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Abstract

Models addressing the supply chain in blood banks are of goals, but the common theme is the tendency to focus on optimum
demand meeting while minimizing the number of expired units. This paper provides a simplified LP model for inventory
management. The objective function in this model formulation aims to minimize the cost and the number of wasted units,
considering the unit limited shelf life. The implementation of the model is to be at a regional blood bank that receives scheduled
orders. The parameters values were based on data collected from Abu Dhabi regional blood bank; it was then implemented
using the Gurobi computational solver.
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1. Introduction

The blood supply chain is considered of a vital priority, and its study has occupied a large portion of
operation research. Studies fro this supply chain provided analytical and simulation models. Since this
problem comprises multiple process and products, on different decision-making levels, a few studies focused
on addressing the supply chain as a whole while the majority focused on certain aspects of it. Those aspects
include, but not limited to, the development of approximate ordering and issuing policies for inventory
systems, distribution scheduling, and the analysis of multi-product system. They targeted those models to
be implanted as decision rules within an individual hospital blood bank, or on a larger scale as a decision
support system for hierarchical planning in a regional blood centre. Blood as a product has a limited shelf
life of around 35 days; we can recognise four main blood groups which are determined by the presence or
absence of two antigens A- and B- on the red blood surfaces, but the presence of a protein called the Rh
factor that gives a total of eight major blood types (O +, O-, A+, A-, B+, B-, AB+, and AB-).

In blood transfusion systems, it is vital that patients are assigned to the correct blood types, since not all
blood types are compatible with each other and mixing incompatible blood types can lead to agglutination.
Collected blood units can be further broken down into separate products of blood: red cells, white cells,
plasma and platelets. They have different usage in the medical treatment of patients and serve different
functions in the human body. Blood shelf life considered to be of a critical factor in blood assignment-
transfusion system; since blood units that are not used within their life span considered to be as wastage
units ‘expired’. The complicated nature of this supply chain calls for a thorough review to previous works
and necessitate a breakdown for its different stages within the following section.

2. Contribution

This paper provides an overview of the theory and the practice of the blood supply chain and inventory
management. A linear programming model was developed to optimise the number of daily collected units at
a regional blood bank. The study focused on challenging the complex nature of the blood supply chain by
providing a simple model for inventory management while minimising cost and waste. The model addressed



scheduled demand from a steady number of donors. This study based its parameters on data collected from
Au Dhabi regional blood bank and implemented the model with the use of Gurobi solver.

3. Literature Review

Blood supply chain and inventory management are considered a significant field of operation research since
the 1980s; attracting the focus of hundreds of researchers. Therefore, numerous publications and papers
addressed the various aspects of the supply chain concerning this vital human-sourced perishable product.
This supply chain could be broken down into four consecutive stages: collection, production, inventory and
distribution towards the endpoint at hospitals (Osorio 2016). However, studies have shown that this system
is far from linear and of a highly complex nature caused by unpredictability in both demand and supply, the
limited shelf life of blood products, and the variations in issuing policies based on the hierarchy of the blood
provider and how it operates. Those are few among many other influential factors contributing further to
the complexity of the blood supply chain.

Gregory P.Prastacos, an early pioneer in this realm of operation research, provided in his paper (Prastacos
1984) a thorough, comprehensive explanation for the different stages of a blood supply chain; starting with
blood collection either at the hospital itself or at donation points that feed a regional blood bank. Both the
hospital and regional blood bank are stages within the decision-making pyramid, the following third level
of this hierarchy would be the inter-regional blood centre which handles the coordination between several
regional centres while also supervising the national blood program (Prastacos 1984).

Prastacos clarifies that :

“at each of these levels, the decision-maker faces a wide range of operational, tactical, and
strategic management problems”.

When modelling such a complex problem, we should be aware of two variables : (i) the limited shelf life
of this product, and (ii) the difference between actual demand and usage. Optimum utilisation of assigned
units is considered one of the most important criteria used to evaluate the performance of a blood provider,
which is the number of wasted units (Prastacos 1984).

The number of needed blood unites usually is decided by each hospital based on a policy called (MSBOS),
which stands for the maximum surgical blood order schedule. The number and type of ordered blood units,
therefore, would rely on the classification of that procedure, the number of patients in the hospital, median
estimated blood loss and transfusion index (Frank 2013), this policy was developed in the late 1970’s. There
have been many attempts to revolutionise (MSBOS) since:

“many new procedures have since been introduced, and surgical techniques have evolved such
that blood loss is now less common”.

