Figure 16 Variation of property enhancement ratio with temperature for
the turbulent flow condition
Conclusions:
In summary, factors that aid in discerning the stability of nanofluids
include the zeta potential, electrical conductivity, and the pH value.
Even if higher values are obtained for the parameter of thermal
conductivity, they are not adequate to enhance the state of heat
transfer; findings that have been documented by most of the previous
literature focusing on CuO, SiO2 and
Al2O3 nanofluids. Rather, additional
parameters such as the temperature of nanofluids, the diameter of nano
particles, and the volume fraction determine the capacity of the
nanofluids to enhance the heat transfer aspect; with the factor of the
ratio of heat transfer between the nanofluids and the nano particles
unexceptional. In the regression equation, the oxide nanofluids’ thermal
conductivity is seen to be predicted by the heat capacity term; outcomes
that concur with some of the previous studies. Also, the change in the
density of the particles relative to the nano particles’ specific heat
and their size is seen to affect the nanofluids’ thermal conductivity.
The latter trend aids in inferring the value deviations that have been
reported by different scholarly researchers. Overall, this study
established that higher values of thermal conductivity were associated
with 40EGW-based nanofluids.
References
[1] R. Saidur, K.Y. Leong, H.A. Mohammed, A review on applications
and challenges of nanofluids, Renew. Sustain. Energy Rev. 15 (2011)
1646–1668. https://doi.org/10.1016/J.RSER.2010.11.035.
[2] M. Sadeghzadeh, M.H. Ahmadi, M. Kahani, H. Sakhaeinia, H. Chaji,
L. Chen, Smart modeling by using artificial intelligent techniques on
thermal performance of flat-plate solar collector using nanofluid,
Energy Sci. Eng. 0 (2019). https://doi.org/10.1002/ese3.381.
[3] M.A. Nazari, M.H. Ahmadi, M. Sadeghzadeh, M.B. Shafii, M.
Goodarzi, A review on application of nanofluid in various types of heat
pipes, J. Cent. South Univ. 26 (2019) 1021–1041.
https://doi.org/10.1007/s11771-019-4068-9.
[4] M.H. Ahmadi, M. Ghazvini, M. Sadeghzadeh, M. Alhuyi Nazari, M.
Ghalandari, Utilization of hybrid nanofluids in solar energy
applications: A review, Nano-Structures & Nano-Objects. 20 (2019)
100386. https://doi.org/10.1016/J.NANOSO.2019.100386.
[5] M. Kahani, M.H. Ahmadi, A. Tatar, M. Sadeghzadeh, Development of
multilayer perceptron artificial neural network (MLP-ANN) and least
square support vector machine (LSSVM) models to predict Nusselt number
and pressure drop of TiO 2 /water nanofluid flows
through non-straight pathways, Numer. Heat Transf. Part A Appl. 0 (2018)
1–17. https://doi.org/10.1080/10407782.2018.1523597.
[6] M.H. Ahmadi, A. Baghban, M. Sadeghzadeh, M. Hadipoor, M.
Ghazvini, Evolving connectionist approaches to compute thermal
conductivity of TiO2/water nanofluid, Phys. A Stat. Mech. Its Appl.
(2019) 122489. https://doi.org/10.1016/J.PHYSA.2019.122489.
[7] M.H. Ahmadi, M. Sadeghzadeh, A.H. Raffiee, K. Chau, Applying
GMDH neural network to estimate the thermal resistance and thermal
conductivity of pulsating heat pipes, Eng. Appl. Comput. Fluid Mech. 13
(2019) 327–336. https://doi.org/10.1080/19942060.2019.1582109.
[8] A.I. Alsabery, R. Mohebbi, A.J. Chamkha, I. Hashim, Impacts of
magnetic field and non-homogeneous nanofluid model on convective heat
transfer and entropy generation in a cavity with heated trapezoidal
body, J. Therm. Anal. Calorim. 138 (2019) 1371–1394.
https://doi.org/10.1007/s10973-019-08249-x.
[9] M.H. Ahmadi, M. Sadeghzadeh, H. Maddah, A. Solouk, R. Kumar, K.
Chau, Precise smart model for estimating dynamic viscosity of
SiO2/ethylene glycol–water nanofluid, Eng. Appl. Comput. Fluid Mech. 13
(2019) 1095–1105. https://doi.org/10.1080/19942060.2019.1668303.
[10] V.P. Zhelezny, I. V. Motovoy, E.E. Ustyuzhanin, Prediction of
nanofluids properties: The density and the heat capacity, J. Phys. Conf.
