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ABSTRACT  7 

When computing the stress intensity factor (SIF) for high frequency loading it is important to 8 

consider dynamic effects such as inertia forces and damping. In the present study, different 9 

dynamic simulation procedures were carried out and the achieved SIF values were compared. 10 

Fast computation procedures such as modal analysis and direct steady-state analysis were 11 

compared to the computationally expensive transient dynamic analysis. Two different 12 

methods for calculating the SIF, the J-integral and the CTOD methods, were applied and 13 

compared and the results showed a near perfect agreement in calculation of the mode I SIF. 14 

The Rayleigh damping model was introduced into the dynamic computation to investigate its 15 

effect and the results revealed a clear effect on the SIF at 20 kHz frequency. 16 

The fast direct steady-state analysis showed good agreement to both modal and transient 17 

analysis with the different damping values used and is recommended as the most effective 18 

procedure. 19 

 20 
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NOMENCLATURE 24 

A  Crack area 25 

a  Crack length 26 

Ed  Dynamic elastic modulus 27 

G  Shear modulus 28 

ΔK  Stress intensity factor range 29 

KI  Mode I stress intensity factor 30 

KII  Mode II stress intensity factor 31 

KIII  Mode III stress intensity factor 32 

nj  Unit vector 33 

P  Work 34 

r  Distance to the crack tip 35 

Ti  Traction vector 36 

U  Strain energy 37 

U0  Displacement at the top surface of the specimen 38 

u  Displacement 39 

u0  Displacement magnitude 40 

ui  Displacement vector 41 

ux  Crack tip opening in mode II 42 

uy  Crack tip opening in mode I 43 

uz  Crack tip opening in mode III 44 

w  Specimen width 45 

αR  Rayleigh damping mass-proportional coefficient 46 

βR  Rayleigh damping stiffness-proportional coefficient 47 

ν  Poisson´s ratio 48 

ρ  Material density 49 

σij  Stress tensor 50 

εij  Strain tensor 51 

ω  Angular frequency 52 

ξ  Rayleigh damping factor 53 

Π  Potential energy  54 
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INTRODUCTION 55 

In crack growth rate testing, usually the Paris law is used to define a crack growth curve. For 56 

that, a relation between the stress intensity factor range (K) and the crack growth rate 57 

(da/dN) is required. While the crack growth rate is measured experimentally, the stress 58 

intensity factor (SIF) is computed analytically or numerically for a varying crack length. 59 

Crack growth testing using the ultrasonic fatigue testing system is carried out at 20 kHz load 60 

frequency, Fig. 1. A relationship between the controlling parameter of the testing system, i.e. 61 

displacement at the top of the specimen, and the mode I SIF at the crack tip in the mid-section 62 

of the specimen is required. In the present study, different computational methods were 63 

compared and a best practice is proposed. 64 

 65 

 66 

Fig. 1. Schematic figure displaying the main part of the ultrasonic fatigue testing system. 67 
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 68 

MODELLING AND COMPUTATION 69 

There are different models for calculating the SIF. In elastic-plastic fracture mechanics, 70 

mainly two models are recommended, the J-integral and the Crack Tip Opening Displacement 71 

(CTOD)–methods [1, 2]. The J-integral method is based on the accumulated strain energy 72 

while the CTOD method is based on, namely, the crack tip opening displacements close to the 73 

crack tip.  74 

When calculating the SIF for high frequencies, e.g. 20 kHz, static calculations are no longer 75 

enough. Inertia forces and damping effects are too significant to ignore at these high 76 

frequencies. Hence, dynamic analysis and simulations are highly recommended. 77 

There are different computation procedures revealing the dynamic response of a system 78 

caused by harmonic excitation. Transient dynamic analysis, harmonic analysis and direct 79 

steady-state dynamic analysis are the different simulation procedures used and compared in 80 

this study. 81 

Transient dynamic analysis 82 

Discretisation of time yields a set of linear equations describing the response within each time 83 

increment. Such analysis starts with an unstable oscillation and converges to a steady 84 

oscillation. The time, or number of cycles required to pass the non-periodic transients and 85 

reach steady oscillation depends on material damping, with increased sensitivity at low 86 

damping coefficient [3]. The normalized SIF range variation during the first 20 simulated 87 

cycles is larger using smaller damping as demonstrated using three different values of 88 

damping, Fig. 2. 89 

 90 
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Fig. 2. Normalized KI during the first 20 cycles in transient dynamic analysis using three 91 

different values of the Rayleigh damping stiffness proportional coefficient. Calculated in the 92 

present study with a/w=0.29 and 20 kHz, for a) bar specimen, and b) sheet specimen. 93 

