0

(

∫Ω
|u|#|v|�

|x|�
dx

)
p
p∗s

, (12)

S(�, �, �1, �2, #, �) ∶= inf
(u,v)∈W⧵{(0,0)}

‖u‖pW0
+ ‖v‖pW0

(

∫Ω
(�1|u|q+�2|v|q)

p∗�
q +�|u|#|v|�

|x|�
dx

)
p
p∗�

. (13)

In this paper, we choose the positive constat R̃0 such that Ω ⊂ BR̃0(0), where BR̃0(0) = {x ∈ ℝN ∶ |x| < R̃0}. By Hölder and
(10), for all u ∈ X0, we obtain

∫
Ω

|u|q

|x|�
≤

(

∫
BR̃0 (0)

|x|−�
)

p∗�−q

p∗�
(

∫
Ω

|u|p
∗
�

|x|�
)

q
p∗�

≤
(

N!N

R̃0

∫
0

r−�+N−1dr
)

p∗�−q

p∗� (S�)
− q
p
‖u‖q

≤ 0(S�)
− q
p
‖u‖qW0

, (14)

where !N = 2�
N
2

NΓ(N
2
)
and 0 ∶=

(

N!N R̃
N−�
0

N−�

)

p∗�−q

p∗� .
To obtain our results we need the following facts. Here, we recall a recent result on the extremal functions of S� 30.
For 0 < � < sp < N , there exists a minimizer for S�; see30 Theorem 1.1 for more details. Now, by similar method as in31,

we fix a radially symmetric decreasing minimizer U� = U�(r) for S� , multiplying U� by a positive constant if necessary, we
assume that

(−△)spU� =
U p∗�−1
�

|x|�
in ℝN . (15)

Lemma 1. (30) There exist constants c1, c2 > 0 and � > 1 such that for all r ≥ 1,
c1

r
N−sp
p−1

≤ U�(r) ≤
c2

r
N−sp
p−1

and
U�(�r)
U�(r)

≤ 1
2
. (16)

If � is the above constant, then for � ≥ " > 0, we set

m",� =
U�,"(�)

U�,"(�) − U�,"(��)
,
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and

g",�(t) =

⎧

⎪

⎨

⎪

⎩

0, if 0 ≤ t ≤ U�,"(��),
mp",�(t − U�,"(��)), if U�,"(��) ≤ t ≤ U�,"(�),
t + U�,"(�)(m

p−1
",� − 1), if t ≥ U�,"(�),

and define u�,",�(r) = G",�(U�,"(r)), where

G",�(U�,"(r)) ∶=

U�,"(r)

∫
0

(g′",�(t))
1
p dt.

Also, u�,",� satisfies

u�,",�(r) =

{

U�,"(r), if r ≤ �,
0, if r ≥ ��.

(17)

To obtain our results we need the following lemmas.

Lemma 2. (See31,32) There exists C̃ > 0 such that for any 0 < 2" ≤ � < �−1�Ω the following estimates hold:

∫ ∫
ℝ2N

|u�,",�(x) − u�,",�(y)|p

|x − y|N+ps
dxdy ≤ S

N−�
sp−�
� + C̃

("
�

)
N−sp
p−1 , (18)

∫
ℝN

up
∗
�
�,",�

|x|�
dx ≥ S

N−�
sp−�
� − C̃

("
�

)
N−�
p−1 . (19)

Lemma 3. (See33 Lemma 2.3) For any 1 < d < p∗� , there exists a constant C̃d = C̃q(N, p, s) > 0 such that

∫
Ω

|u�,",�(x)|d

|x|�
dx ≥

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C̃d"
N−N−sp

p
d−� , if d > (N−�)(p−1)

N−sp
,

C̃d"
N−N−sp

p
d−�

| ln "|, if d = (N−�)(p−1)
N−sp

,

C̃d"
(N−sp)( d

p−1
− d
p
), if d < (N−�)(p−1)

N−sp
.

(20)

For any #, � > 1 with # + � = p∗� , we define

g(&) ∶=
1 + &p

((�1 + �2&q)
p∗�
q + �&�)

p
p∗�

, & ≥ 0, (21)

g(&min) ∶= min&≥0
g(&) > 0, (22)

where &min > 0 is a minimal point of g(&) and so a root of the equation

(�1 + �2&q)
p∗�
q
−1(�1&p−1 − �1�q−1) +

�
p∗�
#�p+�−1 − �

p∗�
���−1 = 0, � ≥ 0. (23)

Now, we state the main results of this paper.

