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Abstract

A2-dimension linguistic lattice implication algebra (2DL-LIA) can build a bridge for
logical algebra and 2-dimension fuzzy linguistic information. In this paper, the notion
of a Boolean element is proposed in a 2DL-LIA and some properties of Boolean
elements are discussed. Then derivations on 2DL-LIAs are introduced and the related
properties of derivations are investigated. Moreover, it proves that the derivations on
2DL-LIAs can be constructed by Boolean elements.
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1 INTRODUCTION

In real life, human’s intelligent activities are often associated with fuzziness and incomparability. As two kinds of uncertainty37,
fuzziness and incomparability exist not only in the processed object itself, but also in the course of the object being dealt with.
Lattice-valued logic, as an important non-classical logic, has been extensively studied to establish the logical foundation for
uncertainty inference32,33,34,35. Accordingly, in order to provide algebraic semantics with lattice-valued logic, Xu et al.35 pro-
posed the concept of lattice implication algebras (LIAs). By using of the algebraic structures of LIAs, we can describe the
relationships between uncertain information, especially for incomparable relationships. A lot of literatures14,15,17,47,48 have been
researched algebraic structures and properties of LIAs. Meanwhile, LIAs have been extended to lattice implication ordered semi-
groups25, residuated lattices13, linguistic truth-valued intuitionistic fuzzy lattices50, linguistic truth-valued lattice implication
algebras (L-LIAs)36 and 2-dimension linguistic lattice implication algebras (2DL-LIAs)46.
Zadeh39 put forward the notion of fuzzy linguistic information, which usually takes as a tool for describing qualitative

attributes such as low, medium and high. For precisely representing fuzzy linguistic information, Zhu et al.49 proposed the con-
cept of 2-dimension fuzzy linguistic information. The 2-dimension fuzzy linguistic information includes two common linguistic
labels: one describes the evaluation result of alternatives, the other describes the self-assessment of the decision maker on the
reliability of the given evaluation result. Further, aiming to precisely describe the relationships between 2-dimension fuzzy lin-
guistic information, especially for incomparable relationship, Zhu et al.46 gave the notion of a 2-dimension linguistic lattice
implication algebra (2DL-LIA). Under the structure of 2DL-LIA, some important decision making methods are proposed to
deal with 2-dimension linguistic information45,42,43. A 2DL-LIA has not only the features of logical algebra but also the features
of evaluation sets for fuzzy linguistic information. Therefore, it can build a bridge for logical algebras and 2-dimension fuzzy
linguistic information.
The notion of derivation, which comes from the analytic theory, is also helpful for investigating algebraic structures and prop-

erties of various kinds of algebras. The derivation in a prime ring (R; +, ⋅) has been proposed by Posner26, which is a mapping
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d ∶ R → R such that two conditions (1) d(x + y) = d(x) + d(y) and (2) d(x ⋅ y) = d(x) ⋅ y + x ⋅ d(y) for all x, y ∈ R.
After that, derivations on rings and near rings have been investigated by many researchers3,8,9,23,29. In 2004, derivations on
BCI-algebras have been introduced by Jun et al.18 and further studied in1,12,21,22,24,40. Besides, derivations on regular algebras4,
derivations onCSL-algebras41, derivations on f -algebras19, derivations on basic algebras20, derivations on LIAs48 and deriva-
tions on L-LIAs44 have been studied by different researchers. Moreover, derivations on lattices have been discussed in6,28,30,31.
Furthermore, derivations onMV -algebras and GMV -algebras have been investigated in2,7,27,38. Especially, a derivation on a
residuated lattice (L,∧,∨, ⊙,→, 0, 1) is proposed by He et al.10, which is a mapping d ∶ L → L satisfying the conditions
d(x ⊙ y) = (d(x)⊙ y) ∨ (x ⊙ d(y)) for all x, y ∈ L.
Inspired by the above-mentioned work, especially by derivations on rings26 and derivations on residuated lattices10, deriva-

tions on 2DL-LIAs are proposed in this paper. This paper is organized as follows: Section 2 reviews some basic concepts about
LIAs and 2DL-LIAs. In Section 3, a Boolean element is proposed in a 2DL-LIA, and then some properties of Boolean elements
are investigated. Section 4 introduces derivations on 2DL-LIAs and discusses some properties of derivations. The conclusions
are drawn in Section 5.

2 PRELIMINARIES

This section gives some results about lattice implication algebras (LIAs) and 2-dimension linguistic lattice implication algebras
(2DL-LIAs).

2.1 Lattice implication algebras (LIAs)
For a lattice implication algebra (LIA)35, we mean a bounded lattice (L,∨,∧, 0, 1) with order-reversing involution ′, in which 0
and 1 are the smallest and the greatest element of L respectively, and a binary operation→ satisfying the following axioms:
(I1) x→ (y→ z) = y→ (x→ z);
(I2) x→ x = 1;
(I3) x→ y = y′ → x′;
(I4) if x→ y = y→ x = 1, then x = y;
(I5) (x→ y) → y = (y→ x) → x;
(L1) (x ∨ y) → z = (x→ z) ∧ (y→ z);
(L2) (x ∧ y) → z = (x→ z) ∨ (y→ z);
for all x, y, z ∈ L.
A LIA L is called a latticeH implication algebra (LHIA), if for all x, y, z ∈ L, x ∨ y ∨ ((x ∧ y) → z) = 1.
A lattice implication homomorphism is a mapping f ∶ L1 → L2 from LIAs L1 to L2, for any x, y ∈ L1,

f (x→ y) = f (x) → f (y),
f (x ∨ y) = f (x) ∨ f (y),
f (x ∧ y) = f (x) ∧ f (y),
f (x′) = (f (x))′.

Let L be a LIA, the binary operators⊗ and⊕ are defined as follows: for all x, y ∈ L,

x ⊗ y = (x→ y′)′, x ⊕ y = x′ → y.

Theorem 1. Let L be a LIA, then L is a LHIA if and only if for all x ∈ L, x ⊕ x = x, x ⊗ x = x.

Example 2.1. (Łukasiewicz implication algebra on a finite chain Ln)35. Let L be a finite chain, L = {ai|i = 1, 2,⋯ , n} and
0 = a1 ≤ a2 ≤⋯ ≤ an = 1, for any ai, aj ∈ L, define operations ∨,∧,→ and ′ as follows:

ai ∨ aj = amax{i,j},
ai ∧ aj = amin{i,j},
ai → aj = amin{n−i+j,n},

(ai)′ = an−i+1.
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Then (L,∨,∧,′ ,→, a1, an) is a LIA, denoted by Ln.

