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Abstract

Designing benchmarks for algorithms developed to run on physical robot hard-
ware remains to be a challenge. Towards achieving benchmarks for space hu-
manoid robots, we present Northeastern’s humanoid robot dataset containing
physical sensor data from NASA’s Valkyrie (R5), including robot pose esti-
mate, joint angles and velocities, center of pressure, center of mass, ground
reaction wrenches, and motion capture ground truth pose. The dataset in-
cludes various mobility and manipulation tasks as atomic robot behaviors in-
cluding walking and reaching motions. Inspired by the NASA Space Robotics
Challenge, the dataset is intended for use by the community that wishes to con-
duct humanoid robot research without direct access to a hardware platform.
In addition, it will enable comparative studies in terms of hardware designs,
as well as task and motion planning methods. The dataset will provide the
humanoid robotics research community with a resource not only to bridge the
gap between simulation-based and experimental algorithm validation but also
to design task-level benchmarks for humanoid space robots. This paper de-
scribes the robot hardware, software, data collection process, post-processing
steps, and structure of data for Northeastern’s NASA Valkyrie dataset.

1 Introduction

Space robotics has been a vibrant research field ever since the beginning of the human
spaceflight program. A variety of satellites, probes, landers, and rovers have explored vari-
ous celestial bodies within our solar system (Pederson et al., 2015). More recently, NASA’s
announcement to put American astronauts on the Moons south pole by 2024 and establish
sustainable missions by 2028, has generated significant enthusiasm and an urge to act among
the government, industry and university research and technology development communities
(Anderson and Warner, 2019). However, future manned and robotic space exploration mis-
sions pose grand challenges. As a result, significant advances in robot capabilities are required
(Miller, 2015). For example, sustainable human exploration missions to Moon and then Mars
will be achieved by deploying supplies and equipment in a number of consecutive launch op-
portunities in advance of the crew’s arrival. These predeployed assets (habitats, supplies,
ascend vehicles, etc.) will need to be maintained over the years to ensure their availability
and functionality for the crew when they arrive to complete their scientific objectives (Drake,
2009; Craig et al., 2015; Bobskill et al., 2015; Drake et al., 2010). Because the predeployed
assets are designed to be used by astronauts, a robot in humanoid form-factor is suitable
to complete standard and emergency maintenance and support tasks that arise during the
course of the mission.

In order to better understand the challenges that need to be addressed to enable the next gen-
eration of robotic space missions and to advance the capabilities of humanoid robots, NASA
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organized the Space Robotics Challenge (SRC) in 2017 (Porter, 2017). The SRC teams com-
peted in a virtual environment to demonstrate humanoid robot competencies with mobility,
manipulation, and perception tasks on a simulated Valkyrie robot. Example tasks that the
SRC focuses on include: alignment of a communications dish, repair of a solar array, and
finding/repairing an air leak in a habitat. These are representative tasks that demonstrate
integrated mobility, manipulation and perception frameworks needed to effectively support
habitat building, maintenance, and science support operations in unknown and unexplored
environments. We provided the winners of the SRC with access to the physical hardware
after the challenge. This simulation-to-real experience has motivated the design and creation
of the dataset presented here. Many of the approaches and algorithms needed to be modified
for testing and operation on the real robot. To the best of our knowledge, there is no other
humanoid robot dataset containing proprioceptive sensor data and ground truth collected
while robot is executing atomic tasks.

Why Humanoids? As the enabling technologies mature, humanoid robots will find numer-
ous practical applications, personal assistants in the home, nursing assistants in hospitals,
first-responders in disaster relief, and as forward deployed space exploration assets. Humans
perform well in a diverse class of mobility tasks due to our form, shape and size: tasks such
as climbing, crawling, and traversing different terrains including rubble and sand. Bipedal
humanoid robots, such as Atlas by Boston Dynamics (Johnson et al., 2016), DRC-Hubo
by Korea Advanced Institute of Science & Technology (Jung et al., 2018) and Valkyrie by
NASA’s Johnson Space Center (Radford et al., 2015), have great potential to perform a
variety of complex human-like mobility and manipulation tasks, such as climbing, crawl-
ing, traversing rough terrain and reaching behind obstacles as compared to their wheeled or
tracked counterparts. This makes them suitable for deployment in cluttered and dynamic
environments that typically require making contacts with the surroundings, such as manipu-
lation inside science glove boxes; in spaces specifically designed for humans, such as habitats
to support future manned space missions; in operating human tools such as hand drills; and
utilizing human interfaces such as switches, plugs, and door handles. The trade-off, however,
is the complexity that comes with the high degrees of freedom. For example, the well-studied
2D navigation problem for a mobile robot becomes a multi-faceted research and development
effort which incorporates path planning, step-planning, balancing and locomotion control.
A bipedal humanoid robot has to maintain balance at all times.