 94 

In a previous study [4], a transient dynamic analysis has been described where the J-integral 95 

and thereby the SIF at a crack in a FCP bar specimen (Fig. 4a) has been computed. In [5-7] 96 

the same simulation procedure (transient dynamic) has been used to conduct stress-strain 97 

analysis in 20 kHz fatigue strength hour glass specimens. Such analysis is computationally 98 

expensive, especially when small values of material damping are used, and a large number of 99 

cycles is required to pass the transients and reach the steady state oscillation. 100 

Harmonic modal analysis 101 

While transient analysis is computationally expensive, harmonic modal analysis is a very 102 

cheap procedure. The analysis calculates the shape mode of the model at specific resonance 103 

frequencies in specific modes, i.e. modal analysis [2, 3, 8], and the computation procedure 104 

considers elastic material behaviour and does not take the damping into account. However, 105 

this simulation method can potentially eliminate large computational time consumption and 106 

hence is investigated in this study. The J-integral is not computed in a modal analysis hence 107 

the SIF is computed with the CTOD method. The simulation procedure has been used in some 108 

studies [9-12] to compute the SIF for crack growth rate analysis on some alloyed metals. 109 

Direct steady-state dynamic analysis 110 

Direct steady-state dynamic analysis is a linear perturbation procedure used to calculate the 111 

steady-state response of a system under a harmonic excitation at a prescribed range of 112 

frequencies. Conveniently, the frequency range is chosen to cover the desired resonance 113 

frequency computed in a preceded modal analysis (frequency extraction analysis). The 114 

response is calculated in terms of physical degrees of freedom using the mass, damping and 115 

stiffness matrixes. The commercial FEM software Abaqus offers two others, computationally 116 

cheaper, procedures for the calculation of the steady-state response; mode-based and 117 

subspace-based steady-state dynamics. However, the direct steady-state dynamic analysis is 118 

more accurate when frequency dependent damping (i.e. Rayleigh damping) is present [3].  119 

The FEM software Abaqus yields the real part, imaginary part, magnitude and the phase angle 120 

of the solution. As in the transient analysis, when using damping, a phase shift exists in the 121 

oscillation of the model and increases as the distance to the region of the applied displacement 122 
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increases. In the direct steady-state analysis the phase shift is considered, and the maximum 123 

values are calculated according to Equation 1. 124 

𝑢 = 𝑢0 cos (𝜔𝑡 + 𝛼)         [1] 125 

where u0 and α are the computed magnitude and phase angle, respectively, and ω is the 126 

angular frequency. 127 

A direct steady-state method is explained in [13] where a simple model, Fig. 3, has been 128 

analysed. The steady-state solution of the same has also been computed by transient dynamic 129 

analysis and with a perfect match to the direct steady-state analysis. 130 

 131 

 132 

Fig. 3. Elastic-viscoplastic model with two mass points and a periodic force F=f(t). 133 

 134 

Static analysis 135 

In many instances, the stress intensity is calculated without taking into account the dynamic 136 

conditions, i.e. a static analysis is applied, for simplicity of the analysis. However, at higher 137 

load frequencies there are discrepancies needed to be recognized. In static simulations the 138 

load is ramped up to a chosen stress level and held constant. No oscillation is applied and the 139 

dynamic effects (inertia forces) are not considered [3]. In such analysis, the SIF can be 140 

calculated using both the J-integral and the CTOD methods. 141 

Objectives 142 

The objectives of the present study are to acquire more knowledge regarding the effects of 143 

specimen geometries (bar and sheet), methods of calculation (J-integral and CTOD) and 144 

simulation procedure on the stress intensity range ΔK. Furthermore, a best practice for 145 

computing the SIF at 20 kHz loading frequency is discussed. 146 
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 147 