Theorem 1. Let 1 < q < p forN > sp. Assume that s ∈ (0, 1), 1 < q < p,N > sp, 0 < �, �1, �2 <∞, �, � > 1 and �+ � = p∗� .
Then, for all � > 0 there exists "� > 0 and Λ0 > 0 such that for all " ∈ (0, "�) and 0 < �

p
p−d + �

p
p−d < Λ0, problem (1) has at least

one positive solution inW.

The proofs of Theorem 1 is obtained by applying variational arguments inspired by22,23,24,25.

Theorem 2. SupposeN > sp, s ∈ (0, 1) and 0 < � <∞, then:
(i) S(�, �, �1, �2, #, �) = g(&min)S�;
(ii) S(�, �, �1, �2, #, �) has the minimizers (U�(x), &minU�(x)), ∀� > 0, where U�(x) are defined as in (15).
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Proof.We know that lim&→0+ g(&) =
1

�
p
q
1

, lim&→+∞ g(&) =
1

�
p
q
2

. Somint≥0 g(t)must be achieved at finite &min ≥ 0. Furthermore,

direct calculation shows that there exists a positive constant C such that

0 < C ≤ g(&min) = min&≥0
g(&) ≤ min

⎧

⎪

⎨

⎪

⎩

1

�
p
q

1

, 1

�
p
q

2

⎫

⎪

⎬

⎪

⎭

.

From the fact that g′(&min) = 0 we deduce that &min is a root of (23).
To continue,, by the same as that in25, Let {wn} ⊂ Ds,p(ℝN ) is a minimizing sequence for S∗. Let e1, e2 > 0 be chosen later.

Set un = e1wn and vn = e2wn in (13), so one can get

ep1 + e
p
2

(

(�1e
q
1 + �2e

q
2)

p∗�
q + �e#1e

�
2

)
p
p∗�

‖wn‖
p
W0

(∫Ω
|wn(x)|p

∗
�

|x|�
dx)p∕p∗�

≥ S(�, �, �1, �2, #, �). (24)

Note that

g
(

e2
e1

)

=
ep1 + e

p
2

(

(�1e
q
1 + �2e

q
2)

p∗�
q + �e#1e

�
2

)
p
p∗�

. (25)

Choose e1 and e2 in (24) such that
e2
e1
= &min. Passing to the limit as n→∞ one has

g(&min)S� ≥ S(�, �, �1, �2, #, �). (26)

On the other hand, Let {(un, vn)} be a minimizing sequence of S(�, �, �1, �2, #, �) and define sn =
vn
un
, then we get

‖un‖
p
W0
+ ‖vn‖

p
W0

(

∫Ω
(�1|u|q+�2|v|q)

p∗�
q +�|u|#|v|�

|x|�
dx

)
p
p∗�

=
(1 + spn)‖un‖

p
W0

(

(�1 + �2s
q
n)

p∗�
q + �s�n

)
p
p∗�
(

∫Ω
|un(x)|p

∗
�

|x|�
dx

)p∕p∗�

≥ g(sn)S�
≥ g(&min)S� .

Now, as n→∞ one can get

S(�, �, �1, �2, #, �) ≥ g(&min)S� . (27)

Hence (25) and (27) imply that

S(�, �, �1, �2, #, �) = g(&min)S� . (28)

(ii) In view of (13), (17) and (28) we have the desired conclusion.

The corresponding energy functional of problem (1) is defined by

J�,�(u, v) =
1
p
‖(u, v)‖p − 1

d ∫
Ω

(

�
|u|d

|x|�
+ �

|v|d

|x|�

)

dx

− 1
p∗�

⎡

⎢

⎢

⎣

∫
Ω

(�1|u|q + �2|v|q)
p∗�
q

|x|�
dx + �∫

Ω

|u|#|v|�

|x|�
dx

⎤

⎥

⎥

⎦

∶= 1
p
‖(u, v)‖p − 1

d
L�,�(u, v) −

1
p∗�
K(u, v),

for each (u, v) ∈W. It is easy to check that J ∈ C1(W,ℝ).
Now, we recall that a sequence {(un, vn)} is a Palais-Smale sequence at the level c ((PS)c sequence in short) for the functional

J if J (un, vn) → c and J ′(un, vn) → 0. If any (PS)c sequence {(un, vn)} has a convergent subsequence, we say that J satisfies
the (PS)c condition.