Grand Challenges of Autonomous Humanoid Robots. Our team participated in
the 2015 DARPA Robotics Challenge Finals (DeDonato et al., 2017). The DRC Finals was
aimed at developing mobility, manipulation, perception and operator interface capabilities for
human-robot teams in a simulated disaster response scenario. In a simulated environment,
robots performed a variety of manipulation and mobility tasks under human supervision
with a 1-hour mission completion time. For greater realism, the communications between
the operator(s) and robot was degraded during parts of the mission. Figure 1 presents
snapshots from the DRC field and the operator room. The Finals demonstrated that state-
of-the-art humanoid robots are slower than humans by an order of magnitude in performing
tasks such as turning valves, using hand drills and flipping electric switches. Furthermore,
the DRC robots relied heavily on pre-scripted motions and hence lacked autonomy, a critical
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Figure 1: (Left) The Boston Dynamics Atlas robot performing the wall task during the
official DRC run. (Center) A view from the operator control room of Team WPI-CMU
)(DeDonato et al., 2017) while Atlas is performing the terrain task. (Right) NASA’s Valkyrie
is performing a simple pick task in a controlled experiment in our labs (Long et al., 2017a).

capability especially in performing tasks relevant to many application domains. We also
learned that reliability in completing tasks is prohibitively too low to make humanoid robots
practical even for a simplified set of tasks. It is also noted that there are many sources
of errors that could lead to catastrophic robot failures. These error sources include sensor
errors, controller errors, operator errors, state estimation drift, actuator limits, hardware
failures, software bugs, self-collisions, and collisions with the environment. One can argue
that many of these factors can be eliminated or predicted and corrected but uncertainties in
system dynamics and sensor data could still pose risk of failure during robot operations. As
a result, there is a tremendous need to develop new paradigms of autonomy for humanoid
robots with a tightly coupled perception and action loops for reliable, and adaptive robot
behaviors to perform tasks in dangerous, distant and daring environments.

This work is aimed at bridging research gaps in humanoid space robotics from two aspects:
(i) there is a need to design benchmarks and performance evaluation techniques for our in-
ventory of humanoid robots to collaboratively advance the field, (ii) accessibility to a full-size
bipedal humanoid robot, due to size, complexity and costs associated with acquisition, in-
frastructure, and maintenance, remains to be the limiting factor for the research community
to systematically validate new algorithms. This paper describes our methodology in creat-
ing a dataset for foundational tasks using NASA’s humanoid robot Valkyrie and aimed at
addressing the benchmarks and accessibility issues by releasing the dataset for the broader
research community.

Utilizing NASA’s humanoid robot Valkyrie, we have generated a dataset while the robot is
performing foundational locomotion (such as stepping) and manipulation (such as reaching)
tasks to enable research and development on humanoid robots to stay grounded with respect
to the realistic capabilities of the robotic platforms without access to a full-size humanoid
robot. The primary goal of the effort is taking a step towards developing methods for design-
ing benchmarks for robotics. This paper describes the hardware and software architecture of
the robot, the process for data collection, and the structure of the dataset itself. The intent
of providing this information is to help research groups, citizen scientists, and other poten-
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tial entities interested in working with humanoid robots better understand the limitations
and considerations needed to successfully transition from simulation to real hardware. Fur-
thermore, the dataset will provide the community with a resource to compare and contrast
different humanoid robots performing simple yet foundational tasks. As a result, it is a step
towards designing task-driven benchmarks.

The paper is organized as follows. Section 2 describes the design requirements, robot tasks
and motions comprising the dataset, the sensor streams recorded, the hardware and software
architecture of the robot, and motion capture system and post-processing details. Section 3
outlines the structure of the dataset, shows some sample data, and discusses potential uses
of the dataset. Finally, Section 5 concludes with closing remarks and future directions.

2 Methodology

2.1 Dataset Design Requirements

Northeastern’s NASA Valkyrie Dataset has been motivated by the SRC tasks. More specif-
ically, Qualification Task 2 (Harbaugh, 2017), described below has been used to develop a
set of requirements.

Qualification Task 2: The second task requires teams to press a button that
opens a door, and then walk through the doorway. The button will be located
on a wall and will be brightly colored and textured. R5 will start in front of
the wall. The doorway will be located next to the button, and will open when
the button is pushed.

Successful completion of the Qualification Task 2 will entail: (1)) Pushing
the button. (2) Walking through the doorway, where R5 must walk one (1)
meter beyond the door without falling.
Task 2 Qualification Scoring: Qualification score for Task 2 will be
determined by the time it takes to complete Task 2. In Task 2,
teams completing the task using less time will receive a higher score
than teams using more time.