MATERIALS AND SIMULATIONS CHARACTERISTICS 148 

Two specimen geometries, bar and sheet, were considered in this study, Fig. 4. The 149 

mechanical characteristics used in the simulations are typical for steels: Ed=210 GPa,  =0.3 150 

and =7800 kg/m3. The Rayleigh damping model, Equation 2, is implemented in the FEM 151 

software Abaqus and was conveniently used in all simulations [14]. 152 

𝜉 =
𝛼𝑅

2𝜔
+

𝛽𝑅𝜔

2
          [2] 153 

where ω is the angular frequency and αR and βR are the mass- and stiffness proportional 154 

damping coefficients, respectively. At high frequencies (e.g. 20 kHz), the mass proportional 155 

damping is insignificant, and the stiffness proportional damping becomes the dominant part of 156 

the Rayleigh damping. 157 

 158 

 159 

Fig. 4. 20 kHz FCP specimen: a) bar specimen and b) sheet specimen. 160 
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When using complicated specimen geometry (i.e. varying cross-sections, notches etc.) FEM 162 

software are conveniently used in particular when including the dynamic effects into the 163 

calculations. In this study, the FEM software Abaqus was used to compute the SIF for the two 164 

different specimen geometries using both the J-integral and CTOD methods.  165 

For the simulations a ½ symmetry 3D-model was used for both specimen geometries, and the 166 

horn was included, see Fig. 5. As mentioned earlier, a previous study [4] has presented a best 167 

practice method where the whole load train has been included (specimen, horn and oscillator) 168 

into the simulated 3D-model. However, for the sake of minimizing the number of degrees of 169 

freedom, the oscillator was removed from the present simulation procedure as it is a 170 

comparative study. 171 

A hexagonal focused mesh around the crack tip (Fig. 6) and a tetrahedral mesh for the rest of 172 

the model was used in all simulations. Two different sets of crack lengths were chosen for the 173 

two specimen geometries to be simulated for every variation in the simulation model. 174 

 175 
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 176 

Fig. 5. The ½ symmetry 3D-models of the a) bar, and b) sheet specimens, and including the 177 

horn. 178 

 179 

The focused mesh around the crack tip contains 8 contours. The 8 nodes on the crack lip, at 180 

the middle in the thickness direction and at the 8 contours, Fig. 6, were used to extract both 181 

the J-integral values and the displacement values used in the CTOD method. 182 

 183 
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 184 

Fig. 6. Focused hexagonal mesh around the crack tip containing 8 contours, a) closed, and b) 185 

open crack in the sheet specimen. 186 

 187 

In the transient analysis, a harmonic excitation was applied as a sinusoidal displacement 188 

(u=4µm) to the top surface of the horn at the chosen frequency. The horn has a magnification 189 

factor of 2½ increasing the sinusoidal displacement to approximately u=10µm at the top of 190 

the specimen. 191 

The simulations were run for 0.001 seconds enough for 20 cycles. Physical, elastic and 192 

damping properties were input to the analysis. The SIF in all three modes (KI, KII and KIII) 193 

were automatically computed by Abaqus using the J-integral method. For the CTOD method 194 

however, the displacements in all three directions (ux, uy and uz) at the eight mentioned nodes 195 

(red nodes in Fig. 6) were plotted and used to calculate and extrapolate KI, KII and KIII at the 196 

crack tip, as in Fig. 8.  197 

For the modal analysis, only physical and elastic properties were used since the damping is 198 

not considered in such analysis. The outcome of this analysis is the modal shape of the 199 

system, including horn and oscillator, at the found resonance frequency. The modal shape 200 

reveals the normalized displacement of all nodes in the model. The displacements at the 201 

specimen top surface and the nodes at the crack lips are extracted and used to compute the SIF 202 

with the CTOD method. 203 

The direct steady-state dynamic analysis requires, as the transient analysis does, physical, 204 

elastic and damping properties. The range of frequency was specified to cover the desired 205 

frequency, and a displacement amplitude was applied to the horn top surface, u=4µm. The 206 

results of this analysis reveal, similarly to the modal analysis, the displacements of all nodes 207 