For example, the work presented by Steven M.Frank and his colleagues sought to propose a new categorisation
of surgical procedures, it also introduced an algorithm for blood ordering that can be tailored to fit specific
needs for different institutions. They managed to:

“identify specific low—blood-loss procedures, for which we could eliminate blood orders, and
thereby substantially reduce costs”.

Many algorithms were also developed to address the collection stage in terms of collection methodology,
which determines whether to keep collected unite as a whole or separate it into different products. A discard
rate (Osorio 2016) is included before such a decision is made to account for invalid blood samples.

Another aspect of blood optimisation modelling is the role of historical data; such data can help in testing
models before implementation, shaping formulation, and performance comparison. At the collection stage,
such data would help in deciding the proportion of required blood donations from different blood types, and
the most blood products in demand (Prastacos 1984).



Analytical models at the collection stage sought to solve the configuration of collection points, policies
and methods; focusing on measuring the impact of different factors on the performance of a blood bank
during the collection stage, such as staff allocation and donor scheduling (Osorio 2016) . Ghandforoush and
Sen (Ghandforoush 2010) used a nonlinear integer algorithm to support daily planning of platelet production,
Alfonso and Xie (Alfonso 2013) presented a mathematical model for collection planning to minimise products
obtained from external suppliers.

The next stage would be about the handling of the collected blood units, although sometimes specific
collection methodologies enable the collection of platelets directly from the donor. Models at this stage are
focused either on one type of product or multiple products; with the aim to reduce cost, optimise storage
capacity, and minimise shortages and wasted unites. Haijema and van Dijk (van 2009) developed a Markovian
model to support decision making on production and inventories of platelets. Multiple periods, special periods
such as weekends and different types of demand are included in the model. Dynamic programming and local
search algorithms were used as solution methods, depending on the problem size.

Blood assignment from inventory would potentially be the last stage of this supply chain unless scheduled
deliveries from a regional blood bank to affiliated local hospitals is required. Blood assignment problems
BAP are solved using mathematical models. De Angelis and Ricciardi (Angelis 2001) modelled the Blood
assignment problem as a multi-product, multi-period, multi-objective linear programming model. They used
this method to minimise the quantity of blood imported from outside the system and stabilise the quantities
assigned daily. This model addressed only one of the blood groups (A+-, B+-, AB+-, O+-) at a time;
they solved the problem of optimal scheduling according to urgency and availability without influencing the
demand and supply flows. This was done by introducing three degrees of urgency: very urgent requests
that must be satisfied immediately, urgent requests that can be satisfied by the day after, and low-urgency
requests that can be met within eight days. It has been applied to the Italian Red Cross (CRI) blood
donation-transfusion system in Rome and showed satisfying results.

A similar model was used by Adewumi and Budlender (Adewumi 2012) to optimise the blood assignment
problems, by dynamically determining the assignment of blood with the use of multiple Knapsack algorithms
and compare its performance with simpler assignment models. The idea of cross-matching between blood
types proved to achieve better results with the MKA algorithm by reducing shortages in comparison with
Simple Assignment algorithms.

An integer programming model was proposed by Sapountzis (Sapountzis 1984) considered the allocation of
blood units from a regional Blood Transfusion Service BTS to the hospitals in that area; the studied case
was Glasgow and West of Scotland BTS which serves around 68 hospitals in the West of Scotland. The
blood shelf life in Scotland is about 28 days, which means blood units that are not used by that date are
said to be expired and should be returned to the Blood bank. However, in Glasgow and West Scotland BTS,
it is not permitted to receive the expired units from hospitals since it would lower the safety standards.
Therefore, to reduce the wastage of the blood without increasing the workload of the BTS, it is important to
allocate blood units to the hospitals based on their activity. The BTS transfuse required blood units based
on either routine orders or urgent, fresh blood requests (usually for paediatrics or cardiac surgery) to fulfil
each hospital’s demands, the main objective of this model was to minimise the expected number of expired
units at each hospital. By comparing the mathematical programming model with the manual system (that
does not take into account the characteristics of each hospital), a reduction percentage of 6.1% and 3.6%
respectively for the number of expired units was achieved.

Olusanya (Olusanya 2015) proposed an efficient new method by combining different techniques, the queue
and particle swarm optimisation (PSO) with multiple knapsack problem to address the challenges accompa-
nying the BAP. The PSO, multiple knapsack assignment method which is used to handle the cross-matching
of blood types to satisfy the requested units and stabilise the stored blood types in the bank, whereas queuing
technique was used to monitor the expiration date of each blood type. The objective was to optimise the
assignment of blood types and minimise wasted units and importation from external sources which could
be very expensive. By using the above techniques, the total number of blood units imported from external



resources were significantly minimised with no wastage.
3.1 Study Scope

One could argue that all stages of the blood supply chain are equally important, but a counter-argument
could shift the focus towards inventory management since it plays a central role at this chain.

