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1 | INTRODUCTION

In this paper we investigate the global existence and uniform decay rate of the energy for solutions to the nonlinear viscoelastic
kirchhof problem with delay term in the internal feedback.

| G, D1Pu" (x, 1) + A%ux, 1) = A" (x, 1) = M (|| Vull>)Au(x, 1)
t

1
- / h(t — $)A%u(x, s)ds + u, g (x,1) + pr,g' (x,t — 7)) =0, x EQ, t > 0, )
0
u(x, 1) = a”(’; D _ 0, xeoQ, t>0, @)
u(x,0) = uy(x), v'(x,0)=u(x), x €Q, 3)
W (x,t—1) = folx,t=1), x€Q, te€(0,71), @

where Q is a bounded domain in R” with smooth boundary 0Q. % represents the outward normal derivative on 0Q. p, y;, y,
are three positive real numbers, M € C'(R™), h is a positive non increasing function defined on R* which represents the kernel
of the memory term and g is an odd non-decreasing function of the class C!(R) which represents internal feedback.
In the absence of the delay term, many authors have investigated problem (1]) and proved the stability, instability and the expo-
nential decaying energy of the system under suitable assumptions, see for example ®!HUZ18I22 T paper®, the authors considered
a related problem with strong damping

t

[t (x, 0)|°u” (x,1) — Au(x, t) — Au” (x, 1) — / h(t — s)Au(x, s)ds — yAu, = 0.
0

They obtained the global existence result for y > 0 and the uniform exponential decay of the energy for y > 0. Lately, the decay
result has been extended by!® to the case y = 0.
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In a recent work''Z, Messaoudi and Tatar studied the following problem:

t
[t/ (x, )|’ (x, 1) — Au(x, t) — A" (x, 1) — / h(t — s)Au(x, s)ds = blu|"u.
0
By introducing a new functional and using a potential well method, they obtained the global existence of solutions and the
uniform decay of the energy where the initial data are stable in a suitable set. Han and Wang proved in''! the global existence

and the uniform decay for the following nonlinear viscoelastic equation with damping:
t
|t/ (x, O|Pu" (x,1) — Au(x, t) — Au” (x, 1) — / h(t — s)Au(x, s)ds +u' = 0.
0

It is well known that delay effects often arise in many pratical problems because these phenomen depend not only on the present
state but also on the past history of the system. In recent years, the behavior of solutions for PDEs with time delay effects has
become an active area of research, seeS?12202124 and the references therein. Datko proved in® that a small delay in a boundary
control is a source of instability. To stabilize a system involving delay terms, additional control terms will be necessary. In®
Nicaise and Pignotti considered the following wave equation with a linear damping and delay term inside the domain

U, — Au+ pyu, + pou,(t —7) = 0.

The stability was proved in the case 0 < p; < p,. Kirane and Said Houari in''?

wave equation with a linear damping and delay term

investigated the following linear viscoelastic

1

u, — Au+ / gt — s)Au(s)ds + pu, + pou,(t —7) = 0.
0
They showed that its energy was exponentially decaying when 0 < p, < y,. For the plate equation with time delay term, Park
consider in“! the problem

t

u, + A%u — M(||Vul|®)Au + o(1) / gt — s)Au(s)ds + ayu, + ayu,(t — 7v) =0,
0

which can be considered as an extensive weak viscoelastic plate equation with a linear time delay term. The author obtained
a general decay result of energy by using suitable energy and Lyapunov functionals. Yang in# studied initial boundary value
problem of Euler-Bernoulli viscoelastic equation with a delay term in the internal feedbacks,

t
u, + A%u — / g(t — $)A%u(s)ds + pyu, + pou,(t — 7) = 0.
0

A global existence and uniform decay rates for the energy was proved. Recently” showed the energy decay of solutions for the
following nonlinear viscoelastic equation with a time delay term in the internal feedback

t
u, + A%u — div (F(Vu)) — o(1) / g(t — $)A%u(s)ds + ,ullutl"’_lu, + py|u,(t — T)l'”_lut(t —-7)=0.
0

In the present paper, we devote our study to problem (I)-@). We will prove the global existence of weak solutions and the
uniform exponential decay of the energy for this problem by using Faedo-Galerkin method and the perturbed energy method,
respectively. Our paper is organized as follows. In Section 2, we present the assumptions and main results. Section 3 we prove
our main results.
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2 | ASSUMPTIONS AND MAIN RESULT

Let us consider the Hilbert space L?(Q) endowed with the inner product (, ) and the corresponding norm ||

the sobolev space H, g(Q) endowed with the scalar product
(u, U)Hg(g) = (Au, Av).
We define forall 1 < p < oo and u € LP(Q),

IIuIIﬁ=/Iu(X)I"dx, and |lull = [jull,.
Q

19

We introduce as in"~ a new variable

z(x,0,1) = u,(x,t —70), x€Q, 0€(0,1), t>0.