in the model including the CTOD´s. 208 

a) b)
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The resonance frequency of the system will decrease as the crack length increases due to 209 

change in specimen compliance. For the direct steady-state analysis, the crack length specific 210 

harmonic modal frequency was used. For the transient dynamic analysis, both the harmonic 211 

modal frequencies and experimentally measured frequencies at the individual crack lengths 212 

were used. For the bar specimen, the experimental frequencies were measured in the present 213 

study while the experimental frequencies for the sheet specimen were provided by 214 

collaborative researchers at Université Paris Ouest (UPO) [12]. 215 

 216 

COMPUTATION OF THE STRESS INTENSITY FACTOR 217 

The SIF for a varying crack length is achieved by interpolation of computed KI for several 218 

specific crack lengths. In [4], in relation to static simulation, a clear increase in the computed 219 

KI was shown when using a dynamic simulation including the frequency and damping effect.  220 

For elastic-plastic materials with non-linear material deformation in a large region around the 221 

crack tip, the Linear Elastic Fracture Mechanics (LEFM) is no longer valid. Hence the 222 

development of an alternative model, the Elastic-Plastic Fracture Mechanics (EPFM) model, 223 

taking the plastic deformation into account [1]. The J-integral and the CTOD are two 224 

parameters describing crack tip conditions in elastic-plastic materials. 225 

The experimental testing at 20 kHz with the ultrasonic fatigue system is a displacement 226 

controlled testing procedure run according to Equation 3. The displacement of the top surface 227 

of the specimen (U0) is the controlled amplitude during testing [2]. 228 

𝐾𝐼 =
𝐸𝑑

1−𝜈2  𝑈0 √
𝜋

𝑎
 𝑓(𝑎/𝑤)        [3] 229 

where Ed and ν are the elastic Young´s modulus and Poisson’s ratio, respectively. a is the 230 

crack length and the function f(a/w) is the dimensionless shape function to be calibrated. 231 

From Equation 3 it is seen that the effects of U0, Ed and ν on the SIF are simple and clear. 232 

However, there are more material properties involved in this computation, e.g. density and 233 

damping. These two properties are embedded in the shape function, f(a/w). 234 

For the sake of comparison, the computed KI in Fig, 9-11 with the different simulation 235 

procedures are all corresponding to when U0=1 µm. 236 
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Calculating ΔK using the J-integral method 237 

The J-integral is equivalent to the energy release rate in a body containing a crack. It relates 238 

the change in the potential energy to the crack growth, Equation 4 [1]. 239 

𝐽 = −
𝑑Π

𝑑𝐴
          [4] 240 

where A is the crack area and Π is the potential energy defined as: 241 

Π = 𝑈 − 𝑃          [5] 242 

where U is the strain energy and P is the work done by external forces. 243 

The J-integral for an arbitrary counter-clockwise path Γ around the crack tip is written as: 244 

𝐽 = ∫ (𝑊 𝑑𝑦 − 𝑇𝑖
𝜕𝑢𝑖

𝜕𝑥
 𝑑𝑠)

Γ
        [6] 245 

where W is the strain energy density given by: 246 

𝑊 = ∫ 𝜎𝑖𝑗𝑑𝜀𝑖𝑗
𝜀𝑖𝑗

0
         [7] 247 

where σij and εij are the stress and strain tensors, respectively. Ti (Equation 8) and ui are the 248 

components of the traction vector and the displacement vector, respectively, and ds is a length 249 

increment along the path Γ. 250 

𝑇𝑖 = 𝜎𝑖𝑗𝑛𝑗          [8] 251 

where nj are the components of the unit vector normal to the path Γ. 252 

The SIF´s are extracted from the computed J-integral with Equation 9: 253 

𝐽 =
1

8𝜋
𝐾̅𝑇 ∗ 𝐵̅−1 ∗ 𝐾̅         [9] 254 

where 255 

𝐾̅ = ⌈𝐾𝐼 , 𝐾𝐼𝐼 , 𝐾𝐼𝐼𝐼⌉𝑇         [10] 256 

and B̅ is the pre-logarithmic energy factor matrix, the diagonal for homogeneous and isotropic 257 

materials [3]. 258 

  259 
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Calculating ΔK using the CTOD-method 260 