Ser. 891 (2017). https://doi.org/10.1088/1742-6596/891/1/012347.
[11] M. Ramezanizadeh, M.H. Ahmadi, M.A. Nazari, M. Sadeghzadeh, L.
Chen, A review on the utilized machine learning approaches for modeling
the dynamic viscosity of nanofluids, Renew. Sustain. Energy Rev. 114
(2019) 109345. https://doi.org/10.1016/J.RSER.2019.109345.
[12] H. Maddah, R. Aghayari, M. Mirzaee, M.H. Ahmadi, M.
Sadeghzadeh, A.J. Chamkha, Factorial experimental design for the thermal
performance of a double pipe heat exchanger using Al2O3-TiO2hybrid
nanofluid, Int. Commun. Heat Mass Transf. 97 (2018) 92–102.
https://doi.org/10.1016/j.icheatmasstransfer.2018.07.002.
[13] Nasirzadehroshenin, Fatemeh, Sadeghzadeh, Milad, Khadang,
Amirhossein, Maddah, Heydar, Ahmadi, Mohammad Hossein, Sakhaeinia,
Hossein, Chen, Lingen, Modeling of heat transfer performance of carbon
nanotube nanofluid in a tube with fixed wall temperature by using
ANN-GA, Eur. Phys. J. Plus. 135 (2020) 217.
https://doi.org/10.1140/epjp/s13360-020-00208-y.
[14] N.S. Shashikumar, G. B.J., M. B., B.C. Prasannakumara, C.A. J.,
Entropy generation analysis of magneto-nanoliquids embedded with
aluminium and titanium alloy nanoparticles in microchannel with partial
slips and convective conditions, Int. J. Numer. Methods Heat &
Fluid Flow. 29 (2019) 3638–3658.
https://doi.org/10.1108/HFF-06-2018-0301.
[15] T. Tayebi, A.J. Chamkha, M. Djezzar, Natural convection of
CNT-water nanofluid in an annular space between confocal elliptic
cylinders with constant heat flux on inner wall, Sci. Iran. 26 (2019)
2770–2783. https://doi.org/10.24200/sci.2018.21069.
[16] A.S. Dogonchi, T. Armaghani, A.J. Chamkha, D.D. Ganji, Natural
Convection Analysis in a Cavity with an Inclined Elliptical Heater
Subject to Shape Factor of Nanoparticles and Magnetic Field, Arab. J.
Sci. Eng. 44 (2019) 7919–7931.
https://doi.org/10.1007/s13369-019-03956-x.
[17] A.J. Chamkha, S. Sazegar, E. Jamesahar, M. Ghalambaz, Thermal
Non-Equilibrium Heat Transfer Modeling of Hybrid Nanofluids in a
Structure Composed of the Layers of Solid and Porous Media and Free
Nanofluids, Energies. 12 (2019) 541. https://doi.org/10.3390/en12030541.
[18] I.M. Safwan, A.A. I., C. A., H. Ishak, Effect of finite wall
thickness on entropy generation and natural convection in a
nanofluid-filled partially heated square cavity, Int. J. Numer. Methods
Heat & Fluid Flow. 30 (2019) 1518–1546.
https://doi.org/10.1108/HFF-06-2019-0505.
[19] T. Tahar, C.A. J., Entropy generation analysis during MHD
natural convection flow of hybrid nanofluid in a square cavity
containing a corrugated conducting block, Int. J. Numer. Methods Heat
& Fluid Flow. 30 (2019) 1115–1136.
https://doi.org/10.1108/HFF-04-2019-0350.
[20] S.A.M. Mehryan, E. Izadpanahi, M. Ghalambaz, A.J. Chamkha,
Mixed convection flow caused by an oscillating cylinder in a square
cavity filled with Cu–Al2O3/water hybrid nanofluid, J. Therm. Anal.
Calorim. 137 (2019) 965–982.
https://doi.org/10.1007/s10973-019-08012-2.
[21] R.S. Vajjha, D.K. Das, D.P. Kulkarni, Development of new
correlations for convective heat transfer and friction factor in
turbulent regime for nanofluids, Int. J. Heat Mass Transf. 53 (2010)
4607–4618. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2010.06.032.
[22] W.H. Azmi, N.A. Usri, R. Mamat, K.V. Sharma, M.M. Noor, Force
convection heat transfer of Al2O3 nanofluids for different based ratio
of water: Ethylene glycol mixture, Appl. Therm. Eng. 112 (2017)
707–719. https://doi.org/10.1016/J.APPLTHERMALENG.2016.10.135.