Definition 1. 5,35 Let Lm+1, Ln+1 be two Łukasiewicz implication algebras and Lm+1 = {a0, a1,⋯ , am} ∶ a0 ≤ a1 ≤ ⋯ ≤ am,
Ln+1 = {b0, b1,⋯ , bn} ∶ b0 ≤ b1 ≤⋯ ≤ bn. Define the direct product of Lm+1 and Ln+1 as follows: Lm+1 × Ln+1 = {(a, b)|a ∈
Lm+1, b ∈ Ln+1}. The operations on Lm+1 × Ln+1 are defined respectively as follows: for any (ai, bk), (aj , bl) ∈ Lm+1 × Ln+1,

(ai, bk) ∨ (aj , bl) = (ai ∨ aj , bk ∨ bl) = (amax {i, j}, bmax {k, l}),
(ai, bk) ∧ (aj , bl) = (ai ∧ aj , bk ∧ bl) = (amin {i, j}, bmin {k, l}),
(ai, bk) → (aj , bl) = (ai → aj , bk → bl) = (amin{m−i+j, m}, bmin{n−k+l, n}),

(ai, bk)′ = (a′i, b
′
k) = (am−i, bn−k),

then (Lm+1 × Ln+1,∨,∧,′ ,→, (a0, b0), (am, bn)) is a LIA, denoted by L(m+1)×(n+1).

Let L be a LIA, for all x, y, z ∈ L, define the partial relation ≤ in L as x ≤ y⇐⇒ x→ y = 1, then the followings hold35:
(1) x→ 0 = x′;
(2) x ∨ y = (x→ y) → y;
(3) x→ (y→ z) = y→ (x→ z);
(4) x ⊗ y ≤ x ∧ y ≤ x ∨ y ≤ x ⊕ y;
(5) x ⊗ (y ∨ z) = (x ⊗ y) ∨ (x ⊗ z), x ⊗ (y ∧ z) = (x ⊗ y) ∧ (x ⊗ z);
(6) x ⊕ (y ∨ z) = (x ⊕ y) ∨ (x ⊕ z), x ⊕ (y ∧ z) = (x ⊕ y) ∧ (x ⊕ z).
For more details of LIAs, we refer to the monograph35.

2.2 2-dimension linguistic lattice implication algebras (2DL-LIAs)
Firstly, linguistic label sets and 2-dimension fuzzy linguistic information are reviewed as follows:
Let S = {s0, s1,⋯ , sg} be a linguistic label set with the cardinality g + 1. For any si, sj ∈ S, where i, j ∈ {0, 1,⋯ , g}, the

following properties should hold11,16:
(1) if i ≤ j, then si ≤ sj ;
(2) (si)′ = sg−i;
(3) if si ≤ sj , then max(si, sj) = sj ;
(4) if si ≤ sj , then min(si, sj) = si.
In some real decision making environments, a decision maker needs to provide the evaluation result of alternatives by using

linguistic labels as well as his (or her) self-appraisal. For example, when an expert is invited to express his (or her) opinions on a
submitted journal paper, there are always two linguistic label sets provided, where one linguistic label set is supplied to evaluate
the submitted paper, the other is supplied to evaluate the familiar degree of the expert with the contents of the submitted paper.
Aiming to describe such phenomena, Zhu et al.49 introduced the notion of 2-dimension fuzzy linguistic information, which is
reviewed as follows.
Definition 2. 49 Let S = {s0, s1,⋯ , sg} and H = {ℎ0, ℎ1,⋯ , ℎt} be two linguistic label sets, where g + 1 is the cardinality
of S and t + 1 is the cardinality of H . r̂=(si, ℎj) is called a 2-dimension linguistic label (2DLL), in which ℎj ∈ H represents
the assessment information about the alternative given by the decision maker, and si ∈ S represents the self-assessment of the
decision maker.

In order to precisely describe the relationships between 2-dimension fuzzy linguistic information, a 2-dimension linguistic
lattice implication algebra (2DL-LIA) is constructed by combining two linguistic label sets with a LIA structure, which is
reviewed as follows.
Definition 3. 46 Let S = {s0, s1,⋯ , sg}: s0 ≤ s1 ≤ ⋯ ≤ sg and H = {ℎ0, ℎ1,⋯ , ℎt}: ℎ0 ≤ ℎ1 ≤ ⋯ ≤ ℎt be two linguistic
label sets, L(g+1)×(t+1) be a LIA as defined in Definition 1. Let a mapping f ∶ S × H → L(g+1)×(t+1) be defined such that
f ((si, ℎj)) = (ai, bj), where i ∈ {0, 1,⋯ , g}, j ∈ {0, 1,⋯ , t}, then f is a bijection, denoted its inverse mapping as f−1. For any
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(si, ℎk), (sj , ℎl) ∈ S ×H , define

(si, ℎk) ∨ (sj , ℎl) = f−1(f ((si, ℎk)) ∨ f ((sj , ℎl)))
(si, ℎk) ∧ (sj , ℎl) = f−1(f ((si, ℎk)) ∧ f ((sj , ℎl)))
(si, ℎk) → (sj , ℎl) = f−1(f ((si, ℎk)) → f ((sj , ℎl)))

(si, ℎk)′ = f−1((f (si, ℎk))′),

then it is obvious to verify that (S × H,∨,∧,→,′ , (s0, ℎ0), (sg , ℎt)) is a LIA, which is called a 2-dimension linguistic lattice
implication algebra (2DL-LIA), whose Hasse Diagram is shown in Figure 1.
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1( , )gs h
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1 0( , )s h

FIGURE 1 Hasse Diagram of 2DL-LIA

In the following, S ×H is always denoted as a 2DL-LIA, where S = {s0, s1,⋯ , sg},H = {ℎ0, ℎ1,⋯ , ℎt} be two linguistic
label sets.
Then, we give the notion of a 2-dimension linguistic latticeH implication algebra (2DL-LHIA), which will be mentioned in

next section.

Definition 4. Let S ×H be a 2DL-LIA, if for all (si1, ℎj1), (si2, ℎj2), (si3, ℎj3) ∈ S ×H ,

(si1, ℎj1) ∨ (si2, ℎj2) ∨ (((si1, ℎj1) ∧ (si2, ℎj2)) → si3, ℎj3) = (sg , ℎt),

where i1, i2, i3 ∈ {0, 1,⋯ g}, j1, j2, j3 ∈ {0, 1,⋯ , t}, thenS×H is called 2-dimension linguistic latticeH implication algebra
(2DL-LHIA).