It should be noted that SRC Qualification Task 1 requiring teams to find a series of lights
on a panel was a perception only task while Valkyrie standing in front of the panel. Hence,
it was deemed to be out of scope for the purposes of our dataset creation methodology.

Using the SRC Qualification Task 2 as a starting point, we enriched the use case by consid-
ering the placement of the door and its button in various positions and orientations within
the robot’s workspace including the case when the door is behind the robot. As a result of
this process, the following set of requirements were used to drive the design of experiments
and data collection processes. Northeastern’s NASA Valkyrie Dataset must include motion
and ground truth data while performing following atomic tasks:
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1. walking forward for at least 2 meters with a standard step size,

2. walking backwards for at least 2 meters with a standard step size,

3. turning left for 180◦ with a standard step size,

4. turning right for 180◦ with a standard step size,

5. reaching to target points while standing using both arms with a specified grid pattern
within the robot’s workspace.

It is envisioned that the existing of this set of task-based requirements can be used to generate
similar datasets for other full body humanoid robots for benchmarking of results. Moreover,
new methods validated in simulation by composing these atomic tasks can be tied to data
from the physical robot without having a direct access to the platform.

2.2 Data Contained in the Dataset

In view of the requirements presented in Section 2.1 Northeastern’s NASA Valkyrie dataset
includes data from locomotion and manipulation tasks in the following categories focused on
isolating the different functionalities and modalities available on the robot.

• Lower Body :

– Walk forward, backwards, to the left, right, and rotate

• Upper Body :

– Move torso forward, backwards, to the left, right and rotate

– Reach to target points (grid)

– Draw a figure 8

• Full Body :

– Pick and place box with both arms

The set of motions is selected to be representative of the capabilities already developed
on the robot. Table 1 presents the parameters used for each motion. Parameters were
experimentally derived to ensure that experiments could be run in both real-world and
simulation to allow for direct comparison.

Sensor data including proprioceptive data are logged internally on Valkyrie during every
run. After processing these logs, we provide the following time-synchronized data streams
in Matlab structure format:

• Robot pose estimate from the state estimator

• Joint displacements, velocities, torques
6



Table 1: Parameters used for experiments.

Motion Specs

Walk Forward/Backwards

Number of Steps: 8
Step Size: 0.25 m
Transfer Time: 1.5 sec
Swing Time: 1.5 sec
Feet Separation: 0.21 m

Side Steps Right/Left

Number of Steps: 10
Step Size: 0.15 m
Transfer Time: 1.5 sec
Swing Time: 1.5 sec
Feet Separation: 0.1 m

180 Turn Right/Left

Number of Steps: 12
Step Size: 0.15 m
Transfer Time: 1.5 sec
Swing Time: 1.5 sec
Feet Separation: 0.277 m

Pelvis Movement
Roll Range: -0.2 to 0.2 rad
Pitch Range: 0 to 0.5 rad
Yaw Range: 0.5 to -0.5 rad

Grid Right/Left
Size: 0.6 m x 0.3 m
Points: 13

Figure 8 Right/Left Size: 0.4 m x 0.4 m
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• Estimated center of pressure (CoP), center of mass (CoM), ground reaction wrenches
(force/torque)

• Pose ground truth for arms, feet, torso, and pelvis

Position and velocity ground truth for both lower and upper body tasks is provided through
an external motion tracking system recording reflective markers placed on known landmarks.
As the robot completes the tasks, the robot configuration is calculated and logged. Torque
ground truth is not directly available, but before each experiment the robot is placed in a
known configuration and gravity-compensation mode. This configuration allows any biases
present in the series-elastic actuators to be nullified.

2.3 Valkyrie Hardware and Software

Figure 2: A hardware diagram showing the location of all the sensors and joint actuators on
the Valkyrie robot. Valkyrie has a total of 44 degrees of freedom (DOF) with 6 DOF legs, 7
DOF arms, 3 DOF back, and 3 DOF neck. An additional 6 DOF are available on the fingers
in each hand.

Valkyrie, shown in Figure 2, is a 44 degree of freedom (DOF) humanoid robot originally
designed to compete in the DRC Trials in December 2013 (Radford et al., 2015). The robot
consists of 5 major mechanical sub-assemblies: two arms, two legs, and a torso. Valkyrie’s
arms and leg flanges are connected to flanges on the torso through a Marman band clamp.
The clamps have a pair of flats cut into them ensuring repeatable alignment for accurate
forward kinematics after calibration. The arms consist of a total of 7 DOF arranged in a 3
DOF shoulder, 1 DOF elbow, and 3 DOF wrist. The first 5 DOF of each arm are implemented
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through series-elastic actuators (SEA) (Paine et al., 2015) enabling the implementation of
torque control by measuring spring deflection with pre- and post-spring encoders. The 2
wrist DOF are implemented with a lead-screw on a linear guide assembly.