[23] M. SHIRATO, H. KATO, K. KOBAYASHI, H. SAKAZAKI, ANALYSIS OF
SETTLSNG OF THICK SLURRIES DUE TO CONSOLIDATION, J. Chem. Eng. Japan. 3
(1970) 98–104. https://doi.org/10.1252/jcej.3.98.
[24] R. Buscall, L.R. White, The consolidation of concentrated
suspensions. Part 1.—The theory of sedimentation, J. Chem. Soc.{,}
Faraday Trans. 1. 83 (1987) 873–891.
https://doi.org/10.1039/F19878300873.
[25] R.S. Bowles, J.J. Kolstad, J.M. Calo, R.P. Andres, Generation
of molecular clusters of controlled size, Surf. Sci. 106 (1981)
117–124. https://doi.org/10.1016/0039-6028(81)90188-6.
[26] T.S. Lundgren, Slow flow through stationary random beds and
suspensions of spheres, J. Fluid Mech. 51 (1972) 273–299.
https://doi.org/https://doi.org/10.1017/S002211207200120X.
[27] J. Huang, X. Wang, Q. Long, X. Wen, Y. Zhou, L. Li, Influence
of pH on the Stability Characteristics of Nanofluids, in: 2009 Symp.
Photonics Optoelectron., 2009: pp. 1–4.
https://doi.org/10.1109/SOPO.2009.5230102.
[28] X. Wang, D. Zhu, S. yang, Investigation of pH and SDBS on
enhancement of thermal conductivity in nanofluids, Chem. Phys. Lett. 470
(2009) 107–111. https://doi.org/10.1016/J.CPLETT.2009.01.035.
[29] A. Ghadimi, R. Saidur, H.S.C. Metselaar, A review of nanofluid
stability properties and characterization in stationary conditions, Int.
J. Heat Mass Transf. 54 (2011) 4051–4068.
https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2011.04.014.
[30] L. Fedele, L. Colla, S. Bobbo, S. Barison, F. Agresti,
Experimental stability analysis of different water-based nanofluids,
Nanoscale Res. Lett. 6 (2011) 300.
https://doi.org/10.1186/1556-276X-6-300.
[31] Y. Hwang, J.-K. Lee, J.-K. Lee, Y.-M. Jeong, S. Cheong, Y.-C.
Ahn, S.H. Kim, Production and dispersion stability of nanoparticles in
nanofluids, Powder Technol. 186 (2008) 145–153.
https://doi.org/10.1016/J.POWTEC.2007.11.020.
[32] J. Eapen, R. Rusconi, R. Piazza, S. Yip, The Classical Nature
of Thermal Conduction in Nanofluids, J. Heat Transfer. 132 (2010).
https://doi.org/10.1115/1.4001304.
[33] P.K. Namburu, D.P. Kulkarni, A. Dandekar, D.K. Das,
Experimental investigation of viscosity and specific heat of silicon
dioxide nanofluids, Micro Nano Lett. 2 (2007) 67–71.
https://doi.org/10.1049/mnl:20070037.
[34] L. Syam Sundar, E. Venkata Ramana, M.K. Singh, A.C.M. Sousa,
Thermal conductivity and viscosity of stabilized ethylene glycol and
water mixture Al2O3 nanofluids for heat transfer applications: An
experimental study, Int. Commun. Heat Mass Transf. 56 (2014) 86–95.
https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2014.06.009.
[35] R.S. Vajjha, D.K. Das, Experimental determination of thermal
conductivity of three nanofluids and development of new correlations,
Int. J. Heat Mass Transf. 52 (2009) 4675–4682.
https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2009.06.027.
[36] J. Koo, C. Kleinstreuer, Impact analysis of nanoparticle motion
mechanisms on the thermal conductivity of nanofluids, Int. Commun. Heat
Mass Transf. 32 (2005) 1111–1118.
https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2005.05.014.
[37] R. Vajjha, D. Das, Specific Heat Measurement of Three
Nanofluids and Development of New Correlations, J. Heat Transf. Asme.
131 (2009). https://doi.org/10.1115/1.3090813.
[38] B.C. Sahoo, D.K. Das, R.S. Vajjha, J.R. Satti, Measurement of
the Thermal Conductivity of Silicon Dioxide Nanofluid and Development of
Correlations, J. Nanotechnol. Eng. Med. 3 (2013) 41006–41010.
http://dx.doi.org/10.1115/1.4024003.