The crack tip blunting is assumed proportional to the fracture toughness of the material and 261 

hence it can be estimated by the measurement of the displacement of the crack surfaces, i.e. 262 

the CTOD-parameter, see Fig. 7. The SIF´s in mode I, mode II and mode III fracture at the 263 

crack lip at a distance r from the crack tip are computed according to Equations 11-13 [1]. 264 

 265 

 266 

 267 

Fig. 7. Crack tip opening with a) crack tip blunting, and b) the effective crack length 268 

including the Irwin plastic zone correction [1]. 269 

 270 

𝑢𝑦 =
𝜅+1

2𝐺
𝐾𝐼√

𝑟

2𝜋
          [11] 271 

𝑢𝑥 =
𝜅+1

2𝐺
𝐾𝐼𝐼√

𝑟

2𝜋
          [12] 272 

𝑢𝑧 =
2

𝐺
𝐾𝐼𝐼𝐼√

𝑟

2𝜋
          [13] 273 

where G is the shear modulus and κ = (3-4ν) for plane strain and 3D-models [1]. 274 

The CTOD´s (uy, ux and uz) are measured at several positions near the crack tip and the SIF ´s 275 

at the crack tip are estimated by linear extrapolation, as illustrated in Fig. 8. 276 

 277 
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 278 

Fig. 8. Linear extrapolation of computed ΔK [12, 15]. 279 

 280 

RESULTS 281 

Multiple series of simulations using the different simulation procedures, computation methods 282 

and frequencies were conducted on both specimen geometries. The results show a clear 283 

agreement between the two different computation models, the J-integral and the CTOD. Both 284 

the KI by the J-integral and KI by the CTOD method are acquired from the exact same 285 

simulations. Transient dynamic analysis was performed using experimental frequencies 286 

measured at each actual crack length, and where the experimental frequency decreases, from 287 

20 kHz to 19.5 kHz, with advancing crack length due to loss in specimen stiffness. Then, the 288 

stress intensity in the bar specimen increases significantly with crack length a/w, while in the 289 

sheet specimen the increase is not as large, Fig. 9. All the same, the stress intensities 290 

computed by J-integral and CTOD methods agree perfectly. 291 

 292 

 293 
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 294 

Fig. 9. KI-values corresponding to U0=1µm plotted against a/w (where a is the crack length 295 

and w is the specimen width) using J-integral and CTOD methods and bar and sheet 296 

specimen geometries. Transient dynamic analysis and damping values αR=0.1 and βR=10-6 297 

was used. 298 

 299 

The static analysis results in significantly lower stress intensities than the dynamic analysis, 300 

Fig. 10. However, the agreement between the J-integral and the CTOD methods was found 301 

even when computing by static simulations, as shown in Fig. 10. 302 

 303 

 304 

Fig. 10. KI-values corresponding to U0=1µm plotted against a/w (where a is the crack length 305 

and w is the specimen width) using J-integral and CTOD methods in static and transient 306 

dynamic analysis of the bar specimen. Damping values αR=0.1 and βR=10-6 was used for the 307 

transient dynamic analysis. 308 
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 309 

Regarding the difference between the static and transient dynamic analysis, it is in agreement 310 

with results achieved in previous work [4] using the J-integral method where the static 311 

simulations showed KI-values approximately 30% lower than dynamic transient simulations. 312 

In this work the same was computed with the CTOD method and the agreement between the 313 

two methods is again clear. 314 

The results showed a clear difference between the SIF´s computed with transient dynamic 315 

analysis with Rayleigh damping coefficients αR=0.1 and βR=10-6 and the SIF´s computed with 316 

undamped harmonic modal analysis, using the same 3D-model and boundary conditions. The 317 

two transient dynamic analysis using two different frequency sets, experimentally measured 318 

and harmonic frequencies obtained by harmonic modal analysis, showed near perfect 319 

agreement. The difference between the two types of analysis, undamped harmonic modal and 320 

damped transient dynamic analysis, had opposite effect on the two specimen types. The SIF´s 321 

from the modal analysis appears higher than from the transient analysis for the bar specimen 322 