Each leg consists of a total of 6 DOF arranged as follows: 3 DOF hip, 1 DOF knee, and
2 DOF ankle. The first 4 DOF of each leg are also implemented with SEAs, while the
last 2 DOF are implemented with lead-screw actuators similar to the wrist. Torque control
of the ankle roll and pitch assembly is implemented with two load cells on the mechanical
linkages of the last two joints. In addition to the joint-level torque sensing, ATI Mini58
6-axis force/torque (F/T) sensors mounted in the ankles provide data to calculate wrenches
representing ground reaction forces and center of pressure (CoP). Finally, embedded in each
foot is an array of Tekscan force sensors that after a firmware update can be used in future
work for more accurate ground sensing, especially over uneven terrain.

There are 6 DOF in the torso, split between a 3 DOF back that enable the torso to rotate
and lean, and a 3 DOF neck allowing the robot to turn and tip the head. Two IMUs are
located in the torso, one near the pelvis and other near the left shoulder. Both IMUs can
be used independently or jointly to estimate the pose of the torso. Finally, two cameras in a
stereo pair arrangement are mounted in the stomach which can be used as hazard avoidance
cameras or to provide a low-angle perspective for manipulation tasks.

Valkyrie’s head consists of a Carnegie Robotics Multisense SL sensor unit combining a ro-
tating Hokuyo LIDAR and a stereo camera pair. An integrated FGPA in the Multisense
SL processes the stereo camera data and provides registered point clouds from the camera
data and LIDAR data. Integrated fully-dimmable LED lights can be used to illuminate the
scene. In addition, the LIDAR rotation speed can be varied, trading off denser point clouds
for longer scan times.

Valkyrie has two on-board computers: Link and Zelda. They are single board computers
(SBC) with Intel i7-3615QE at 2.3 Ghz paired with 16GB of DDR3 1600 and a 240GB
SSD. All of that is on a Congatec BS77 Type2 COM Express module, and the EFK XV1
carrier board provides peripherals. Both computers run Ubuntu 14.04 Server edition, and
Link, which runs the onboard low-level controllers, additionally has real-time kernel patches
to ensure controller performance. In addition, it interfaces with the Synapse drivers imple-
menting the custom LVDS Robonet protocol to communicate with the motor drivers and
sensor boards throughout the robot. In general, Link only runs the low-level controllers, and
Zelda runs any ROS nodes that are needed on the robot, including handling the Multisense
SL sensor data.

The Institute for Human Motion and Cognition (IHMC) has integrated Valkyrie’s model into
the Simulation Construction Set (SCS), the simulator built specifically for testing humanoid
walking performance and used for the DRC by Team IHMC. In addition, IHMC integrated
the walking controller used on the Atlas robot during the DRC on the Valkyrie robot (John-
son et al., 2015) (Koolen et al., 2016). The SCS simulator, along with the Valkyrie models,
is open source. Development on Gazebo support is a work in progress, lagging behind the
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performance of SCS, but allows for manipulation-based research to be conducted in simula-
tion. SCS is not structured to support simulation of dexterous manipulators, and therefore
is limited to mobility simulation. In addition, Gazebo allows the leveraging of previously
available code and approaches from the DRC. For those reasons, the SRC and our simulated
dataset uses the Gazebo simulator.

Valkyrie has a ROS master running on the Zelda computer which allows for simplified devel-
opment on the robot utilizing the standard ROS tools, messages, and services. Controllers,
such as the custom forearm controller, use the ROS control framework and can be loaded like
any other controller in ROS. Coupled with the IHMC walking controller, users can queue
footstep messages in ROS to make the robot walk, arm pose messages to control the arms
either in joint space or Cartesian space, and full body messages for control of all the joints
simultaneously. The IHMC walking controller provides relevant information for balancing
such as the ground contact forces as wrenches in the foot frame.

Sensor data are also provided through the standard ROS messages. In addition, effort
and position information is provided for each SEA joint in order to exert precise forces for
prehensile and non-prehensile manipulation. The Multisense SL data are passed through
without modification from the embedded computers and is provided in appropriate ROS
topics by the standard Multisense driver.