As has been discussed earlier, blood collection and inventory could take place either at the hospital or at
the regional blood centre. The hospital blood bank operates as an inventory location, to meet the local
demand; it will handle storage and issuing transfusion requests for unique blood types for a random number
of units (Prastacos 1984). Once a request is received, a matching number of units are identified and removed
from free inventory and placed on reserve inventory until they are either used or returned. Unutilised units
during their shelf life will be invalid and discarded.

Blood management in regional blood banks is considered more challenging because of the large number
of participants in the system. We can distinguish between two types of regional systems: centralised and
decentralised. In a centralised inventory management system, the regional blood bank supervises the col-
lection, storage, and assignment blood orders to hospitals. This system is based on a scheduled ordering
system, while the decentralised system process daily orders from each hospital blood bank which sets its
inventory levels. Studies proofed that centralised systems outperform decentralised ones in the number of
perished inventory units and shortages, two important criteria for the performance of a blood bank, as well
as reducing the average per unit (Prastacos 1984).

Aside from perishability and the disparity between supply and demand, modelling blood inventory perfor-
mance is also characterised by other features such as the utilisation of blood resources, and age of blood
when transfused to patients (Prastacos 1984).

Optimisation is used to support decisions concerning the required number of donors (either in total or broken
down by blood group) and the associated collection and production methods, to minimise the production
cost. During the production stage, once the collection process is over, the units are placed in quarantine to
assure their validity and then added to the inventory. Outdated units are removed daily, and the inventory
levels are revised and ready to process and issue new orders, which are divided as either regular or urgent.

In each inventory management model, several assumptions are to be made. Osorio and Brailsford (Osorio
2016) proposed an integrated simulation-optimisation model to support strategic and operational decision
making. They used an integer linear optimisation model to run over a planning horizon; it was used to
support daily decision such as target number of donors, collection methods, and production planning. A
discrete event simulation (DES) were then used to represent flows through the supply chain. In this way, the
model can be used in two modes: strategic level to help blood bank managers to evaluate unique resources,
allocation policies, and at operational level to set daily collection and production targets. The model output
of both cases is considered as standard key performance indicators: stockouts, outdoes, several donors, and
production costs.

The ILP model is supposed to calculate the optimal required number of donors by running over a 7-day
planning horizon. At the same time, the DES would account for the uncertainty in supply and demand,
based on probability distribution fitted from historical data routinely collected in all blood centres. The
system state is updated at the begging of each day where the ILP algorithm will run the calculations for the
next seven days. The DES will handle simulations of the centre’s operations on that day, distributing blood
to several demand points. The proposed method can be classified as an “alternative Optimisation-based
Simulation (IOS)”. The ILP model optimised a cost function composed of production costs, penalties for
expired unites, number of stockouts and violation of the blood groups proportionality constraints (Osorio
2016).

Other studies focused on addressing inventory in regional blood banks, focused on optimising the number of
daily collections. But it also clarified that determining the optimal size of total units to be collected (overall



eight blood types) to meet demand in time is a complex process. Therefore, an exact solution to this problem
is impractical to obtain (Prastacos 1984).

In this paper, we developed a linear programming model of inventory management at a regional blood bank.
The model explained within the following section is focused on offering a rather simplified linear model to
meet daily demand and supply.

4. Problem formulation and discussion

The model is developed for a regional blood bank that would receive scheduled demand from affiliated
hospitals. Using linear programming formulation to optimize the number of collected units to meet the daily
demand. The model assumes the collection and demand are for whole blood units, for all eight types of
blood; scheduled demand also is assumed to be of equal urgency to all hospitals and across all blood types.
The constraints compel the model to keep the collection rate adequate to prevent the inventory from falling
below a certain minimum level while taking into consideration storage capacity and compelling the collection
not exceed this capacity. The objective function is designed to minimize the overall costs and wastage.

Other assumptions were also decided upon to help in guiding the formulation. For example, the initial
inventory is set to be null. FIFO policy is assumed to be implemented to keep the inventory fresh, the
shelf life of whole blood units is set to expire after 35 days (approximately five weeks) which is the assumed
time horizon of the model. We also considered the unit cost includes the cost of collection, handling and
storage. As it has been indicted before, not all collected samples are registered in the inventory; some
samples are deemed invalid after collection. We assume that only 90% of collected units are to be included
in the inventory. The feed to the blood bank is assumed to be available at certain quantities available for
each blood type, from regular donors. The time horizon will span over five weeks; the collection is made
daily based on scheduled weekly demand, collection proportion will vary based on demand for each blood
type, week by week. We assume the weekly demand is about 700 blood units in total for all blood types,
based on information received from the regional blood bank in Abu Dhabi.