but lower for the sheet specimen, Fig. 11. 323 

 324 



18 
 

 325 

Fig. 11. KI-values corresponding to U0=1µm plotted against a/w for bar and sheet specimens 326 

computed by the CTOD method with transient, modal and direct steady-state (DSS) analysis 327 

with different damping values. 328 

 329 

The SIF´s were also computed using the direct steady-state simulation procedure. Here three 330 

different values of damping were used, undamped (αR=0 and βR=0), an experimentally 331 

measured value (αR=0.1 and βR=1.3*10-9) and the same values as used in the transient 332 

analysis (αR=0.1 and βR=10-6). The effect of the small damping value (αR=0.1 and βR=1.3*10-333 

9) proofed to be negligible as the computed KI-values coincides with those computed with the 334 

undamped (αR=0 and βR=0) analysis. The higher damping value (αR=0.1 and βR=10-6) 335 

however, showed a clear effect and the computed KI-values were in good agreement with 336 

those from the transient analysis (with the same damping values). 337 

The mixed mode SIF´s, corresponding to approximately 10µm specimen top displacement, 338 

are plotted in Fig. 12. KI, KII and KIII are all computed with the two different methods, J-339 

integral and CTOD, for a series of crack lengths. The simulation procedure used was transient 340 
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dynamic analysis and Rayleigh damping coefficients αR=0.1 and βR=10-6. The values 341 

computed using the J-integral method showed that for relatively short cracks (up to 20% of 342 

the specimen width) KII and KIII were essentially non-existent. However, as the crack grows 343 

longer KII and KIII starts to elevate to significantly high values (KIII to higher values than KII). 344 

The CTOD method showed identical results regarding the KI and KII values. However, since 345 

there is no displacement in the mode III direction (i.e. uz = 0), the CTOD method (Equation 346 

13) gives KIII = 0. 347 

 348 

 

a) 

 

b) 

Fig. 12. KI, KII and KIII computed with the two different methods, J-integral and CTOD using 349 

transient dynamic analysis with αR=0.1 and βR=10-6 and U0=10µm. a) Bar and b) sheet 350 

specimen. 351 

 352 

DISCUSSIONS 353 

According to [1], elastic-plastic fracture mechanics (EPFM) is required when large plastic 354 

zone are surrounding the crack tip. Two different methods, the J-integral and the CTOD, are 355 

recommended for the computation of the SIF in elastic-plastic materials. Both models were 356 

used in this study and the results show a clear agreement between the two. The J-integral is 357 

more practical and is here recommended when using transient dynamic analysis since the SIF 358 

values are computed directly by the FEM software and are easily extracted. The CTOD-359 

method is a bit more tedious to process. The displacements of the 16 crack lip nodes (red 360 

nodes in Fig. 6) are extracted and then extrapolated to calculate the SIF´s at the crack tip. 361 

However, it is not possible to acquire J-integral values from a modal or a direct steady-state 362 

analysis, hence the CTOD method is the recommended option when such simulation 363 

procedures are used. 364 
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The required fine mesh of the 3D-models used in this study yields a large number of degrees 365 

of freedom (DOF), 1±0.2*106 DOF´s, and increases the computation effort for the 366 

simulations. Consequently, running transient dynamic analysis for more than 20 cycles in 367 

many series was considered too computationally expensive. It makes it difficult to extract 368 

qualitative results when using very small damping values, i.e. when the Rayleigh stiffness 369 

proportional damping coefficient βR<10-6. As shown in Fig. 2, the transient simulations reach 370 

a near steady-state oscillation during the first 20 cycles for βR≥10-6 while for the βR=10-8 371 

significant distortion is present throughout. 372 

The average of the last 8 cycles (of 20 total) from βR=10-6 transient analysis is compared to 373 

the direct steady-state analysis with the same damping values, Fig. 11. The comparison shows 374 

good agreement for both specimen shapes. The βR=0 and the βR=1.3*10-9 analysis are, as 375 

expected, in good agreement to the undamped modal analysis. The result of the modal 376 

analysis in this study were similar to results where the same analysis type and sheet specimen 377 

shape have been used [12]. 378 

Opposite to the bar specimen, the sheet specimen increased in KI when βR=10-6 was used 379 