2.4 Ground Truth Measurement System

To obtain a ground truth measurement for the pose of the robot pelvis, feet, and arms,
we used an optical motion capture system from Qualisys (Göteborg, Sweden). The system
consisted of 12 Oqus type cameras distributed all around the robot workspace, at a height
between 2.6 and 3.5m. One camera was occluded by the robot’s safety gantry, meant to
catch the robot in case of falls. Therefore, only 11 cameras were utilized for the dataset.
This setup was nevertheless highly redundant since each marker only requires to fall within
view of 2 cameras to be recorded. At the beginning of each session of data collection, the
cameras were calibrated according to the Qualisys standard calibration procedure.

The motion capture data were recorded at 100Hz. In order to synchronize the motion capture
data with the data from the robot sensors, the motion capture acquisition was triggered by
an external analog signal (5V TTL rising edge). The signal was triggered by the operator
computer which recorded the Unix time at the start of the trial. The IHMC logger, which
logs all the internal robot state information, ran on a dedicated network attached storage
(NAS). Both the operator computer and NAS were synchronized using network time protocol
(NTP), and the recorded start time was used to calculate the time offset between the ground
truth from the motion capture system and the logged robot data in post-processing.

10



2.5 Motion Planning and Control

The GitHub repository that contains the dataset, described in detail later, also contains
the scripts used for the mobility motions. The scripts send footstep messages to the IHMC
controller to move and place the robot feet in each task. The specific details of the walking
parameters are contained in the corresponding script. For example in the forward and
backward walking motions, we utilize transfer times of 1.5 seconds, swing times of 1.5 seconds,
step sizes of 0.25 meters, and the distance between the feet is 0.21 meters. These values are
experimentally derived to work well in both simulation and on the real robot so that direct
comparisons are possible.

The manipulation motions are generated utilizing our framework which combined whole
body motion planning and control, first utilized on the Atlas robot in the DRC and now
modified onto Valkyrie. We utilize this constrained motion planning framework to generate
the trajectory for the figure 8, grid, and box pick and place manipulation motions. The
details of the approach from (Long et al., 2016; Long et al., 2017b) are summarized next for
the sake of completeness.

The framework can calculate a sequence of collision-free robot configurations efficiently by
solving a trajectory optimization problem which is constrained by the kinematics require-
ments of the task and the collision avoidance conditions. The details of the problem formu-
lation of the IK engine and the constraint setups can be found in (Long et al., 2016).

The objective of the motion planing problem, which contains a sequence of T joint con-
figurations representing motion trajectory of a K DoF humanoid robot system as decision
variables q1:T , where qt ∈ RK describes the robot joint configuration at the t-th time step,
has the following form:

f(q1:T ) =
T󰁛

t=1

((qt+1 − qt)
⊤Q1(qt+1 − qt) + (qt−

qnom)
⊤Q2(qt − qnom) +∆d(qt)

⊤Q3∆d(qt))

(1)

where Q1, Q2, Q3 ≥ 0 are weight matrices, qnom represents a nominal posture, and ∆d(qt),
ordered as [∆x(qt), ∆y(qt),∆z(qt),∆roll(qt),∆pitch(qt),∆yaw(qt)], is the Cartesian devi-
ation between a link’s pose at the robot state qt and its desired posture. These quadratic
cost terms represent penalizations of the weighted sum on the joint displacements between
the waypoints, joint configuration deviation from a nominal posture and Cartesian displace-
ment from a link frame to a desired target frame. The first term can limit the movement
of the robot and smooth the trajectory. The second term is used to push the joints to the
nominal configuration when all the constraints have been met. Similarly, the third term is
used to push links to specific positions and orientations.

Many constraints can be specified on the robot’s motion, which range from simple joint limits,
to position/orientation constraints of the robot’s links, to collision avoidance constraints,
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to constraints on keeping the horizontal projection of CoM on the support polygon. The
Cartesian posture constraint plays an important role for generating a motion solution.

A Cartesian posture constraint can be established through the following two formulations:

• Type 1 is an equality constraint which can fix the link at a specific pose:

diag(c1, c2, ..., c6)∆d(qt) = 0 (2)

where diag(c1, c2, ..., c6) is a 6x6 diagonal matrix with scaling factors from c1 to c6.
Eqn. 2 can eliminate the posture displacement. Multiplying ∆d(q) with a diagonal
matrix allows us to relax some position and orientation constraints by setting the
corresponding entry to 0.