Variables are denoted by indices that help in tracking the time when the collected unit is registered to the
inventory; the first index (i) is used to denote the blood type, second index (t) is used to assign the week
during the planning horizon period, and the third index (b) is used to indicate the day of the week. We also
consider all variables to be of a positive value.

For each index, the range will be as the following :

i €{1,2,3..8} since there are eight types of blood

t € {1,2,3..5} since the planning horizon is five weeks
d €{1,2,3..7} since there are 7 days in each week

4.1 Parameters

e G;;p : available donors for blood type i during week ¢ at day b.

e D,;;p :demand for blood type ¢ during week ¢ at day b.

e H;;, : daily collected units for blood type i available during week t at day b for hospital w.

e M, : minimum inventory level of available whole blood units for blood type 1.

e F;:p» : maximum capacity level of available whole blood units for blood type 7 during week t at day
b.
L : cost of collected whole blood unit, fixed for all blood types across all days of the week.
Q : penalty cost for expired units.

4.2 The decision making variables



e Ci:p : inventory level for blood type ¢ during week t at day b.
e Y., : expired units of blood type i during week ¢t at day b.
e X;:p : collected units for blood type i during week t at day b.

4.3 The constraints

1. Resources constraint states that the number of daily collected units for any blood type shouldn’t exceed
the number of available units from regular donors:

Xitp < Gipp
2. Demand constraint states that the demand shouldn’t exceed available resources, i.e capacity:
Ditpy <Gitp

3. Inventory equilibrium constraint define how the daily inventory is updated everyday. It’s set to equal
collected units in the same day and any left units from previous weeks minus the demand and the identified
expired units :

Citpy=09%xXitp+Cir—16—Dirp—Yitp

4. Minimum inventory constraint is defined to prevent shortages in inventory by always keeping the inventory
above a minimum level:

Citpo < Mty

5. Constraint of valid inventory is defined to identify expired units daily. The expired units at any point of
time is a unit in inventory that was collected at the week ¢t — 5 during the first day of that week :

Yitw =Cit51

6. Inventory capacity constraint at any point is defined as the inventory level plus collected units and it
should be less than the maximum capacity:

Fitp=Citp+Xitp <Gitp
7. Perished units should be less than 1% of all the collected units:
Yiep <001 % X510

4.4 The objective function

The objective function is designed to minimize cost, wasted units, and to keep inventory level from exceeding
demand:

8 5 7 8 (5 7 8 5 7
Z=Q 35 2 2 Yien T L 30500 2oy Xiww + 325300 20 Gt

5. Discussion on existing data:

To ensure realistic results, we sourced parameters values from the regional blood bank in Abu Dhabi. Costs
incurred for collection, handling, and storage of units are estimated to be around 800 AED for a 450 ml
blood packet. A weekly demand of 700 blood units that include all blood types is regularly provided to
hospitals affiliated with the regional blood bank. A minimum inventory of 100 unit of each blood type is
kept for emergencies. The most recent data indicates that a total demand of 708 blood units with variant
shares for each blood type: 220 blood units for O-, 53 for O+, 98 for A-, 98 for A+, 88 for B-, 88 for B+,
53 for AB+, and 10 for AB-.

The blood type O- is a universal donor; therefore, extra quantities are always kept by blood banks for that
specific blood type since it can cover shortages for other blood types.



The data acquired from Abu Dhabi regional blood bank also stated the minimum inventory levels for each
blood type as the following: 6 blood units for O+, 11 for A- and A+ each, 10 for B- and B+ each, 1 for AB-
since there are fewer people with AB- blood type, and 6 for AB+.We considered the feed to the blood bank
is stable from regular donors.

We considered the feed to the blood bank is stable from regular donors. According to the blood bank, the
frequency of people donating blood is different for each day in the week, with Sundays registering significantly
higher donation levels. Wednesdays are the lowest in donations while stable donation levels are registered for
Mondays, Tuesdays and Thursdays. To quantify that, we have set some percentages for each day, which the
blood bank approved, and these are: 33% of blood units are collected on Sunday, 10% on Monday, Tuesday,
and Thursday, 30% on Wednesday, 5% on Friday, and 2% on Saturday.

The main purpose of this model is to optimise the number of daily collected units to meet the scheduled
demand and avoid waste. As per the blood bank in Abu Dhabi, keeping a waste level of 1% was among their
KPIs.