Then we have
7z,(x,0,1) + zo(x, 0,1)=0.
Therefore problem (I))-() is equivalent to
[ (x, 0)|Pu” (x, 1) + A%u(x, 1) — Au" (x, 1) — M (|| Vul|*) Au(x, 1)

t

—/ h(t — s)Azu(x, s)ds + ﬂlg(u’(x, 1)+ ug(z(x,1,1)) =0,
0

7tz,(x,0,1) + zp(x, 0,)=0, xeQ, o0€(0,1), t>0,
z(x,0,1) =u'(x,1), xEQ, t>0,

u(x,1)

_ XD 6 a0 1> 0,
n

u(x,0) = uy(x), v'(x,0)=u(x), x €Q,

Z(-x7 o, 0) = f()(x9 _OT)7 X € Qv % € (O’ 1)

To state and prove our result, we assume the following hypothesis
(A1) Assume that p satisfies

O<p§i2 ifn>3, 0<p<oo ifn=1,2;
n_

(A2) Assume that M € C!(R,) satisfies
Imy >0, M(A)>my, ¥ A>0.

Jy,6, M(A)<6A7, VA1>0.
Ja, B, |IM' (W) < pA%, ¥V A>0.

(A3) The kernel function 2 : R, — R7 is a bounded C ! function such that

o0

1 —/h(s)ds=ﬁ1 >0,
0
and we assume that there exist a positive constant { satisfying

W) < =¢h(), t>0.

-||. We also consider

&)

(6)

)

®)

®

(10)
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(A4) g : R — R is an odd non decreasing function of class C' such that there exist ¢;,a,, a, positives satisfying
') <¢, VseER,
a;5g(s) < G(s) L apsg(s), Vs eR,
where G(s) = [ g(d1, lim,_, ., §(s) = +oc0 and ayp, < o ;.
First We state some lemmas which will be used in the next sections.

Lemma 2.1. For 2 € C'([0, +oo[,R) and ¢ € C'(0, T; L*(Q)), we have

t

/ h(s)ds [lleOI* — (hOe)®) |,

0

1d

t
_ / __l 2 1o -
//h(t $)@(x, )@ (x,1)dsdx = 2h(t)II(p(t)II +2(h o)) +
Q 0

where (hJ@)(1) = [y h(t = 9)llp(s) — p()||ds.
Lemma 2.2. Let @ is a convex function of class C!(R). The Legendre transformation of @ is defined as follows

®*(s) = sup(st — O(1)).

teR

If @' is an odd and lim @'(s) = +o0, then

D*(s) = s(@) () = D (@) 7'(s)), VsER,

s—>+00

and satisfies the inequality
st <@ (s) + P@), Vs, t €R.

The energy associated with problem (3)-(I0) is given by

1 1
E(t) = W OI1°F + EuAu(r)né + Enw’(r)n2

_1 |
p+2 pt2
t

+%A7(||Vu(t>||2)—§ / h(s) ds | || Ao
0

an

1
+%(hI:IAu)(I)+§//G(Z(x,o,T))dodx,
Q 0

where M 1) = fo/1 M (t)dt and & is a positive constant such that

1— —

Sl —a) P ko

a @
Theorem 2.3. Letu, € Hy(QNH?*(Q),u; € H}(Q)and f, € H,(Q, H'(0, 1)) satisfy the compatibility condition f(-,0) = u,.
Assume that (A1)-(A4) hold. Then (B)-(I0) admits a weak solution

u € L¥([0,0); Hy(Q) N H*(Q)), u' € L=([0, 00); Hy(Q)), u” € L*([0,0); Hy(Q)).
z € L¥([0, 00); Hy(Q X (0, 1)), z' € L¥([0, 0); L*(Q % (0, 1)),
G(z(x,0,1) € L*([0, c0); L1(Q % (0, 1))).

Moreover, if E(0) is positive and bounded, then for every #, > 0, there exist positive constants k and K such that the energy
defined by (2.11) possesses the following decay:

E() < Ke™, vt >1,. (12)

3 | PROOF OF THE MAIN RESULT

We will divide the proof into two steps: in the first step, we will use the Faedo-Galerkin method to prove the existence of global
solutions, where the second step is devoted to proving the uniform decay of the energy by the perturbed energy method.
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Step 1. Existence of weak solutions.
Let T > O be fixed and let (w;),cn+ be an orthogonal basis of H 3@ n Hg(Q) with w, being the eigenfunctions of the
bi-Laplacien operator subject to the boundary condition