Next by using of the indexes of linguistic labels in S ×H , some operations including ∨,∧,→,′ can make direct computations
in the following theorem.
Theorem 2. 45 Let (S × H,∨,∧,→,′ ) be a 2DL-LIA, (sg , ℎt) and (s0, ℎ0) are the maximal element and minimal element of
S ×H , (si1, ℎi2), (sj1, ℎj2) ∈ S ×H . Then

(si1, ℎj1) ∨ (si2, ℎj2) = (smax{i1,i2}, ℎmax{j1,j2})
(si1, ℎj1) ∧ (si2, ℎj2) = (smin{i1,i2}, ℎmin{j1,j2})
(si1, ℎj1) → (si2, ℎj2) = (smin{g−i1+i2, g}, ℎmin{t−j1+j2, t})

(si1, ℎj1)′ = (sg−i1, ℎt−j1).
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Now, mainly for aggregation of 2-dimension fuzzy linguistic information, two logical operators⊕ and⊗ can be defined in a
2DL-LIA S ×H as follows: for all (si1, ℎj1), (si1, ℎj1) ∈ S ×H ,

(si1, ℎj1)⊕ (si2, ℎj2) = (si1, ℎj1)′ → (si2, ℎj2)
(si1, ℎj1)⊗ (si2, ℎj2) = ((si1, ℎj1) → (si2, ℎj2)′)′

Similarly, the computational methods of⊕ and⊗ are provided by using of the indexes of linguistic labels in a 2DL-LIA.

Theorem3. LetS×H be a 2DL-LIA, then for all (si1, ℎj1), (si2, ℎj2) ∈ S×H , where i1, i2 ∈ {0, 1,⋯ , g}, j1, j2 ∈ {0, 1,⋯ , t},
we have:
(1) (si1, ℎj1)⊕ (si2, ℎj2) = (smin{i1+i2,g}, ℎmin{j1+j2,t});
(2) (si1, ℎj1)⊗ (si2, ℎj2) = (smax{i1+i2−g,0}, ℎmax{j1+j2−t,0}).

Proof. (1) Since (si1, ℎj1)′ → (si2, ℎj2) = (sg−i1, ℎt−j1) → (si2, ℎj2) = (smin{i1+i2,g}, ℎmin{j1+j2,t}) by Theorem 2, we obtain that
(si1, ℎj1)⊕ (si2, ℎj2) = (smin{i1+i2,g}, ℎmin{j1+j2,t});
(2) Because (si1, ℎj1) → (si2, ℎj2)′ = (si1, ℎj1) → (sg−i2, ℎt−j2) = (smin{2g−i1−i2,g}, ℎmin{2t−j1−j2,t}) and
(smin{2g−i1−i2,g}, ℎmin{2t−j1−j2,t})′ = (smax{i1+i2−g,0}, ℎmax{j1+j2−t,0}) by Theorem 2, we have (si1, ℎj1) ⊗ (si2, ℎj2) =
(smax{i1+i2−g,0}, ℎmax{j1+j2−t,0}).
Finally, the relationships among ∨,⊕,⊗ and ∧ are discussed in a 2DL-LIA.

Theorem 4. Let S ×H be a 2DL-LIA, then for all (si1, ℎj1), (si2, ℎj2) ∈ S ×H , we have:
(1) (si1, ℎj1) ∨ (si2, ℎj2) = ((si1, ℎj1)⊗ (si2, ℎj2)′)⊕ (si2, ℎj2);
(2) (si1, ℎj1) ∧ (si2, ℎj2) = ((si1, ℎj1)⊕ (si2, ℎj2)′)⊗ (si2, ℎj2).

Proof. (1) Since (si1, ℎj1) ∨ (si2, ℎj2) = ((si1, ℎj1) → (si2, ℎj2)) → (si2, ℎj2), then we have (si1, ℎj1) ∨ (si2, ℎj2) = ((si1, ℎj1)⊗
(si2, ℎj2)′)⊕ (si2, ℎj2).
(2) Since ((si1, ℎj1)⊕ (si2, ℎj2)′)⊗ (si2, ℎj2) = (((si1, ℎj1)′ → (si2, ℎj2)′) → (si2, ℎj2)′)′, then we have ((si1, ℎj1)⊕ (si2, ℎj2)′)⊗
(si2, ℎj2) = ((si1, ℎj1)′ ∨ (si2, ℎj2)′)′ = (si1, ℎj1) ∧ (si2, ℎj2).

3 BOOLEAN ELEMENTS OF 2DL-LIAS

In this section, a Boolean element is defined in a 2DL-LIA, then some properties of Boolean elements are investigated. Finally,
logical operator⊕ is discussed in a 2DL-LIA, which can build a bridge for 2-dimension fuzzy linguistic information aggregations
and logical algebras.

Definition 5. LetS×H be a 2DL-LIA, (sg , ℎt) and (s0, ℎ0) are the maximal element andminimal element ofS×H respectively,
(si, ℎj) ∈ S ×H . If (si, ℎj) ∨ (si, ℎj)′ = (sg , ℎt), (or equivalently (si, ℎj) ∧ (si, ℎj)′ = (s0, ℎ0)), then (si, ℎj) is called a boolean
element of S ×H .

In the following, denote B(S ×H) be the set of boolean elements in S ×H .

Example 3.1. Let S1 ×H1 be a 2DL-LIA, whose Hasse Diagram is shown in Figure 2, where S1 = {s0, s1},H1 = {ℎ0, ℎ1}.

The operations ′ and→ can be computed by Theorem 2 as follows: (s0, ℎ0)′ = (s1, ℎ1), (s0, ℎ1)′ = (s1, ℎ0), (s1, ℎ0)′ = (s0, ℎ1),
(s1, ℎ1)′ = (s0, ℎ0) and

→ (s0, ℎ0) (s0, ℎ1) (s1, ℎ0) (s1, ℎ1)
(s0, ℎ0) (s1, ℎ1) (s1, ℎ1) (s1, ℎ1) (s1, ℎ1)
(s0, ℎ1) (s1, ℎ0) (s1, ℎ1) (s1, ℎ0) (s1, ℎ1)
(s1, ℎ0) (s0, ℎ1) (s0, ℎ1) (s1, ℎ1) (s1, ℎ1)
(s1, ℎ1) (s0, ℎ0) (s0, ℎ1) (s1, ℎ0) (s1, ℎ1)

We can check that (s0, ℎ0), (s0, ℎ1), (s1, ℎ0), (s1, ℎ1) are all boolean elements, that is (s0, ℎ0), (s0, ℎ1), (s1, ℎ0), (s1, ℎ1) ∈ B(S1×
H1) .
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FIGURE 2 Hasse Diagram of S1 ×H1

Now, some properties of boolean elements are investigated in a 2DL-LIA.

Proposition 1. Let S ×H be a 2DL-LIA, then (si, ℎj) ∈ B(S ×H) if and only if (si, ℎj)′ ∈ B(S ×H).

Proof. It is obvious by Definition 5.

Proposition 2. Let S ×H be a 2DL-LIA, (si, ℎj) ∈ S ×H , then we have:
(1) (si, ℎj) ∈ B(S ×H) if and only if (si, ℎj)⊕ (si, ℎj) = (si, ℎj);
(2) (si, ℎj) ∈ B(S ×H) if and only if (si, ℎj)⊗ (si, ℎj) = (si, ℎj).