compared to when the lower βR=0 or βR=1.3*10-9 damping values were used. However, it is 380 

clear that the βR=10-6 damping value effects the results, and that the effect varies with the 381 

crack length (i.e. a/w). A transient dynamic analysis with an undamped (αR=0 and βR=0) 382 

specimen and damped horn (αR=0.1 and βR=10-6) was also carried out. The results from this 383 

analysis came closer to the modal and the undamped direct steady-state analysis. This 384 

confirms the effect of the damping on the computed KI values, Fig. 11. 385 

The comparison of KI-values calculated with different damping values are based on finding 386 

the maximum KI-values during one load cycle. But as damping introduces a phase shift, the 387 

maximum KI-values will occur at different phase angles depending on the damping condition 388 

and increases with the distance from the applied displacement region. Therefore, the phase 389 

shift effect by damping was considered in both the transient and direct steady-state analyses 390 

and evaluation of the results. Examples and discussion on the matter follows below. 391 

The applied harmonic displacement, the displacement at the specimen top and the KI–value at 392 

the specimen mid-section crack tip, are displayed during cycle 20 of the transient analysis, 393 

Fig. 13. The evident phase shift in both specimen types, but the effect of the damping on the 394 

phase shift is more significant on the sheet specimen. 395 

 396 
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a) 

 

b) 

Fig. 13. U0, displacement of the top surface of the horn (i.e. applied harmonic displacement) 397 

and KI corresponding to U0=1µm plotted against time for a) bar and b) sheet specimen at 398 

(a/w=0.33). Transient dynamic analysis, J-integral method and βR=10-6 damping were used. 399 

 400 

Thus, when extracting the relationship between the KI and the specimen top displacement 401 

from the transient analysis, the maximum peak value is used from both the KI and specimen 402 

top displacement curves in Fig. 13. 403 

In the direct steady-state analysis, however, it is a bit trickier to consider the phase shift. Here, 404 

the magnitude and the phase angle of the 8 pair of nodes at the crack lips close to the tip, i.e. 405 

red nodes in Fig. 6, are extracted from the FEM software to calculate the maximum values 406 

according to Equation 1. The distance between the upper and lower nodes is plotted according 407 

to Equation 14 for all 8 pairs. 408 

𝑢 = 𝑢𝑢𝑝𝑝𝑒𝑟 𝑛𝑜𝑑𝑒 − 𝑢𝑙𝑜𝑤𝑒𝑟 𝑛𝑜𝑑𝑒   409 

= {𝑢0 cos(𝜔𝑡 + 𝛼)}𝑢𝑝𝑝𝑒𝑟 𝑛𝑜𝑑𝑒 − {𝑢0 cos(𝜔𝑡 + 𝛼)}𝑙𝑜𝑤𝑒𝑟 𝑛𝑜𝑑𝑒  [14] 410 

The maximum values of this distance (u/2 curves in Fig. 14) are extracted and used to 411 

calculate KI by the CTOD-method at the 8 contours, and then extrapolate KI to the crack tip 412 

according to Fig. 8. The maximum displacement value of the specimen top surface is also 413 

calculated, according to Equation 1, using the u0 and α parameters determined from the 414 

analysis. 415 

 416 
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a) 

 

b) 

Fig. 14. Displacements of upper and lower node of the first pair plotted together with 417 

distance between them according to Equation 14 for a) bar, and b) sheet specimen at 418 

a/w=0.33. Direct steady-state analysis, CTOD-method and βR=10-6 were used. 419 

 420 

The results imply that when using the same argument during the evaluation of the results, the 421 

direct steady-state analysis yields the same results as a converged transient analysis. In the 422 

present study, the maximum KI values were extracted and normalized against the maximum 423 

displacement value at the specimen top under the same cycle. The same procedure was carried 424 

out when evaluating the results from both transient and direct steady-state simulation 425 

procedures, hence the perfect match displayed in Fig. 11. A good agreement between the two 426 

different computation procedures have been proofed earlier for a very simple model of 427 

mechanical vibrations of the stator in an electrical machine [13]. The size of the model in the 428 

present study was scaled up and included a vast amount of DOF´s, still, two computation 429 

procedures are in good agreement. 430 

The multi fracture mode analysis revealed partly expected and partly unexplainable results. 431 