[39] R.L. Virdi, S.S. Chatha, H. Singh, Experiment evaluation of
grinding properties under Al 2 O 3nanofluids in minimum quantity lubrication, Mater. Res. Express. 6
(2019) 096574. https://doi.org/10.1088/2053-1591/ab301f.
[40] S. Aziz, S. Khalid, H. Khalid, Influence of surfactant and
volume fraction on the dispersion stability of TiO 2/deionized water based nanofluids for heat transfer applications, Mater.
Res. Express. 6 (2018) 015031. https://doi.org/10.1088/2053-1591/aae6ac.
[41] ASHRAE, Handbook of fundamentals, American Society of Heating
774 Refrigerating and Air Conditioning Engineers, Atlanta, GA, 2005.
[42] D.P. Kulkarni, D.K. Das, R.S. Vajjha, Application of nanofluids
in heating buildings and reducing pollution, Appl. Energy. 86 (2009)
2566–2573. https://doi.org/10.1016/J.APENERGY.2009.03.021.
[43] N.A. Usri, W.H. Azmi, R. Mamat, K.A. Hamid, G. Najafi, Heat
Transfer Augmentation of Al2O3 Nanofluid in 60:40 Water to Ethylene
Glycol Mixture, Energy Procedia. 79 (2015) 403–408.
https://doi.org/10.1016/J.EGYPRO.2015.11.510.
[44] R. W, M. Khalid, S. Ong, S. Rahman, Preparation,
thermo-physical properties and heat transfer enhancement of nanofluids,
Mater. Res. Express. 1 (2014) 32001.
https://doi.org/10.1088/2053-1591/1/3/032001.
[45] W. Yu, H. Xie, A review on Nanofluids: preparation, stability
mechanisms, and applications, J. Nanomater. 2012 (2012) 17 pages.
https://doi.org/http://dx.doi.org/10.1155/2012/435873.
[46] D.K. Carpenter, Dynamic Light Scattering with Applications to
Chemistry, Biology, and Physics (Berne, Bruce J.; Pecora, Robert), J.
Chem. Educ. 54 (1977) A430. https://doi.org/10.1021/ed054pA430.1.
[47] X. Wei, L. Wang, Synthesis and thermal conductivity of
microfluidic copper nanofluids, Particuology. 8 (2010) 262–271.
https://doi.org/10.1016/J.PARTIC.2010.03.001.
[48] X. Li, D. Zhu, X. Wang, Evaluation on dispersion behavior of
the aqueous copper nano-suspensions, J. Colloid Interface Sci. 310
(2007) 456–463. https://doi.org/10.1016/J.JCIS.2007.02.067.
[49] Y. Li, J. Zhou, S. Tung, E. Schneider, S. Xi, A review on
development of nanofluid preparation and characterization, Powder
Technol. 196 (2009) 89–101.
https://doi.org/10.1016/J.POWTEC.2009.07.025.
[50] S. Akilu, K.V. Sharma, T.B. Aklilu, M.S.M. Azman, P.T.
Bhaskoro, Temperature Dependent Properties of Silicon Carbide Nanofluid
in Binary Mixtures of Glycerol-Ethylene Glycol, Procedia Eng. 148 (2016)
774–778. https://doi.org/10.1016/J.PROENG.2016.06.555.
[51] X. Li, C. Zou, X. Lei, W. Li, Stability and enhanced thermal
conductivity of ethylene glycol-based SiC nanofluids, Int. J. Heat Mass
Transf. 89 (2015) 613–619.
https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2015.05.096.
[52] S. Magdassi, M. Grouchko, A. Kamyshny, Copper Nanoparticles for
Printed Electronics: Routes Towards Achieving Oxidation Stability.,
Mater. (Basel, Switzerland). 3 (2010) 4626–4638.
https://doi.org/10.3390/ma3094626.
[53] D. Lee, J.-W. Kim, B.G. Kim, A New Parameter to Control Heat
Transport in Nanofluids: Surface Charge State of the Particle in
Suspension, J. Phys. Chem. B. 110 (2006) 4323–4328.
https://doi.org/10.1021/jp057225m.
[54] Y. Hwang, J.K. Lee, C.H. Lee, Y.M. Jung, S.I. Cheong, C.G. Lee,
B.C. Ku, S.P. Jang, Stability and thermal conductivity characteristics
of nanofluids, Thermochim. Acta. 455 (2007) 70–74.
https://doi.org/10.1016/J.TCA.2006.11.036.