Proof. (1) Suppose (si, ℎj) ∈ B(S×H), then (si, ℎj)∨(si, ℎj)′ = (sg , ℎt). Because ((si, ℎj)⊕(si, ℎj)) → (si, ℎj) = ((si, ℎj)′ →
(si, ℎj)) → (si, ℎj) = (si, ℎj)′∨(si, ℎj) = (sg , ℎt), we have (si, ℎj)⊕(si, ℎj) ≤ (si, ℎj). It is obvious that (si, ℎj) ≤ (si, ℎj)⊕(si, ℎj).
Therefore (si, ℎj)⊕ (si, ℎj) = (si, ℎj).
On the other hand, assume (si, ℎj)⊕ (si, ℎj) = (si, ℎj), then we have (si, ℎj)′ ∨ (si, ℎj) = ((si, ℎj)′ → (si, ℎj)) → (si, ℎj) =

((si, ℎj)⊕ (si, ℎj)) → (si, ℎj) = (si, ℎj) → (si, ℎj) = (sg , ℎt).
(2) The conclusion can be obtained analogously.

Proposition 3. Let S ×H be a 2DL-LIA, (sg , ℎt) and (s0, ℎ0) are the maximal element and minimal element of S ×H respec-
tively, if (si, ℎj) ∈ B(S ×H), then for all (si1, ℎj1) ∈ S ×H , we have:
(1) (si1, ℎj1)⊗ (si, ℎj) = (si1, ℎj1) ∧ (si, ℎj);
(2) (si1, ℎj1)⊕ (si, ℎj) = (si1, ℎj1) ∨ (si, ℎj).

Proof. (1)We only need to prove (si1, ℎj1) ∧ (si, ℎj) ≤ (si1, ℎj1)⊗ (si, ℎj).
Suppose (si, ℎj) ∈ B(S ×H), then we have (si, ℎj) ∨ (si, ℎj)′ = (sg , ℎt) by Definition 5.
Since (si1, ℎj1) ∧ (si, ℎj) → (si1, ℎj1) ⊗ (si, ℎj) = ((si1, ℎj1) → (si1, ℎj1) ⊗ (si, ℎj)) ∨ ((si, ℎj) → (si1, ℎj1) ⊗ (si, ℎj))

= (((si1, ℎj1) → (si, ℎj)′) → (si1, ℎj1)′) ∨ (((si1, ℎj1) → (si, ℎj)′) → (si, ℎj)′) = (si, ℎj) ∨ (si1, ℎj1)′ ∨ (si1, ℎj1) ∨ (si, ℎj)′ ≥
(si, ℎj) ∨ (si, ℎj)′ = (sg , ℎt), that is (si1, ℎj1) ∧ (si, ℎj) → (si1, ℎj1) ⊗ (si, ℎj) = (sg , ℎt), then we have (si1, ℎj1) ∧ (si, ℎj) ≤
(si1, ℎj1)⊗ (si, ℎj).
(2)We only need to prove that (si1, ℎj1)⊕ (si, ℎj) ≤ (si1, ℎj1) ∨ (si, ℎj).
Suppose (si, ℎj) ∈ B(S ×H), then we have (si, ℎj) ∨ (si, ℎj)′ = (sg , ℎt) by Definition 5.
Since (si1, ℎj1) ⊕ (si, ℎj) → (si1, ℎj1) ∨ (si, ℎj) = ((si1, ℎj1) ⊕ (si, ℎj) → (si1, ℎj1)) ∨ ((si1, ℎj1) ⊕ (si, ℎj) → (si, ℎj))

= (((si, ℎj)′ → (si1, ℎj1)) → (si1, ℎj1)) ∨ (((si1, ℎj1)′ → (si, ℎj)) → (si, ℎj)) = (si, ℎj)′ ∨ (si1, ℎj1) ∨ (si1, ℎj1)′ ∨ (si, ℎj)
≥ (si, ℎj)′ ∨ (si, ℎj) = (sg , ℎt), that is (si1, ℎj1)⊕ (si, ℎj) → (si1, ℎj1) ∨ (si, ℎj) = (sg , ℎt), then we have (si1, ℎj1)⊕ (si, ℎj) ≤
(si1, ℎj1) ∨ (si, ℎj).

Proposition 4. Let S ×H be a 2DL-LIA, if (si, ℎj) ∈ B(S ×H), then for all (si1, ℎj1), (si2, ℎj2) ∈ S ×H , we have:
(1) ((si1, ℎj1)⊕ (si2, ℎj2)) ∧ (si, ℎj) = ((si1, ℎj1) ∧ (si, ℎj))⊕ ((si2, ℎj2) ∧ (si, ℎj));
(2) ((si1, ℎj1)⊕ (si2, ℎj2)) ∨ (si, ℎj) = ((si1, ℎj1) ∨ (si, ℎj))⊕ ((si2, ℎj2) ∨ (si, ℎj));
(3) ((si1, ℎj1)⊗ (si2, ℎj2)) ∧ (si, ℎj) = ((si1, ℎj1) ∧ (si, ℎj))⊗ ((si2, ℎj2) ∧ (si, ℎj));
(4) ((si1, ℎj1)⊗ (si2, ℎj2)) ∨ (si, ℎj) = ((si1, ℎj1) ∨ (si, ℎj))⊗ ((si2, ℎj2) ∨ (si, ℎj));
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(5) ((si1, ℎj1)⊕ (si2, ℎj2))⊗ (si, ℎj) = ((si1, ℎj1)⊗ (si, ℎj))⊕ ((si2, ℎj2)⊗ (si, ℎj));
(6) ((si1, ℎj1)⊗ (si2, ℎj2))⊕ (si, ℎj) = ((si1, ℎj1)⊕ (si, ℎj))⊗ ((si2, ℎj2)⊕ (si, ℎj)).

Proof.We only prove (1) and (2).
(1) Suppose (si, ℎj) ∈ B(S ×H), then we have (si, ℎj)⊕ (si, ℎj) = (si, ℎj) by Proposition 2 (1).
Since ((si1, ℎj1) ∧ (si, ℎj)) ⊕ ((si2, ℎj2) ∧ (si, ℎj)) = ((si1, ℎj1) ∧ (si, ℎj))′ → ((si2, ℎj2) ∧ (si, ℎj)) = (si1, ℎj1)′ ∨ (si, ℎj)′ →