Code in Gurobi (Anaconda)

For our project, and as part of the course requirement, we have used Gurobi to optimize our problem. This
being said, and since we are dealing with 8 excel sheets (1 per blood type), we had to call the following
libraries:

from _ future  import print function
import pandas as pd

from array import array

from pandas import ExcelWriter

from pandas import ExcelFile

from ortools.linear solver import pywraplp
import gurobipy as grb

from gurobipy import *

import numpy as np

Figure 1: Libraries used in the code

After that, we have introduced our model as bldInv (Blood Inventory), along with the minimum inventory
for each blood type before introducing the supply as a dictionary that reads from every excel file.



bldInv= grb.Model()

T= ['W1','W2','W3','W4','W5'] #Time in weeks
B=['Dl','D2','D3','D4','D5','D6','D7'] #Time in days

BT= ['O-','O+','A-','A+','B-','B+', 'AB+','AB-'] #Blood Types
T=range(l , 36)

Min_inv= {'0O-': 25, 'O+': 6, 'A-': 11, 'A+': 11, 'B-': 10, 'B+': 10, 'AB-': 1, 'AB+': 6}

supply= [}
for i in BT:
for t in T:
if i=='0-":
ON= pd.read excel('Desktop/ONegative.xlsx')
supply[i, t]= ON.Supply[t-1]
elif i=='0+':
OP= pd.read_excel('Desktop/OPositive.xlsx"')
supply([i, t]= OP.Supply[t-1]
elif i=="A+':
AP= pd.read excel('Desktop/APositive.xlsx')
supply[i, t]= AP.Supply[t-1]
elif i=="A-':
AN= pd.read excel('Desktop/ANegative.xlsx')
supply[i, t]= AN.Supply[t-1]
elif i=="B+':
BP= pd.read_excel('Desktop/BPositive.xlsx’')
supply[i, t]= BP.Supply[t-1]
elif i=="B-':
BN= pd.read excel('Desktop/BNegative.xlsx')
supply([i, t]= BN.Supply[t-1]
elif i=='AB+':
ABP= pd.read_excel( 'Desktop/ABPositive.xlsx')
supply[i, t]= ABP.Supply[t-1]
elif i=='AB-':
ABN= pd.read_excel( 'Desktop/ABNegative.xlsx')
supply[i, t]= ABN.Supply[t-1]

Figure 2: Model and initializing the data

Then, we declared our decision variables as stated in the formulation part, and set our initial inventory to 0
for all blood types, then defined our objective function.

#Declaring Decision Variables

Exp_units = bldInv.addVars(BT, T , obj=800, name='Expired Units')
Coll units= bldInv.addVars(BT, T, obj=800,name='Collected Units')
Inv= bldInv.addVars(BT, T, obj=800, name='Units_in Inventory')
Inv['O-',0]=0

Inv['O+',0]=0

Inv['A-',0]=0

Inv['A+',0]=0

Inv['B-',0]=0

Inv['B+',0]=0

Inv['AB-',0]=0

Inv['AB+',0]=0

#0bjective Function

bldInv.modelSense = grb.GRB.MINIMIZE

Figure 3: Decision variables and objective function declaration

After the objective function, all the constraints were implemented as shown below:



#Constraints

#Inventory Equilibruim Constraint
for i in BT:
for t in T:
inv_constr = bldTnv.addConstr(0.9+Coll units[i,t] + Inv[i,t-1] - supply[i,t] - Exp_units[i,t]
== Inv[i,t], name='Inventory Equilibrium'+i+str(t))

#Inventory Minimum Constraint
for i in BT:
for t in T:
Max_Inv_constrt= bldInv.addConstr(grb.quicksum(Inv[i,t] for i in BT) <= 800,
name='Maximum Capacity Constraint'+i+str(t))

#Demand Constraint
for i im BT:
for t in T:
Min_Inv_cnstrt= bldInv.addConstr(Inv[i,t] >= Min_inv[i], name='Minimum Inventory Level'+i+str(t))

#Capacity Constraint
for t in T:

Capacity_cnstrt= bldInv.addConstr((grb.quicksum(Inv(i,t] + Coll_units([i,t] for i in BT) <= 800),
name='Maximum Capacity'+i+str(t))

#Expired Units Constraint
for i in BT:
for t in T:
Exp_units constrt= bldInv.addConstr(Exp units[i,t] - 0.01 * Coll units[i,t] <= 0,
name='Perishability Minimum')

Figure 4: Constraints of the problem

Afterwards, we called the function, optimized the model, and made sure the results were exported to the
corresponding excel files.

bldInv.write( 'Blood Inventory Model.lp')
f = open('Blood Inventory Model.lp', 'r')
print (f.read())

f.close()

bldInv.optimize()