[55] B. Wright, D. Thomas, H. Hong, P. Smith, Time Dependent Thermal
Conductivities of Nanofluids Containing Carbon Nanotubes and Metal
Oxides, J. Nanofluids. 2 (2013) 45–49.
https://doi.org/10.1166/jon.2013.1038.
[56] P.D. Shima, J. Philip, Role of Thermal Conductivity of
Dispersed Nanoparticles on Heat Transfer Properties of Nanofluid, Ind.
Eng. Chem. Res. 53 (2014) 980–988. https://doi.org/10.1021/ie403086g.
[57] T.-P. Teng, Y.-H. Hung, T.-C. Teng, H.-E. Mo, H.-G. Hsu, The
effect of alumina/water nanofluid particle size on thermal conductivity,
Appl. Therm. Eng. 30 (2010) 2213–2218.
https://doi.org/10.1016/J.APPLTHERMALENG.2010.05.036.
[58] W.H. Azmi, K.V. Sharma, P.K. Sarma, R. Mamat, S. Anuar,
Comparison of convective heat transfer coefficient and friction factor
of TiO2 nanofluid flow in a tube with twisted tape inserts, Int. J.
Therm. Sci. 81 (2014) 84–93.
https://doi.org/10.1016/J.IJTHERMALSCI.2014.03.002.
[59] M.P. Beck, Y. Yuan, P. Warrier, A.S. Teja, The effect of
particle size on the thermal conductivity of alumina nanofluids, J.
Nanoparticle Res. 11 (2009) 1129–1136.
https://doi.org/10.1007/s11051-008-9500-2.
[60] C.H. Li, G.P. Peterson, The effect of particle size on the
effective thermal conductivity of Al2O3-water nanofluids, J. Appl. Phys.
101 (2007) 044312. https://doi.org/10.1063/1.2436472.
[61] B. LotfizadehDehkordi, S.N. Kazi, M. Hamdi, A. Ghadimi, E.
Sadeghinezhad, H.S.C. Metselaar, Investigation of viscosity and thermal
conductivity of alumina nanofluids with addition of SDBS, Heat Mass
Transf. 49 (2013) 1109–1115. https://doi.org/10.1007/s00231-013-1153-8.
[62] L. Syam Sundar, E. Venkata Ramana, M.K. Singh, A.C.M. De Sousa,
Viscosity of low volume concentrations of magnetic Fe3O4 nanoparticles
dispersed in ethylene glycol and water mixture, Chem. Phys. Lett. 554
(2012) 236–242. https://doi.org/10.1016/J.CPLETT.2012.10.042.
[63] C.T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Maré, S.
Boucher, H. Angue Mintsa, Temperature and particle-size dependent
viscosity data for water-based nanofluids – Hysteresis phenomenon, Int.
J. Heat Fluid Flow. 28 (2007) 1492–1506.
https://doi.org/10.1016/J.IJHEATFLUIDFLOW.2007.02.004.
[64] Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, H. Lu, Heat transfer
and flow behaviour of aqueous suspensions of TiO2 nanoparticles
(nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass
Transf. 50 (2007) 2272–2281.
https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2006.10.024.
[65] M.J. Pastoriza-Gallego, C. Casanova, J.L. Legido, M.M. Piñeiro,
CuO in water nanofluid: Influence of particle size and polydispersity on
volumetric behaviour and viscosity, Fluid Phase Equilib. 300 (2011)
188–196. https://doi.org/10.1016/J.FLUID.2010.10.015.
[66] K.B. Anoop, T. Sundararajan, S.K. Das, Effect of particle size
on the convective heat transfer in nanofluid in the developing region,
Int. J. Heat Mass Transf. 52 (2009) 2189–2195.
https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2007.11.063.
[67] R. Prasher, D. Song, J. Wang, P. Phelan, Measurements of
nanofluid viscosity and its implications for thermal applications, Appl.
Phys. Lett. 89 (2006) 133108. https://doi.org/10.1063/1.2356113.
[68] E.N. da C. Andrade, XLI. A theory of the viscosity of
liquids.—Part I, London, Edinburgh, Dublin Philos. Mag. J. Sci. 17
(1934) 497–511. https://doi.org/10.1080/14786443409462409.
[69] J. Garg, B. Poudel, M. Chiesa, J.B. Gordon, J.J. Ma, J.B. Wang,
Z.F. Ren, Y.T. Kang, H. Ohtani, J. Nanda, G.H. McKinley, G. Chen,
Enhanced thermal conductivity and viscosity of copper nanoparticles in
ethylene glycol nanofluid, J. Appl. Phys. 103 (2008) 074301.
https://doi.org/10.1063/1.2902483.