(si2, ℎj2) ∧ (si, ℎj) = ((si1, ℎj1)′ → (si2, ℎj2)) ∧ ((si1, ℎj1)′ → (si, ℎj)) ∧ ((si, ℎj)′ → (si2, ℎj2)) ∧ ((si, ℎj)′ → (si, ℎj)) =
((si1, ℎj1)⊕ (si2, ℎj2)) ∧ ((si1, ℎj1)⊕ (si, ℎj)) ∧ ((si, ℎj)⊕ (si2, ℎj2)) ∧ ((si, ℎj)⊕ (si, ℎj)) and ((si1, ℎj1)⊕ (si, ℎj)) ∧ ((si, ℎj)⊕
(si2, ℎj2))∧((si, ℎj)⊕(si, ℎj)) = (si, ℎj), then we have ((si1, ℎj1)∧(si, ℎj))⊕((si2, ℎj2)∧(si, ℎj)) = ((si1, ℎj1)⊕(si2, ℎj2))∧(si, ℎj).
(2) Suppose (si, ℎj) ∈ B(S ×H), then we have (si, ℎj)⊕ (si, ℎj) = (si, ℎj) by Proposition 2 (1).
Since ((si1, ℎj1) ∨ (si, ℎj))⊕ ((si2, ℎj2) ∨ (si, ℎj)) = ((si1, ℎj1) ∨ (si, ℎj))′ → (si2, ℎj2) ∨ (si, ℎj) = ((si1, ℎj1)′ → (si2, ℎj2)) ∨

((si1, ℎj1)′ → (si, ℎj)) ∨ ((si, ℎj)′ → (si2, ℎj2)) ∨ ((si, ℎj)′ → (si, ℎj)) = ((si1, ℎj1)⊕ (si2, ℎj2)) ∨ ((si1, ℎj1)⊕ (si, ℎj)) ∨ ((si, ℎj)⊕
(si2, ℎj2))∨((si, ℎj)⊕(si, ℎj)) and ((si1, ℎj1)⊕(si, ℎj))∨((si, ℎj)⊕(si2, ℎj2))∨((si, ℎj)⊕(si, ℎj)) = (si1, ℎj1)∨(si2, ℎj2)∨(si, ℎj)
by Proposition 3 (2), then we have ((si1, ℎj1) ∨ (si, ℎj))⊕ ((si2, ℎj2) ∨ (si, ℎj)) = ((si1, ℎj1)⊕ (si2, ℎj2)) ∨ (si, ℎj).

Proposition 5. Let S ×H be a 2DL-LIA, (sg , ℎt) and (s0, ℎ0) are the maximal element and minimal element of S ×H respec-
tively. If (si1, ℎj1), (si2, ℎj2) ∈ B(S×H), then we have (si1, ℎj1)∧(si2, ℎj2), (si1, ℎj1)∨(si2, ℎj2), (si1, ℎj1)⊗(si2, ℎj2), (si1, ℎj1)⊕
(si2, ℎj2) ∈ B(S ×H).

Proof. Firstly, we prove (si1, ℎj1) ∧ (si2, ℎj2) ∈ B(S ×H) and (si1, ℎj1)⊗ (si2, ℎj2) ∈ B(S ×H).
Suppose (si1, ℎj1), (si2, ℎj2) ∈ B(S ×H), we have (si1, ℎj1) ∧ (si1, ℎj1)′ = (s0, ℎ0) and (si2, ℎj2) ∧ (si2, ℎj2)′ = (s0, ℎ0).
Because ((si1, ℎj1) ∧ (si2, ℎj2)) ∧ ((si1, ℎj1) ∧ (si2, ℎj2))′ = ((si1, ℎj1) ∧ (si2, ℎj2)) ∧ ((si1, ℎj1)′ ∨ (si2, ℎj2)′) = ((si1, ℎj1) ∧

(si2, ℎj2)∧ (si1, ℎj1)′)∨ ((si1, ℎj1)∧ (si2, ℎj2)∧ (si2, ℎj2)′) = (s0, ℎ0), then we have (si1, ℎj1)∧ (si2, ℎj2) ∈ B(S ×H) by Definition
5, which implies (si1, ℎj1)⊗ (si2, ℎj2) ∈ B(S ×H) by Proposition 3 (1).
Next, we prove (si1, ℎj1) ∨ (si2, ℎj2) ∈ B(S ×H) and (si1, ℎj1)⊕ (si2, ℎj2) ∈ B(S ×H).
Suppose (si1, ℎj1), (si2, ℎj2) ∈ B(S ×H), we have (si1, ℎj1) ∨ (si1, ℎj1)′ = (sg , ℎt) and (si2, ℎj2) ∨ (si2, ℎj2)′ = (sg , ℎt).
Because ((si1, ℎj1) ∨ (si2, ℎj2)) ∨ ((si1, ℎj1) ∨ (si2, ℎj2))′ = ((si1, ℎj1) ∨ (si2, ℎj2)) ∨ ((si1, ℎj1)′ ∧ (si2, ℎj2)′) = ((si1, ℎj1) ∨

(si2, ℎj2)∨ (si1, ℎj1)′)∧ ((si1, ℎj1)∨ (si2, ℎj2)∨ (si2, ℎj2)′) = (sg , ℎt), then we have (si1, ℎj1)∨ (si2, ℎj2) ∈ B(S ×H) by Definition
5, which implies (si1, ℎj1)⊕ (si2, ℎj2) ∈ B(S ×H) by Proposition 3 (2).

Theorem 5. Let S ×H be a 2DL-LIA, if for all (si, ℎj) ∈ S ×H , (si, ℎj) ∈ B(S ×H), then S ×H is a 2DLH-LIA.

Proof. Suppose ∀(si, ℎj) ∈ S×H , (si, ℎj) ∈ B(S×H), then we have (si, ℎj)⊗(si, ℎj) = (si, ℎj) and (si, ℎj)⊕(si, ℎj) = (si, ℎj)
by Proposition 2. Therefore S ×H is a 2DLH-LIA by Theorem 1.
Finally, we focus on logical operator ⊕ and its application in a 2DL-LIA, which can build a bridge for 2-dimension fuzzy

linguistic information aggregations and logical algebras.
As we know, in real decision making environment, the weights of 2-dimension fuzzy linguistic information are critical for

decision makers to aggregate 2-dimension fuzzy linguistic information. Therefore we define operations between constants and
2-dimension linguistic labels (2DLLs) in a 2DL-LIA as follows.

Definition 6. Let S × H be a 2DL-LIA, S = {s0, s1,⋯ , sg}, H = {ℎ0, ℎ1,⋯ , t}, then for all (si, ℎj) ∈ S × H, � ∈ R+,
�(si, ℎj) = (smin{�i,g}, ℎmin{�j,t}).

Example 3.2. LetS×H be a 2DL-LIA, whereS = {s0, s1, s2} = {very familiar, familiar, not familiar},H = {ℎ0, ℎ1, ℎ2, ℎ3} =
{very low, low,medium, high, very high} be two linguistic label sets. Suppose there are two reviewers who are invited to evaluate
the same submitted manuscript by using of 2DLLs in S ×H . One reviewer’s opinion is (s2, ℎ3), and the other is (s2, ℎ2).
If the weight vector of two reviewers is (0.6, 0.4), then we can obtain the final opinion of this manuscript is

0.6(s2, ℎ3)⊕ 0.4(s2, ℎ2) = (s2, ℎ2.6).