• Type 2 is an inequality constraint which limits a link’s movement range:

Ad(qt)− b ≤ 0 (3)

where d(q) is the pose of the target link. A and b are decided by the link’s movement
range parameters. To allow the robot to grab a box with both arms while solving
motion planning problem, a kinematic reachability region for the arm placement needs
to be defined based on the dimension of the box.

aix(qt) + biy(qt) + ciz(qt) + di ≤ 0, i = 0, 1, 2, 3 (4)

where ai, bi, and ci are scalars which can be computed according to the vertex pa-
rameters of the reachability region. The yaw angle of the arm can range from θ− to
θ+. This limit can be formed as:

yaw(qt)− θ+ ≤ 0, and θ− − yaw(qt) ≤ 0 (5)

All the inequalities in (4) and (5) can be composed into the left arm inequality
constraint with the form (3).

Therefore, for implementation on the Valkyrie robot, a variety of costs and constraints need
to be set to generate a feasible motion solution. There are a number of general costs and
constraints, such as joint displacement costs using a normal standing pose as the nominal
pose, pelvis height and orientation costs, torso orientation costs, joint limit constraints,
end-effector target constraints, collision avoidance constraints, and CoM constraints.

The figure 8 and grid reaching tasks can be accomplished with Type 1 constraints, since
they require just one arm’s motion. The box pick and place requires an additional Type
2 constraint on the other arm so the arm can rotate with respect to the box while also
maintaining a clamping force in order to lift the box. The selection of the specific costs
for each task consists of starting with a known set of nominal costs, and then experimental
tuning based on multiple runs of each task.
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2.6 Data Collection and Processing

Figure 3: Positions of the reflective markers on the robot pelvis(orange), fore-
arms(yellow/purple), feet(green/cyan), and back(red). The colors correspond to the same
ones in Figure 4 which show the data from the forward walking trial.

Spherical reflective markers (12.7mm diameter) were attached to Valkyrie’s torso, feet and
arms. In all movements, 4 markers were placed on Valkyrie’s pelvis, 3 markers on each foot,
and 3 markers on each forearm. In the box pick-up movement, four additional markers were
placed on Valkyrie’s torso. Fig. 3 depicts the marker positions on the robot. All markers
were placed on unique landmarks of Valkyrie’s body so that their position in the robot frame
were accurately determined from the robot CAD model.

All markers were tracked 100% of the time, except in the box pick-up movement where one
of the pelvis marker was partly lost. However, given that four markers were placed on the
pelvis, the pelvis pose could still be determined without ambiguity.

The same procedures for data collection and processing were followed for each individual
manipulation and mobility trial. Valkyrie was suspended from a gantry placed inside the
workspace of the motion capture system. One full week was scheduled in order to conduct
the tests to allow ample time for system setup and data collection. The dataset itself was
recorded over the span of two days after all procedures were thoroughly tested and practiced.

Each motion started with the robot initialization where the robot computers are booted and
the IMUs are powered and perform their built-in bias compensation. The actuators were
then enabled, and the robot was placed in a bias compensation mode. In this mode, the
robot hangs suspended from the safety harness in a known configuration with the feet off
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the ground. The measured torques on each joint are compensated given the expected torque
due to gravity. This procedure removes any torque biases that have accumulated in the
actuators.

After the gravity compensation was performed, the robot feet were placed on the ground, and
the gains on the IHMC controller were slowly raised bringing the robot to a standing state.
At that point, the recording was ready to begin. The operator started the script that controls
the robot throughout the experiment. This script also triggered the time synchronization
system described above. While the robot performed the movement tasks, the motion capture
system logged ground truth data, and the NAS logged all robot state information. All the
scripts used to generate the movements are provided in a GitHub repository, described in
detail later.

After the experiment concluded, both the motion capture and robot logger were stopped, and
the raw data were saved for later post-processing and checked for corruption. Additionally,
the motion capture data were checked for marker visibility. If any marker disappeared for
a significant period of time, the experiment was rerun. Markers disappear for a variety of
reasons out of our control such as reflections and occlusions, but for this dataset, almost every
marker was completely visible for the entirety of the experiment. Good marker positions that
lead to good visibility throughout the experiments were determined through testing, shown
in Figure 3, and thus only a few experiments had to be rerun.

The post-processing of the data consists of five distinct steps: (i) housekeeping to get all
the different data streams together into structs, (ii) calculating the appendages world frame
positions based on the marker positions, (iii) time synchronizing the motion capture streams
and internal robot logging, (iv) finding the rotation between the motion capture world frame
and the robot’s internal world frame, and finally (v) rotating all the robot data so the ground
truth and robot data can be directly compared.

The first step is conducted by a Matlab script called preprocess data.m included in the
corresponding Github repository for the dataset. This script repacks all the robot logged
data into a struct called valkyrie and all the marker positions into a struct called mocap. In
addition, it pulls in the start time recorded by the time synchronization setup, and initializes
the Q matrices used by the Kabsch algorithm in later steps. The script is commented with
how these Q matrices change for a couple experiments as some markers on the back and pelvis
were occluded by the robot motion itself, and thus discarded for that specific experiment.