ON[ 'Collected_O-']=[Coll_units['O-',t].X for t in T]
OP[ 'Collected O+']=[Coll_units['O+',t].X for t in T]
AN[ 'Collected A-']=[Coll units['A-',t].X for t in T]
AP[ 'Collected A+']=[Coll_units['A+',t].X for t in T]
BN[ 'Collected B-']=[Coll_units[ 'B-',t].X for t in T]
BP[ 'Collected B+']=[Coll_units['B+',t].X for t in T]

ABN[ 'Collected AB-']=[Coll_units['AB-',t].X for t in T]
ABP[ 'Collected AB+']=[Coll_units['AB+',t].X for t in T]

ON.to_excel( 'Desktop/ONegative.xlsx")
OP.to_excel( 'Desktop/OPositive.xlsx")
AN.to_excel( 'Desktop/ANegative.xlsx')
AP.to_excel('Desktop/APositive.xlsx’)
BN.to_excel( 'Desktop/BNegative.xlsx')
BP.to_excel( 'Desktop/BPositive.xlsx')
ABN.to_excel( 'Desktop/ABNegative.xlsx')
ABP.to_excel( 'Desktop/ABPositive.xlsx')

Figure 5: Optimization of the model and data export to Excel



6. Results

After running the code, we got the following result:

Optimize a model with 1155 rows, 840 columns and 4752 nonzeros

Coefficient statistics:

Matrix range [le-02, 1le+00]
Objective range [8e+02, 8e+02]
Bounds range [0e+00, 0e+00]
RHS range [1le+00, 8et+02]

Presolve removed 814 rows and 560 columns
Presolve time: 0.05s
Presolved: 341 rows, 280 columns, 1368 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 5.4577744e+06 3.555556e-04 0.000000e+00 Os
1 5.4577778e+06 0.000000e+00 0.000000e+00 Os

Solved in 1 iterations and 0.06 seconds
Optimal objective 5.457777778e+06

Figure 6: Code’s result

The results on the excel files are as shown below:

Figure 7: Collected units output for O-
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I Supply [(Week_Nbr| Day_Nbr | Collected_O-
Dayl 73 W1 D1
Day 2 22 W1 D2
Day3 22 W1 D3
Day4 66 W1 D4
Day5 22 W1 D5
Day6 11 W1 D6
Day7 4 Wi D7
Day8 73 W2 D1



] Supply [Week_Nbr| Day_Nbr | Collected_O+

Dayl 18 w1 D1 27
Day 2 5/'W1 D2 6
Day3 5 w1 D3 6
Day4 16 Wi D4 18
Day5 5 w1 D5 6
Dayé6 3wl D6 3
Day7 1wl D7 1
Day8 18 w2 D1 20

Figure 8: Collected units output for O+

Supply |[Week_Nbr| Day_Nbr | Collected_A-
Dayl 32 W1 D1 48
Day 2 10 w1l D2 11
Day3 10 w1l D3 11
Day4 29 W1 D4 32
Day5 10 w1l D5 11
Day6 4 W1 D6 4
Day7 3wl D7 3
Day8 32 w2 D1 36

Figure 9: Collected units output for A-

I Supply |Week_Nbr| Day_Nbr | Collected_A+

Dayl 32 W1 D1 48
Day 2 10 w1 D2 11
Day3 10 w1 D3 11
Day4 29 W1l D4 32
Day5 10 w1 D5 11
Day6 4 Wi D6 4
Day7/ 3wl D7 3
Day8 32 W2 D1 36

Figure 10: Collected units output for A+

11



] Supply |Week_Nbr| Day_Nbr |:o||ected_B:

Dayl 29 W1 D1 43
Day 2 9 W1 D2 10
Day3 9 W1 D3 10
Day4 26 W1 D4 29
Day5 9 W1 D5 10
Day6 4 W1 D6 4
Day7 2 W1 D7 2
Day8 29 W2 D1 32

Figure 11: Collected units output for B-

] Supply |Week_Nbr| Day_Nbr |:o||ected_B-|

Dayl 29 W1 D1 43
Day 2 9 W1 D2 10
Day3 9 W1 D3 10
Day4 26 W1 D4 29
Day5 9 W1 D5 10
Day6 4 W1 D6 4
Day7 2 W1 D7 2
Day8 29 W2 D1 32

Figure 12: Collected units output for B+

I Supply |Week_Nbr| Day_Nbr bllected_AB

Dayl 18 W1 D1 27
Day 2 5 w1 D2 6
Day3 5 W1 D3 6
Day4 16 W1 D4 18
Day5 5 W1 D5 6
Day6 3wl D6 3
Day7 1wl D7 1
Day8 18 W2 D1 20