Remark. By using of the operation ⊕ and operation between constants and 2DLLs, we can aggregate 2DLLs provided by
decisionmakers to obtain the collective one. Therefore the operation⊕ builds a bridge between logical operators and aggregation
operators in a certain sense.
Moreover, as in Example 3.2, we can compute that (s1, ℎ2) ⊕ (s1, ℎ2) = (s2, ℎ4). This outcome may be unreasonable in

some real conditions, and we hope that ⊕ satisfies idempotent property, that is (si, ℎj) ⊕ (si, ℎj) = (si, ℎj). As we know, if
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(si, ℎj) ∈ B(S × H), then (si, ℎj) ⊕ (si, ℎj) = (si, ℎj). However, it is a pity that there are few Boolean elements in many
2DL-LIAs.

4 DERIVATIONS ON 2DL-LIAS

In this section, derivations on 2DL-LIAs are introduced and the related properties of derivations are discussed in order to
investigate algebraic structures of 2DL-LIAs. Finally, by using of Boolean elements in a 2DL-LIAs, some derivations on 2DL-
LIAs can be constructed.

Definition 7. Let S × H be a 2DL-LIA, d ∶ S × H → S × H be a mapping. For any (si1, ℎj1), (si2, ℎj2) ∈ S × H , where
i1, i2 ∈ {0, 1,⋯ , g}, j1, j2 ∈ {0, 1,⋯ , t}, if

(1) d((si1, ℎj1)⊕ (si2, ℎj2)) = d((si1, ℎj1))⊕ d((si2, ℎj2))
(2) d((si1, ℎj1)⊗ (si2, ℎj2)) = (d((si1, ℎj1))⊗ (si2, ℎj2)) ∨ ((si1, ℎj1)⊗ d((si2, ℎj2))),

then d is called a derivation on S ×H .

Now, some examples are given to indicate that there exist some derivations on 2DL-LIAs.

Example 4.1. Let S ×H be a 2DL-LIA, where (s0, ℎ0) is the minimal element of S ×H . For all (si, ℎj) ∈ S ×H , define a
mapping d on S ×H as d((si, ℎj)) = (s0, ℎ0). Then d is a derivation on 2DL-LIA, which is called a zero derivation.

Example 4.2. Let S ×H be a 2DL-LIA. For all (si, ℎj) ∈ S ×H , define a mapping d on S ×H as d((si, ℎj)) = (si, ℎj). Then
d is a derivation on 2DL-LIA, which is called an identity derivation.

Example 4.3. As in Example 3.1, define a mapping d ∶ S1 × H1 → S1 × H1 such that d((s0, ℎ0)) = (s0, ℎ0), d((s0, ℎ1)) =
(s0, ℎ0), d((s1, ℎ0)) = (s1, ℎ0), d((s1, ℎ1)) = (s1, ℎ0) and a mapping d1 ∶ S1 ×H1 → S1 ×H1 such that d1((s0, ℎ0)) = (s0, ℎ0),
d1((s0, ℎ1)) = (s0, ℎ0), d1((s1, ℎ0)) = (s0, ℎ1), d1((s1, ℎ1)) = (s0, ℎ1).
We can check that d and d1 are two derivations on S1 ×H1 by Definition 7.

Then some properties of derivations are investigated in a 2DL-LIA.

Proposition 6. Let d be a derivation on S ×H , (sg , ℎt) and (s0, ℎ0) be the maximal element and minimal element of S ×H
respectively. Then for all (si1, ℎj1), (si2, ℎj2) ∈ S ×H , we have:
(1) d((s0, ℎ0)) = (s0, ℎ0);
(2) if (si1, ℎj1) ≤ (si2, ℎj2), then d((si1, ℎj1)) ≤ d((si2, ℎj2)); (i.e. d is istone)
(3) d((sg , ℎt)) ∈ B(S ×H);
(4) d((si1, ℎj1)) ≤ (si1, ℎj1).

Proof. (1) Suppose d be a derivation on S ×H , then d((s0, ℎ0)) = d((s0, ℎ0)⊗ (s0, ℎ0)) = (d((s0, ℎ0))⊗ (s0, ℎ0))∨ ((s0, ℎ0)⊗
d((s0, ℎ0))) = (s0, ℎ0) by Definition 7 (2).
(2) Suppose d be a derivation on S ×H . If (si1, ℎj1) ≤ (si2, ℎj2), then we have (si2, ℎj2) = (si2, ℎj2) ∨ (si1, ℎj1) = ((si2, ℎj2)⊗
(si1, ℎj1)′)⊕ (si1, ℎj1) by Theorem 4 (1). Then d((si2, ℎj2)) = d((si2, ℎj2) ∨ (si1, ℎj1)) = d(((si2, ℎj2)⊗ (si1, ℎj1)′)⊕ (si1, ℎj1)) =
d((si2, ℎj2)⊗ (si1, ℎj1)′)⊕d((si1, ℎj1)) by Definition 7 (1), thus d((si1, ℎj1)) ≤ d((si2, ℎj2)). Therefore every derivation on 2DL-
LIA is istone.
(3) Suppose d be a derivation on S ×H . Because d((sg , ℎt)) = d((sg , ℎt)⊕ (sg , ℎt)) = d((sg , ℎt))⊕ d((sg , ℎt)) by Definition 7
(1), then we have d((sg , ℎt)) ∈ B(S ×H) by Proposition 2 (1).
(4) Suppose d be a derivation on S × H . Then ∀(si1, ℎj1) ∈ S × H , (s0, ℎ0) = d((s0, ℎ0)) = d((si1, ℎj1) ⊗ (si1, ℎj1)′) =
(d((si1, ℎj1))⊗(si1, ℎj1)′)∨((si1, ℎj1)⊗d((si1, ℎj1)′), thus d((si1, ℎj1))⊗(si1, ℎj1)′ = (s0, ℎ0). Because d((si1, ℎj1))⊗(si1, ℎj1)′ =
(d((si1, ℎj1)) → (si1, ℎj1))′ = (s0, ℎ0), we have d((si1, ℎj1)) → (si1, ℎj1) = (sg , ℎt). Therefore d((si1, ℎj1)) ≤ (si1, ℎj1).