The second script, process data.m, implements the next four steps. The second step utilizes
the Kabsch algorithm (Kabsch, 1976; Kabsch, 1978) (Kabsch.m1) to calculate a ground truth
for the pelvis, right arm, left arm, right foot, and left foot robot frames. The algorithm
calculates the optimal rotation matrix between paired sets of points. In this case, the Q
matrices represent the distances between markers and the tracked robot frames. The Kabsch
algorithm calculates where the frame is based on the two distances: one from the motion
capture system, and one measured from the CAD model.

1http://www.mathworks.com/matlabcentral/fileexchange/25746-kabsch-algorithm
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The third step in the post-processing consists of time synchronizing the internal robot data
streams with the motion capture data. The IHMC logger logs the Unix time stamp as the
experiment runs, and the start time recorded. The script finds the index corresponding
to the starting time stamp in the robot logged data, and trims all data from before the
experiment was triggered. It also trims the end of the internal robot-logged data to match
the end of the motion capture data.

Once the data consist of the tracked frames and are time-synchronized, the rotation between
the robot sense of the world frame and the motion capture world frame needs to be calculated.
This allows for the evaluation of the internal robot state estimator. We utilize absor.m2

which is an implementation of Horn’s quaternion method (Horn, 1987). The algorithm
finds the optimal rotation, translation, and scaling that aligns two separate but dependent
data streams. In our case, we only utilize the optimal rotation to align the frames. The
initial bias is removed between the beginning of both data streams manually. The optimal
translation is not used, because the two data streams should start from a single point. The
optimal translation would align the two streams in order to minimize the bias between the
two streams which is not beneficial in this instance. The scaling is also discarded since it
calculates the trivial solution, an identity scaling since both data streams use the same scale.

Finally, all the internal robot data, given in the robot’s world frame, are rotated to match
the ground truth world frame using the optimal rotation calculated in the previous step.
There is a second struct that holds robot data called valkyrie dec. The struct is that same
as valkyrie with the exception that it was decimated to match the 100 Hz of the motion
capture system. The valkyrie struct has the finer grained data recorded at the nominal 500
Hz by the robot logger. Lastly, the script plots the pelvis ground truth and the robot state
estimator as a qualitative check to confirm all the rotations and fits were done well. The
next section describes the structure of the datasets in greater detail.

3 Access to Dataset and Associated Tools

3.1 Live Repository

A GitHub repository holds all the scripts used for post-processing the data, sample scripts
to visualize the dataset, and an issue tracker where questions and concerns about the dataset
are answered (https://github.com/RIVeR-Lab/neu_valkyrie_dataset/). In addition, in-
structions for accessing the dataset are included. The datasets consist of Matlab data files
named after the particular experiment run in that dataset. Once imported, each data file
will expand into 6 structs and 1 parameter.

• gt : The ground truth from the motion capture system from Kabsch algorithm (Kabsch.m)

– U : 3x3 orientation matrix of the frame

2https://www.mathworks.com/matlabcentral/fileexchange/26186-absolute-orientation-horn-

s-method
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– r : 3x1 position vector of the frame

– lrms : scalar least root mean square

• mocap: 3xn matrices holding 3D position values of n markers on each appendage

– Marker positions in world frame

• Q : 3xn matrices holding 3D position values of n markers on each appendage

– Marker position in appendage frame

• regParams : Output parameters from Horn’s method (absor.m)

– R: 3x3 rotation matrix

– t : 3x1 translation vector (not used)

– s : scalar scaling factor (not used)

– M : 4x4 homogeneous transformation matrix (not used)