Lemma 4. Suppose that {(un, vn)} ⊂W is a (PS)c-sequence of J�,� . Then {(un, vn)} is bounded inW.
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Proof. By contradiction assume that ‖(un, vn)‖ → +∞. Set (ũn, ṽn) =
(

un
‖(un,vn)‖

, vn
‖(un,vn)‖

)

. Since ‖(ũn, ṽn)‖ = 1, then
(ũn, ṽn) ⇀ (ũ, ṽ) in W, and this implies that ũn → ũ and ṽn → ṽ strongly in Ld(Ω, dx

|x|�
) for any d ∈ [1, p∗�) and ũn → ũ and

ṽn → ṽ a.e. in Ω, so

L�,�(ũn, ṽn) = L�,�(ũ, ṽ) + on(1). (29)

Since {(un, vn)} is a (PS)c-sequence of J�,� and ‖(un, vn)‖ → +∞, we deduce that
1
p
‖(ũn, ṽn)‖p −

1
p∗�

‖(un, vn)‖p
∗
�−2K(ũn, ṽn)

−1
q
‖(un, vn)‖q−2L�,�(ũn, ṽn) = on(1), (30)

and

‖(ũn, ṽn)‖p − ‖(un, vn)‖
p∗s−2
s K(ũn, ṽn)

−‖(un, vn)‖q−2L�,�(ũn, ṽn) = on(1). (31)

From (29)-(31), 1 < q < p and ‖(un, vn)‖s → +∞ one has

‖(ũn, ṽn)‖p =
p(p∗s − q)
q(p∗s − 2)

‖(un, vn)‖q−2L�,�(ũn, ṽn) + on(1)→ 0, (32)

as n→∞, which contradicts ‖(ũn, ṽn)‖ = 1. Therefore, {(un, vn)} is bounded inW.

Lemma 5. J�,� satisfies the (PS)c condition with c satisfying

0 < c < c∗ =
ps − �
p(N − �)

(S(�, �, �1, �2, #, �))
N−�
sp−� .

Proof. Let {(un, vn)} ∈ W be a (PS)c-sequence for J�,� with c < c∗. It follows from Lemma 4 that {(un, vn)} is bounded in
W, and then (un, vn)⇀ (u, v) up to a subsequence, (u, v) is a critical point of J�,� . Furthermore, we may assume

⎧

⎪

⎪

⎨

⎪

⎪

⎩

un ⇀ u, vn ⇀ v, weakly inW s,p
0 (ℝN ),

un ⇀ u, vn ⇀ v, weakly in Lp∗� (Ω, dx
|x|�
),

un ⇀ u, vn ⇀ v, weakly in Ld(Ω, dx
|x|�
)), ∀ 1 ≤ d < p∗� ,

un → u, vn → v, a.e on Ω,

So, one can get J ′�,�(u, v) = 0 and by the proof of Lemma 4,

L�,�(un, vn)→ L�,�(u, v), as n→∞. (33)

Let un = un − u, vn = vn − v. Then by the Brèzis-Lieb lemma34, we obtain

‖(un, vn)‖p → ‖(un, vn)‖p − ‖(u, v)‖p, as n→∞, (34)
K(un, vn)→ K(un, vn) −K(u, v), as n→∞. (35)

Since J�,�(un, vn) = c + o(1), J ′�,�(un, vn) = o(1) and (33)-(35), we can deduce that

1
p
‖(un, vn)‖p −

1
p∗�
K(un, vn) = c − J�,�(u, v) + o(1), (36)

and

‖(un, vn)‖p −K(un, vn) = o(1).

Hence, we may assume that

‖(un, vn)‖p → l, K(un, vn)→ l. (37)

If l = 0, the proof is completed. Suppose that l > 0, then from definition of S(�, �, �1, �2, #, �) and (37), we obtain
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S(�, �, �1, �2, #, �)l
p
p∗� = S(�, �, �1, �2, #, �) limn→∞

⎛

⎜

⎜

⎝

∫
Ω

(�1|un|q + �2|vn|q)
p∗�
q + �|un|#|vn|�

|x|�
dx

⎞

⎟

⎟

⎠

p
p∗�

≤ lim
n→∞

(‖un‖
p
W0
+ ‖vn‖

p
W0
)

≤ lim
n→∞

‖(un, vn)‖p = l,

which implies that l ≥ (S(�, �, �1, �2, #, �))
N−�
sp−� .