Proposition 7. Let d be a derivation onS×H , (sg , ℎt) be themaximal element ofS×H . Then for all (si1, ℎj1), (si2, ℎj2) ∈ S×H ,
(1) d((si1, ℎj1)) = (si1, ℎj1) ∧ d((sg , ℎt)) = (si1, ℎj1)⊗ d((sg , ℎt));
(2) d((si1, ℎj1)n) = (si1, ℎj1)n−1 ⊗ d((si1, ℎj1)), where (si1, ℎj1)n = (si1, ℎj1)n−1 ⊗ (si1, ℎj1), n ∈ N ;
(3) d((si1, ℎj1)′) ≤ (d((si1, ℎj1)))′;
(4) if d((sg , ℎt)) = (sg , ℎt), then d is an identity derivation.
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Proof. (1) Let d be a derivation on S ×H , then d((si1, ℎj1)) = d((si1, ℎj1)⊗ (sg , ℎt)) = (d((si1, ℎj1))⊗ (sg , ℎt))∨ ((si1, ℎj1)⊗
d((sg , ℎt))) = d((si1, ℎj1)) ∨ ((si1, ℎj1)⊗ d((sg , ℎt))), thus (si1, ℎj1)⊗ d((sg , ℎt)) ≤ d((si1, ℎj1)).
On the other hand, we have d((si1, ℎj1)) ≤ (si1, ℎj1) by Proposition 6 (4), and d((si1, ℎj1)) ≤ d((sg , ℎt)) by Proposition 6 (2),

thus d((si1, ℎj1)) ≤ (si1, ℎj1) ∧ d((sg , ℎt)). Because (si1, ℎj1) ∧ d((sg , ℎt)) = (si1, ℎj1) ⊗ d((sg , ℎt)) by Proposition 6 (3) and
Proposition 3 (1), then we have d((si1, ℎj1)) = (si1, ℎj1) ∧ d((sg , ℎt)) = (si1, ℎj1)⊗ d((sg , ℎt)).
(2)Let d be a derivation onS×H , then we have d((si1, ℎj1)2) = d((si1, ℎj1)⊗(si1, ℎj1)) = (d((si1, ℎj1))⊗(si1, ℎj1))∨((si1, ℎj1)⊗
d((si1, ℎj1)) = (si1, ℎj1)⊗d((si1, ℎj1)). Then we can obtain d((si1, ℎj1)n) = (si1, ℎj1)n−1⊗d((si1, ℎj1)) by induction for all n ≥ 2.
(3) Let d be a derivation on S × H , then d((si1, ℎj1)′) ≤ (si1, ℎj1)′ by Proposition 6 (4). Thus d((si1, ℎj1)′) ≤ (si1, ℎj1)′ ≤
(si1, ℎj1)′∨d((sg , ℎt))′ = ((si1, ℎj1)∧d((sg , ℎt)))′. Because d((si1, ℎj1)) = (si1, ℎj1)∧d((sg , ℎt)) by (1), then we have ((si1, ℎj1)∧
d((sg , ℎt)))′ ≤ (d((si1, ℎj1)))′. Hence d((si1, ℎj1)′) ≤ (d((si1, ℎj1)))′.
(4) If d((sg , ℎt)) = (sg , ℎt), we have (si1, ℎj1) = (si1, ℎj1) ⊗ d((sg , ℎt)) = d((si1, ℎj1)) by (1), which implies d is an identity
derivation.

Proposition 8. Let d be a derivation on S ×H , then for all (si1, ℎj1), (si2, ℎj2) ∈ S ×H :
(1) d((si1, ℎj1) ∧ (si2, ℎj2)) = d((si1, ℎj1)) ∧ d((si2, ℎj2));
(2) d((si1, ℎj1) ∨ (si2, ℎj2)) = d((si1, ℎj1)) ∨ d((si2, ℎj2));
(3) d((si1, ℎj1)⊗ (si2, ℎj2)) = d((si1, ℎj1))⊗ d((si2, ℎj2)).

Proof. (1) Suppose d be a derivation on S ×H , then we have d((si1, ℎj1) ∧ (si2, ℎj2)) = ((si1, ℎj1) ∧ (si2, ℎj2))⊗d((sg , ℎt)) by
Proposition 7 (1). Since d((sg , ℎt)) ∈ B(S ×H) by Proposition 6 (3), we get ((si1, ℎj1) ∧ (si2, ℎj2))⊗d((sg , ℎt)) = ((si1, ℎj1)⊗
d((sg , ℎt))) ∧ ((si2, ℎj2) ⊗ d((sg , ℎt))) = d((si1, ℎj1)) ∧ d((si2, ℎj2)) by Proposition 7 (1), that is d((si1, ℎj1) ∧ (si2, ℎj2)) =
d((si1, ℎj1)) ∧ d((si2, ℎj2)).
(2) and (3) can be proved analogously.

Proposition 9. Let d be a derivation on S ×H , then for all (si1, ℎj1), (si2, ℎj2) ∈ S ×H :
(1) d((si1, ℎj1) → (si2, ℎj2)) ≤ d((si1, ℎj1)) → d((si2, ℎj2));
(2) d((si1, ℎj1) → (si2, ℎj2)) ≤ (si1, ℎj1) → d((si2, ℎj2));
(3) (si1, ℎj1) → (si2, ℎj2) ≤ d((si1, ℎj1)) → d((si2, ℎj2)).

Proof. (1) Let d be a derivation on S×H , then we have d((si1, ℎj1) → (si2, ℎj2)) = d((si1, ℎj1)′⊕ (si2, ℎj2)) = d((si1, ℎj1)′)⊕
d((si2, ℎj2)) by Definition 7 (1). Since d((si1, ℎj1)′)⊕ d((si2, ℎj2)) ≤ d((si1, ℎj1))′ ⊕ d((si2, ℎj2)) = d((si1, ℎj1)) → d((si2, ℎj2))
by Proposition 7 (3), then we have d((si1, ℎj1) → (si2, ℎj2)) ≤ d((si1, ℎj1)) → d((si2, ℎj2)).
(2) Let d be a derivation on S ×H , since (si1, ℎj1)⊗ ((si1, ℎj1) → (si2, ℎj2)) ≤ (si2, ℎj2), we have d((si1, ℎj1)⊗ ((si1, ℎj1) →

(si2, ℎj2))) ≤ d((si2, ℎj2)) by Proposition 6 (2). Then d((si1, ℎj1) ⊗ ((si1, ℎj1) → (si2, ℎj2))) = (d((si1, ℎj1)) ⊗ ((si1, ℎj1) →
(si2, ℎj2)))∨ ((si1, ℎj1)⊗d((si1, ℎj1) → (si2, ℎj2))) by Definition 7 (2), that is (si1, ℎj1)⊗d((si1, ℎj1) → (si2, ℎj2)) ≤ d((si2, ℎj2))
and d((si1, ℎj1)) ⊗ ((si1, ℎj1) → (si2, ℎj2)) ≤ d((si2, ℎj2)). Hence d((si1, ℎj1) → (si2, ℎj2)) ≤ (si1, ℎj1) → d((si2, ℎj2)). And
(si1, ℎj1) → (si2, ℎj2) ≤ d((si1, ℎj1)) → d((si2, ℎj2)), which implies (3) holds.
The following theorem shows the relationships between derivations and lattice implication homomorphisms in 2DLIAs.

Theorem 6. Let d be a derivation on S×H , if for all (si, ℎj) ∈ S×H , (d((si, ℎj)))′ ≤ d((si, ℎj)′), then d is a lattice implication
homomorphism.