Figure 13: Collected units output for AB+

12



I Supply |Week_Nbr| Day_Nbr |o||ected_AB
Dayl 4 W1 D1 6
Day 2 1 W1 D2 1
Day3 1wl D3 1
Day4 3wl D4 3
Day5 1wl D5 1
Day6 0 wi D6 0
Day7 0 W1 D7 0
Day8 4 W2 D1 4

Figure 14: Collected units output for AB-

We have taken a screenshot of the first 8 days since we assumed that we are starting with no inventory and
we should satisfy the inventory equilibrium constraint. Hence, collected units on the first day of operations
should be the highest. Eventually, the same numbers will be repeating themselves all over the remaining 27
days while the inventory was kept at exactly its minimum for all blood types.

The results seem pretty logical, and when we have checked them with the blood bank from which we got
the initial data, they have confirmed that they collected a little more each day for each blood type, which
is why they have a waste of about 3% on all blood types. Although our model doesn’t thoroughly deal
with perished units, it includes some measures directly related to it; that can be seen via the perishability
constraint, and inventory equilibrium.

Sensitivity analysis
Sensitivity analysis is an important measure to see how variables react to certain changes in the model. We

have used Gurobi to have that report as well, and the code was as follows:

print('Sensitivity Analysis (SA)\nObjval', bldInv.ObjVal)
bldInv.printAttr(['X', 'Obj','SAObjLow','SAObjUp'])

bldInv.printAttr(['X', 'RC','LB','SALBLow','SALBUp','UB','SAUBLow', 'SAUBUp'])
bldInv.printAttr(['Sense', 'Slack','Pi','RHS', 'SARHSLow', 'SARHSUp'])

Figure 15: Sensitivity Analysis code segment

After running this segment of code, the second line of code resulted in the following;:
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Sensitivity Analysis (SA)
Objval 5457777.7777777845

Variable X 0bj SAObjLow SAObjUp
Collected_Units[0-,1] 108.889 800 80 le+100
Collected_Units[0-,2] 24.4444 800 80 1520
Collected_Units[0-,3] 24.4444 800 80 1520
Collected_Units[0-,4] 73.3333 800 80 1520
Collected Units[0-,5] 24.4444 800 80 1520
Collected_Units[0-,6] 12.2222 800 80 1520
Collected Units[0-,7] 4.44444 800 80 1520
Collected Units[0-,35] 4.44444 800 =720 1520
Units_in_Inventory[0-,1] 25 800 0 le+100
Units_in_Inventory[0-,2] 25 800 0 le+100
Units_in_Inventory[0-,3] 25 800 0 le+100
Units_in_Inventory[O-,4] 25 800 0 le+100
Units_in_Inventory[0-,5] 25 800 0 le+100
Units_in_Inventory[0-,6] 25 800 0 le+100
Units_in_Inventory[0-,7] 25 800 0 le+100
Units_in_Inventory[0-,35] 25 800 -888.889 le+100

Figure 16: Sensitivity analysis results part 1

The results were similar to all variables regardless of the blood type, as the same number were repeated until
day 34. If we attempt to interpret the results, we could see that the coefficient of the collected units could
decrease by 720 or increase by the same, and that wouldn’t impact our optimal solution. On the other hand,
the coefficient of the units in inventory could decrease to 0 or increase to infinity and that wouldn’t change
our optimal solution. That is logical because we are trying to maintain a fixed inventory for all blood types.
Regarding the very first line of the sensitivity report, having an upper limit of infinity makes sense because
we are already collecting in excess vis-a-vis other days. Yet, the allowable decrease on the 35" day is big,
and that could be interpreted in the sense that we already have enough inventory to satisfy that day’s need,
therefore if we decrease or increase its coefficient by 720 up and down, nothing will change when it comes to
the optimal solution; and the same thing applies to the inventory.

The second line of code gave the following output:

Variable X RC LB SALBLow SALBUp uB SAUBLow SAUBUP
Collected_Units[0-,1] 108.889 o 0 -le+100 108.889 le+100 108.889
le+100
Collected Units[O-,2] 24.4444 o 0 -le+100 24.4444 le+100 24.4444
le+100
Collected Units[0-,3] 24.4444 0 ] -le+100 24.4444 le+100 24.4444
le+100
Collected_Units[O-,4]) 73.3333 o 0 -1le+100 73.3333 le+100 73.3333
le+100
Collected Units[0-,5] 24.4444 o 0 -le+100 24.4444 le+100 24.4444
le+100
Collected_Units[O-,6] 12.2222 o 0 -le+100 12,2222 le+100 12.2222
le+100
Collected_Units[0-,7] 4.44444 o 0 -1le+100 4.44444 le+100 4.44444
le+100
Units_in_Inventory(O-,1] 25 0 L] -le+l00 25 le+100 25
le+100
Units_in_ Inventory[0-,2] 25 0 L] -le+100 25 le+100 25
le+100
Units_in_Inventory(0-,3] 25 0 0 -1le+100 25 1e+100 25
le+100
Units_in_Inventory(0-,4] 25 ] L] =le+100 25 le+100 25
1e+100
Units_in_Inventory[O-,5] 25 0 [ ~1e+100 25 1e+100 25
le+100
Units_in_Inventory(0-,6] 25 [ 0 -1le+100 25 1e+100 25
le+100
Units_in_Inventory[0-,7] 25 0 [ ~1e+100 25 1e+100 25

le+100

Figure 17: Sensitivity analysis results part 2
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The reduced cost, as the amount by which the value of the objective function will decrease if we increase a
variable by lunit, is O for all variables according to the figure above. That is logical since the reduced cost
is always 0 if the optimal value is positive, and that is the case in our project. The lower bound and upper
bound are set to infinity for there were no restrictions on that initially in the formulation. Other than that,
the largest and lowest bound values at which our optimal solution would remain optimal are equal to our
optimal values.

The output of the third line of the code was the below:

Constraint Sense Slack Pi RHS SARHSLow SARHSUp
Inventory EquilibriumO-1 = 0 888.889 73 =25 406
Inventory EgquilibriumO-2 = 0 888.889 22 3.55271le-15 599
Inventory EquilibriumO-3 = 0 888.889 22 3.5527le-15 599
Inventory EquilibriumO-4 = [} 888.889 66 1.42109e-14 503
Inventory EquilibriumO-5 = 0 888.889 22 3.55271e-15 599
Inventory EguilibriumO-6 = 0 888.889 11 1.77636e-15 626
Inventory Egquilibrium0-7 = 0 888.889 4 0 636
Maximum Capacity Constrainto-1 < 720 [ 800 80 le+100
Maximum Capacity Constraint0O-2 < 720 [ 800 80 le+100
Maximum Capacity Constraint0-3 < 720 0 800 80 1e+100
Maximum Capacity ConstraintO-4 < 720 [] 800 80 le+100
Maximum Capacity Constraint0-5 < 720 [} 800 80 le+100
Maximum Capacity ConstraintO-6 < 720 1] 800 80 le+100
Maximum Capacity Constrainto-7 < 720 L] 800 8o le+100
Minimum Inventory LevelO-1 > 1] 800 25 =0 47
Minimum Inventory LevelO-2 > 0 800 25 3 47
Minimum Inventory LevelO-3 > ] 800 25 3 91
Minimum Inventory LevelO-4 > 0 800 25 -0 47
Minimum Inventory LevelO-5 > 1] 800 25 3 36
Minimum Inventory LevelO-6 > 0 800 25 14 29
Minimum Inventory LevelO-7 > 0 800 25 21 98
Maximum CapacityAB-1 < 370 0 800 430 le+100
Maximum CapacityAB-2 < 641,111 0 800 158.889 le+100
Maximum CapacityAB-3 < 641.111 0 800 158.889 le+100
Maximum CapacityAB-4 < 485.556 0 800 314.444 le+100
Maximum CapacityAB-5 < 641.111 [ 800 158.889 le+100
Maximum CapacityAB-6 < 683.333 0 800 116.667 le+100
Maximum CapacityAB-7 < 702.222 0 800 97.7778 le+100

Figure 18: Sensitivity analysis results part 3

From the above, it appears that both Maximum capacity constraints have shadow prices (Pi) of 0; therefore,
they are considered nonbinding constraints. Likewise, the inventory equilibrium and minimum inventory
level constraints have non-zero shadow prices and 0 slack; and are therefore considered binding constraints.
Actually, the slack value of 0 for the inventory equilibrium is evident since it’s an equality.

7. Conclusion and Future work

This model proved to be able to solve the inventory management problem for a perishable product despite its
simplistic approach. The algorithm could be further expanded to include other types of blood products.The
sensitivity analysis showed which parameters hold the largest effect on the blood bank performance and
what are the intervals in which the blood bank could play to keep its collection plan optimal. This project
could further be improved by implementing an inventory update that would help to track the inventory and
regularly check whether the collected units were consumed totally or not. This leads to another constraint
in which the perished units are kept to a minimum so that the blood bank meets its KPIs. A notion towards
integer programming model would prove to be also a possible future enhancement for the current model.
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