• valkyrie: Robot logged data

– timestamp: Unix time

– robot time: Robot time

– cop: 2x1 center of pressure position vector

– com: 3x1 center of mass position vector

– state estimator : 3x1 robot state estimate of pelvis frame

– grf : 3x1 ground reaction force and torque vectors

– tau: scalar joint torque values

– q : scalar joint positions

– qd : scalar joint velocities

– pelvis imu: acceleromter and gyroscope data from pelvis IMU

• valkyrie dec: Robot logged data decimated to 100Hz

– Same as valkyrie

3.2 Performance Analysis for a Use Case

Motivated by the NASA Space Robotics Challenge tasks, Northeastern’s NASA Valkyrie
Dataset contains data from a rich set of atomic tasks performed by the robot. In order to
illustrate its utility we present a use case on how to obtain performance metrics for Valkyrie
from the dataset. Figure 4 depicts various plots obtained using the data from the walking
forward task. The ground truth plots corresponding to robot’s feet, arms, torso and pelvis
are sketched using the motion capture data. In addition state estimator output for the pelvis
position and orientation is included. A video corresponding to this plot is presented in the
Github repository and it demonstrates the robot motions from a data-centered perspective.
In order to evaluate the performance of the default state estimator, the state estimator error
has been calculated at the pelvis for the duration of the task. Figure 5 shows the evolution
of the Euclidean distance between the state estimator (valkyrie dec.state estimator) and the
pelvis ground truth (gt.r.pelvis) changes as the experiment progresses. Quantitatively, it is
observed that the total error reaches to≈ 55 mm at the end of the task when the robot walked
a distance of 2 m. Qualitatively it is observed that there are dynamics not well accounted
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Figure 4: A visualization of the ground truth from the forward walking trial. The ground
truth data for the pelvis (orange), forearms (yellow/purple), feet (green/cyan), and torso
(red) is shown, along with the robot state estimate (blue). The markers on the back were
only used in the box pick-up movement.

for by the state estimator during the large spikes where the most error accumulates. Future
improvements of the state estimators can be tested on the dataset, and the improvement
can be quantitatively compared to the current state of the art.

4 Lessons Learned

This data design and collection effort aimed at developing task-based benchmarks for full-
size humanoid robots provided the research team with invaluable insights. For the sake of
completeness, we present lessons learned from this effort.

General guidelines for humanoid designs can be developed through collaborative
benchmarking. Generation of datasets with the goal of achieving research benchmarks
provide significant insights into designs of robot hardware, software, and interfaces. Fos-
tering a research community centered around benchmarking with standard robot platforms
will potentially improve competencies of robot hardware through iterative design processes.

Sensor placement and selection is a critical design consideration. Through
17



Figure 5: A graph showing the accumulated position error in the robot state estimator in
the forward walking trial. The Euclidean distance between the state estimator and pelvis
ground truth is calculated and plotted as a function of time.

the Valkyrie (R5) design iterations, sensors have been both upgraded and removed to meet
the need of the software and to reduce complexity of the robot for redundant sensors. For
humanoid robots, addition of cameras at the knees, wrists and torso, as well as inertial
sensors at each limb will enable newer capabilities for benchmarking but this comes at
the cost of increased complexity. Minimalistic yet redundant sensor suites will facilitate
benchmarking without relying on an infrastructure for ground truth data collection.

Design of experiments for complex robot platforms can reveal design iterations
to hardware. Overall, Valkyrie is a capable platform for realizing generalized movements,
however, there are trade-offs that need careful attention. For example, iterations of Valkyrie
designs had different knee specs, one was faster with lower torque allowing the robot to
move and react quickly, but unable to step-up on a standard stair, while another had
increased torque with slower speeds to allow for step-up behavior, but decreased the walking
speed of the robot. These trade-off are usually discovered experimentally as the robot is
programmed to perform progressively complex tasks.

Super-human capabilities can potentially generate humanoid robot perfor-
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mance that can match human performance. Valkyrie is designed to be a generalized
humanoid platform. However, there are potentially additional design elements that could
be added to improve the platform. For example, the current iteration of Valkyrie has two
sets of “forearms” that can be manually changed. One forearm is the actual forearm with
a 3-DOF wrist and hand (with 3 fingers and a thumb) while the other is a mass simulator
that mimics the size and weight of the actual forearms, but is simply a weight with a
rubber end tip. The idea behind the mass simulators is to allow for walking testing to
be completed without the need to worry about damaging the actual forearms, but due to
the simplicity of the design and robustness of the mass simulators they can be used for
other simple operations as well that the hands are not designed for (i.e. punching a wall).
Therefore, one potential capability to add to Valkyrie is to design a way to allow the robot
to switch between the tools without the needs for physical human intervention, as well
as, identify and design more useful tools. Industrial robots benefited from this feature greatly.

There is much more to do in terms of achieving research benchmarking. Humanoid
robots provide a rich set of interactions with their environments. Humanoid robot datasets
need to be designed and generated for walking over rough or deformable terrain, tasks in-
volving multi-contacts such as climbing stairs, and tasks that require dexterous manipulation
such as repairing an instrument.

5 Conclusion

We envision that the dataset will be used by researchers who do not have access to a full-size
humanoid robot. They can better understand the realistic dynamic response of the system
performing various tasks, which is difficult to accurately simulate. In addition, the dataset
will provide a basis for comparing the Valkyrie robot and other humanoid robots. The set of
experiments are described in detail to reproduce them in future to enable direct comparison
of the performance. Finally, we envision the dataset will allow researchers to test new state
estimation and humanoid localization without physical access to a robot.
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