Proof. Suppose ∀(si, ℎj) ∈ S × H , (d((si, ℎj)))′ ≤ d((si, ℎj)′), then we have (d((si, ℎj)))′ = d((si, ℎj)′) by Proposition 7
(3). Let d be a derivation on S × H , then by Definition 7 (1), we have d((si1, ℎj1) → (si2, ℎj2)) = d((si1, ℎj1)′ ⊕ (si2, ℎj2))
= d((si1, ℎj1)′)⊕ d((si2, ℎj2)) = (d((si1, ℎj1)))′ ⊕ d((si2, ℎj2)) = d((si1, ℎj1)) → d((si2, ℎj2)), that is d((si1, ℎj1) → (si2, ℎj2)) =
d((si1, ℎj1)) → d((si2, ℎj2)). Combining with Proposition 8 (1) and (2), we get that d is a lattice implication homomorphism.
Now, some special mappings are defined by Boolean elements, which can be verified to be derivations on 2DL-LIAs.
Let S ×H be a 2DL-LIA, (si, ℎj) ∈ B(S ×H), define f1 ∶ S ×H → S ×H and f2 ∶ S ×H → S ×H be the mappings

such that f1 ∶ x→ x ∧ (si, ℎj), f2 ∶ x→ x ⊗ (si, ℎj).

Proposition 10. Let f1, f2 be defined as above, then f1 = f2.

Proof. The conclusions are obvious by Proposition 3 (1).
Then we investigate some properties of the mapping f1 on 2DL-LIAs.
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Proposition 11. Let f1 be defined as above, then for all (si1, ℎj1), (si2, ℎj2) ∈ S ×H , we have:
(1) f1((si1, ℎj1) ∨ (si2, ℎj2)) = f1((si1, ℎj1)) ∨ f1((si2, ℎj2));
(2) f1((si1, ℎj1) ∧ (si2, ℎj2)) = f1((si1, ℎj1)) ∧ f1((si2, ℎj2));
(3) f1((si1, ℎj1)⊕ (si2, ℎj2)) = f1((si1, ℎj1))⊕ f1((si2, ℎj2));
(4) f1((si1, ℎj1)⊗ (si2, ℎj2)) = f1((si1, ℎj1))⊗ f1((si2, ℎj2));
(5) f1((si1, ℎj1)′) = f1(f1((si1, ℎj1))′).

Proof. (1) Let f1 ∶ x → x ∧ (si, ℎj), then we have f1((si1, ℎj1) ∨ (si2, ℎj2)) = ((si1, ℎj1) ∨ (si2, ℎj2)) ∧ (si, ℎj) = ((si1, ℎj1) ∧
(si, ℎj)) ∨ ((si2, ℎj2)) ∧ (si, ℎj)) = f1((si1, ℎj1)) ∨ f1((si2, ℎj2)). Analogously for (2).
(3) Let f1 ∶ x→ x∧(si, ℎj), then we have f1((si1, ℎj1)⊕ (si2, ℎj2)) = ((si1, ℎj1)⊕ (si2, ℎj2))∧(si, ℎj) = ((si1, ℎj1)∧(si, ℎj))⊕

((si2, ℎj2)) ∧ (si, ℎj)) = f1((si1, ℎj1))⊕ f1((si2, ℎj2)) by Proposition 4 (1). Analogously for (4).
(5) Let f1 ∶ x → x ∧ (si, ℎj), then we have f1(f1((si1, ℎj1))′) = f1(((si1, ℎj1) ∧ (si, ℎj))′) = ((si1, ℎj1) ∧ (si, ℎj))′ ∧ (si, ℎj) =

((si1, ℎj1)′ ∨ (si, ℎj)′) ∧ (si, ℎj). Since (si, ℎj) ∈ B(S × H), we have ((si1, ℎj1)′ ∨ (si, ℎj)′) ∧ (si, ℎj) = (si1, ℎj1)′ ∧ (si, ℎj) =
f1((si1, ℎj1)′), that is f1((si1, ℎj1)′) = f1(f1((si1, ℎj1))′).
Finally, we prove that the mapping f1 is a derivation on S ×H .

Theorem 7. Let f1 be defined as above, then f1 is a derivation on S ×H .

Proof. Let f1 ∶ x → x ∧ (si, ℎj), then we have f1((si1, ℎj1)⊗ (si2, ℎj2)) = ((si1, ℎj1)⊗ (si2, ℎj2)) ∧ (si, ℎj), f1((si1, ℎj1))⊗
(si2, ℎj2) = ((si1, ℎj1) ∧ (si, ℎj))⊗ (si2, ℎj2), and (si1, ℎj1)⊗ f1((si2, ℎj2)) = (si1, ℎj1)⊗ ((si2, ℎj2) ∧ (si, ℎj)). Since (si, ℎj) ∈
B(S × H), we get ((si1, ℎj1) ∧ (si, ℎj)) ⊗ (si2, ℎj2) = (((si1, ℎj1) ⊗ (si2, ℎj2)) ⊗ (si, ℎj) = (((si1, ℎj1) ⊗ (si2, ℎj2)) ∧ (si, ℎj)
and (si1, ℎj1)⊗ ((si2, ℎj2) ∧ (si, ℎj)) = (((si1, ℎj1)⊗ (si2, ℎj2)) ∧ (si, ℎj) by Proposition 3 (1), which implies that f1(si1, ℎj1)⊗
(si2, ℎj2)) = (f1((si1, ℎj1))⊗ (si2, ℎj2)) ∨ ((si1, ℎj1)⊗ f1((si2, ℎj2))).
By Proposition 11 (3), we have f1((si1, ℎj1)⊕ (si2, ℎj2)) = f1((si1, ℎj1))⊕ f1((si2, ℎj2)). Hence f1 is a derivation on S ×H

by Definition 7.

5 CONCLUSIONS

The theory of derivations plays an important role for investigating algebraic structures and properties of logical algebras. In
this paper, derivations on rings and derivations on residuated lattices are extended to 2DL-LIAs. Concretely, a Boolean element
is proposed in a 2DL-LIA along with its some properties. Then logical operator ⊕ is applied to aggregate 2-dimension fuzzy
linguistic information, which can build a bridge for 2-dimension fuzzy linguistic information aggregations and logical algebras.
Next, the concept of a derivation is introduced in a 2DL-LIA and some properties of derivations are studied. Finally, some
special mappings defined by Boolean elements are proved to be derivations on 2DL-LIAs.
The above work not only enriches algebraic structures and properties of 2DL-LIAs, but also provides theoretical foundations

for lattice-valued logic systems based on 2DL-LIAs. Further, it hopes that the results of this manuscript can supply theoretical
supports for 2-dimension linguistic information application. In future, we will consider derivations on substructures of 2DL-
LIAs including LI-ideals, filters, sl-ideals etc and apply the theory of derivations on 2DL-LIAs to deal with 2-dimension fuzzy
linguistic information.
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