In additional, from (36) and (37), we get

c =
ps − �
p(N − �)

l + J�,�(u, v) ≥
ps − �
p(N − �)

(S(�, �, �1, �2, #, �))
N−�
sp−� ,

which contradicts c < ps−�
p(N−�)

(S(�, �, �1, �2, #, �))
N−�
sp−� .

Lemma 6. Under the assumption of Theorem 1 we have

sup
�≥0

J�,�(�u�,",� , �&minu�,",�) < c∗ =
ps − �
p(N − �)

(S(�, �, �1, �2, #, �))
N−�
sp−� . (38)

Proof. Consider the functions

G(�) = J�,�(�u�,",� , �(&minu�,",�))

≤ �p

p
(1 + &pmin)‖u�,",�‖

p
W0
− �q

q
L�,�(�u�,",� , �(&minu�,",�))

−�
p∗�

p∗�

(

(�1 + �2&
q
min)

p∗�
q + �&�min

)

∫
Ω

|u�,",�|p
∗
�

|x|�
dx,

g1(�) =
�p

p
(1 + &pmin)‖u�,",�‖

p
W0

−�
p∗�

p∗�

(

(�1 + �2&
q
min)

p∗�
q + �&�min

)

∫
Ω

|u�,",�|p
∗
�

|x|�
dx.

Then by definition of S(�, �, �1, �2, #, �), we obtain that

sup
�≥0

g1(�) ≤
(1
p
− 1
p∗�

)

⎛

⎜

⎜

⎜

⎜

⎝

(1 + &pmin)‖u�,",�‖
p
W0

(

(

(�1 + �2&
q
min)

p∗�
q + �&�min

)

∫Ω
|u�,",� |p

∗
�

|x|�
dx

)
p
p∗�

⎞

⎟

⎟

⎟

⎟

⎠

p∗�
p∗�−p

≤ ps − �
p(N − �)

⎛

⎜

⎜

⎜

⎝

g(�min)
‖u�,",�‖

p
W s,p
0

(

∫Ω
|u�,",� |p

∗
�

|x|�
dx

)

p
p∗�

⎞

⎟

⎟

⎟

⎠

N−�
sp−�

≤ ps − �
p(N − �)

(

g(&min)S�
)

N−�
sp−� + C̃

("
�

)
N−sp
p−1

≤ ps − �
p(N − �)

(

S(�, �, �1, �2, #, �)
)

N−�
sp−� + C̃

("
�

)
N−sp
p−1 (39)

where the following facts has been used:

sup
t≥0

(

tp

p
A − tp∗�

p∗�
B
)

=
ps − �
p(N − �)

(

A

B
N−sp
N−�

)
N−�
sp−�

, A, B > 0.

Since

G(�) = J�,�(�u�,",� , �(&minu�,",�)) ≤
�p

p
‖(u�,",� , &minu�,",�)‖ps for all � ≥ 0 and �, �1, �2 > 0,
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this implies that there exists �0 ∈ (0, 1) satisfying

sup
0≤�≤�0

G(�) < c∗. (40)

Using the definitions of J�,�(u, v) and (u�,",� , &minu�,",�), and by (39), we have

sup
�≥�0

G(�) = sup
�≥�0

(

g1(�) −
td

d
L�,�(�u�,",� , �(&minu�,",�))

)

≤ ps − �
p(N − �)

(

S(�, �, �1, �2, #, �)
)

N−�
sp−� + C̃

("
�

)
N−sp
p−1

−�
d

d
(

� + �&dmin
)

∫
Ω

|u�,",�|d

|x|�
dx. (41)

(i) If 1 ≤ d < (N−�)(p−1)
N−sp

, then by (43) one gets

∫
Ω

|u�,",�|d

|x|�
dx ≥ C̃d"

(N−sp)d
p(p−1) (42)

and since N−sp
p−1

> (N−sp)d
p(p−1)

, then in view of (40) and (41) we get

sup
�≥0

G(�) < c∗.

(ii) If (N−�)(p−1)
N−sp

≤ d < p, by (43), we have

∫
ℝN

|u�,",�(x)|d

|x|�
dx ≥

⎧

⎪

⎨

⎪

⎩

C̃d"
N−N−sp

p
d−� , if d > (N−�)(p−1)

N−sp
,

C̃d"
N−N−sp

p
d−�

| ln "|, if d = (N−�)(p−1)
N−sp

.