The analysis mainly aimed to investigate the KII and KIII computation by the two different 432 

computation methods, J-integral and CTOD. The computation of the mode I and mode II 433 

SIF´s yielded the same results using the two different methods, as seen in Fig. 12. In mode III 434 

SIF, however, the two methods ended up with mismatching results. Given the load mode and 435 

boundary conditions used, any crack tip opening displacements in the mode III direction are 436 

not expected. Consistent to this, it is confirmed by the CTOD method where the extracted uz 437 

magnitudes (Equation 13) are zero. Contradictory, the J-integral method resulted in non-zero 438 

values of the KIII. In fact, they are significantly high, even higher than the KII-values. The 439 

results are found questionable and yet to be explained. Hence, further investigation is required 440 
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on that the J-integral method yields non-zero KIII values, since this is an obvious anomaly 441 

here. 442 

Finally, regarding the best practice for computing the SIF at 20 kHz loading frequency, the 443 

direct steady-state dynamic simulation procedure is recommended. A summary of KI-values 444 

corresponding to U0=1µm at a/w=0.33 computed with the different simulation procedures 445 

carried out in the present study, are presented in Table 1. Clearly, the direct steady-state 446 

analysis yields consistent results when comparing to the undamped modal and the damped 447 

transient analysis. 448 

 449 

Table 1. Summary of KI [MPa√m] values corresponding to U0=1µm at a/w=0.33 computed 450 

with the different simulation procedures, and using the CTOD-method. 451 

 
Bar Sheet 

βR=0 βR=1.3*10-9 βR=10-6 βR=0 βR=1.3*10-9 βR=10-6 

Modal analysis 2.1   0.58   

Transient analysis   1.78   0.74 

Direct steady-state 

analysis 

2.1 2.1 1.78 0.59 0.59 0.71 

 452 

A best practice for computing the SIF at 20 kHz loading frequency was presented in a 453 

previous study [4], and proposed a transient dynamic analysis of the whole ultrasonic system 454 

load train (specimen, horn and oscillator) at the effective natural frequency ω0, Equation 15, 455 

introduced by [16] taking into account the effect of a breathing crack on the eigenfrequency. 456 

𝜔0 =
2𝜔1𝜔2

𝜔1+𝜔2
          [15] 457 

where ω1 and ω2 are the eigenfrequencies of an un-cracked and crack specimen, respectively. 458 

Presently, the best practice is updated by recommending the direct steady-state dynamic 459 

analysis for the computation of the SIF, instead of the computationally expensive transient 460 

analysis. The remainder of the recommendations are the same. 461 

As previously mentioned, the direct steady-state analysis does not include computation of the 462 

J-integral. Hence, the SIF computation performed with the CTOD-method proofed tedious 463 
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and time consuming during the work of this study. However, there is room for development of 464 

the computer software to improve the data evaluation process required for the CTOD-method. 465 

 466 

CONCLUSIONS  467 

The stress intensity factor for fatigue crack growth testing at 20 kHz loading frequency was 468 

successfully computed with several different simulation procedures; modal analysis, transient 469 

dynamic analysis and direct steady-state dynamic analysis. Furthermore, two different 470 

methods for evaluation of the stress intensity factor, J-integral and CTOD method, were used. 471 

An existing best practice for the stress intensity factor computation at 20 kHz was improved 472 

and the required computational cost was reduced significantly as of the results of this study. 473 

 The two stress intensity computational methods, J-integral and CTOD, showed 474 

perfectly good agreement in computing the KI in both specimen types and with 475 

different simulation procedures. 476 

 Implementing damping into the dynamic simulations clearly affects the results. The 477 

effect is opposite in the two bar and sheet specimen types. A decrease in the computed 478 

KI-value is noticed when using damping in the bar specimen and an increase in the 479 

sheet specimen. 480 

 The different simulation procedures showed matching results with the different 481 

damping values used. 482 

 The direct steady-state dynamic analysis procedure is hereinafter recommended as the 483 

most effective procedure computing the stress intensity factor at 20 kHz loading 484 

frequency with the damping taken into consideration. 485 
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