By straightforward calculation, it holds − d(N−sp)
p

+N − � ≤ N−�
p

< N−sp
p−1

. Hence (40) and (41) imply that

sup
�≥0

G(�) < c∗.

Therefore, we have the desired conclusion.
In order to prove the main result, we will use the following lemma.

Lemma 7. (Mountain-Pass lemma, see35) Let X be a real Banach space and J ∈ C1(X,ℝ). Suppose that
(i) J (0) = 0.
(ii) There are constants �, � > 0 such that J (u) ≥ � for all u ∈ X, with ‖u‖X = �.
(iii) There is an e ∈ X such that lim supt→∞ J (te) < 0.

Take t0 > 0 such that ‖t0e‖X > � and J (t0e) < 0. Set

Γ = {
 ∈ C([0, 1], X) ∶ 
(0) = 0, 
(1) = t0e},

c = inf

∈Γ

max
s∈[0,1]

J (
(s)) ≥ �.

Then there exists a Palais-Smale sequence at level c for J .

Now, we complete the proof of Theorem 1.
Proof of Theorem 1. In view of (14), we get

L�,�(u, v) = ∫
Ω

(

�
|u|d

|x|�
+ �

|v|d

|x|�

)

dx

≤ 0(S�)
− q
p

(

�
p
p−d + �

p
p−d

)
p−d
p
‖(u, v)‖q . (43)
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Also, by (10), we have

K(u, v) = ∫
Ω

(�1|u|q + �2|v|q)
p∗�
q

|x|�
dx + �∫

Ω

|u|#|v|�

|x|�
dx

≤ 2
p∗�
q max

{

�
p∗�
q

1 + �
p∗�
q

2

}

⎛

⎜

⎜

⎝

∫
Ω

|u|p∗�
|x|�

dx + ∫
Ω

|v|p∗�
|x|�

dx
⎞

⎟

⎟

⎠

+�
( �
p∗� ∫

Ω

|u|p∗�
|x|�

dx +
�
p∗� ∫

Ω

|v|p∗�
|x|�

dx
)

≤

[

2
p∗�
q max

{

�
p∗�
q

1 + �
p∗�
q

2

}

+ �

]

(S�)
− p∗�

p
‖(u, v)‖p∗� (44)

Let

r ∶= ‖(u, v)‖

ϝ(r) ∶= 1
p
rp − 1

p∗�

[

2
p∗�
q max

{

�
p∗�
q

1 + �
p∗�
q

2

}

+ �

]

(S�)
− p∗�

p rp∗�

Υ(r) ∶= 1
q
0(S�)

− q
p

(

�
p
p−d + �

p
p−d

)
p−d
p
‖(u, v)‖q .

In view of (43) and (44), one can get

J�,�(u, v) ≥ ϝ(r) − Υ(r),

Note that p < p∗� , it is easy to see that there exists � > 0 such that ϝ(r) achieves its maximum at � and f (�) > 0. Hence, there
exists Λ0 > 0, such that for 0 < �

p
p−d + �

p
p−d < Λ0 and �, �1, �2 > 0,

inf
‖(u,v)‖=�

J�,�(u, v) ≥ ϝ(�) − Υ(�) > 0 = J�,�(0, 0). (45)

Set c ∶= inf 
∈Γmaxt∈[0,1] J�,�(
(t)), where

Γ ∶=
{


 ∈ C([0, 1],W) | 
(0) = (0, 0), J�,�(
(1)) < 0, ‖
(1)‖ > �
}

.

If c < c∗, so from Lemma 5, (PS)c condition holds, and the conclusion follows by Lemma 7. If c = c∗, then by Lemma
6, 
(t) = (tu�,",� , t&minu�,",�), with 0 ≤ t < 1, is a path in Γ such that maxt∈[0,1] J�,�(
(t)) = c, Hence, either G′(t) =
J�,�(tu�,",� , t(&minu�,",�)) = 0 and we are done, or 
(t) can be deformed to a path 
(t) with maxt∈[0,1] J�,�(
(t)) < c and it is a
contradiction. So, we conclude that there exists a nontrivial solution (u, v) ∈ W ⧵ {(0, 0} of problem (1). Replacing u, v in the
term on the right hand side of the equations in (1) by u+ = max{u, 0}, v+ = max{v, 0} respectively and by the above argument,
we have a nonnegative solution (u∗, v∗) ≠ (0, 0) of (1) with J (u∗, v∗) > 0. Therefore from the strong maximum principle, we
know that u∗ > 0, v∗ > 0.■
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