) . ow; .
Aw;, =Aw;, inQ, w;,=—=0 1in0dQ.
on
By the linear elliptic operator theory described in*?, we have w ; € H™"(E) N HS(Q), m € N. Now we denote by W, =
span{w;, w,, ..., w; } the subspace generated by the first k vectors of the basis (w),),cn-+. By normalization, we get ||w;|| = 1. Now

we definie for 1 < i < k the sequence as follows @,(x,0) = w,(x). Then we may extend @,(x, 0) by ¢,(x, 0) over L*(©2x]0, 1[)
and denote Z, the space generated by ¢, ..., @,. For any given integer k, we consider the approximate solution (i, z;)

k k
(1) = Y g (Ow(x),  z(x, 0,0 = Y hy(e,(x, 0),
i=1 i=1

which satisfies
(uf (1w} (1), w) + (A (1), Aw,) + (Vi (1), Vw,) + M|V, (DII) (Vi (1), Vw,)
- / h(t — $)(Aug(s), Aw)ds + p, (8w, (1), w;) + pr(g(24 (., 1,1), w;) = 0, 13)
0
2, (x,0,1) = u; (x,1),

(T4 (D) + 24, (1), @) 12210, = 0 (14)

w0, (0) = ugy, w (0) = uyy, 2z,(0) =z (15)

wherei =1,k

k k k
Uy = Z(uo’ WIW;, Uy = Z(”p WHW;, Zo, = z(fo’(ﬂi)y(gx]o,u)(ﬂi
i=1 i=1 i=1
and for k - +o0
g, = Uy in HX(Q) N H(Q),
uy —uy in HX(Q), (16)
Zor = fo in Hy(Q, H'(0,1)).
Taking account of assumption (A1), H)(Q) = L***(Q), then u} € L*"*D(Q), |u}|” € L
generalized Holder inequality, the nonlinear term in (3.1)

2p:

+1
’ )(Q) and w;, € L*(Q), from the

WNW%@MU=/WW%%WSWﬂ%mwmmeN
Q
make sens. According to the standard of ordinary differential equations theory, the finite dimensional problem (I3)-(I5) has a
solution (g;, h;,) defined on [0, 7, [. Then we can obtain an approximate solution u, and z, of (I3)-(15) in W) and Z, respectively
over [0, 7, [. Moreover, the solution can be extended to [0, T'] for any given T by the first estimates below.
Now we derive the first estimate. Multiplying by g/, (1) and summing with respect to i, we conclude that

t

%{;}ﬂ%mmﬁ+ngmW+§w%mW+%ﬁvamwﬂ—/ﬁa—mmwmA%mws

+4y / uy (x, g (u (x, 0))dx + p, / ) (x,0g(z,(x,1,0)dx = 0.
Q Q
Applying lemma 2.1 with ¢ = Au,, become
t

d[l
dt

IO+ 1A + LIV 01F + LRV 0O1) = 3| [ 506 ds 12001 + L 30Aw)0)

0 (17)
=—pu /u;c(x, t)g(u;c(x, N)dx — y, / u;c(x, Ng(z(x,1,1))dx — %h(t)HAuk(l)H2 + %(h’DAuk)(t).
Q Q
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We multiply equation (14) by £g(z(x, o, 1)) and integrating over Q X (0, 1), we obtain

1 1
5/ / Zk[(x’ 0’ t)g(zk(x7 0, t))d@dx = _g / / Zko(x’ 07 t)g(zk(x9 0’ I))d/’dx
Q 0 Q 0

1
d
=_§//%<G(zk(x,o,t)))d0dx-
Q 0

Hence

1
.fi / / G(z(x,0,1)dodx = —é / G(z(x,1,1)dx + é / G(u;((x, N)dx. (18)
dt T T
Q 0 Q Q
Combining (I7) and (I8), we obtain

E ()=~ /u,'((x, Ngu (x,0)dx — p, / U, (x,0)g(z,(x, 1,0))dx — %h(t)IIAMk(t)II2 + %(h,DAuk)(t)
Q

° : (19)
G(z,(x, 1,0)dx + - / G, (x,1))dx.
Q Q

_¢
T

From assumption (A4),we knew that G is a convex function of classe C?, G’ = g is an odd and lim
lemma 2.2, we deduce

G’ (s) = +oo0, then by

s—>+00

G*(s) = 5g7'(5) = G(g7'(s)), Vs €R.
Applying these equality with s = g(z,(x, 1,¢)), we obtain
G*(g(zk(x’ 15 t))) = Zk(x9 17 t)g(zk(x9 17 t)) - G(Zk(x9 17 t))’
By using inequality in lemma 2.2 together with (A4) for s = g(z,(x, 1,1)),t = —u;((x, t) and G is even function, we get
— u, (x,1)g(z;(x, 1,1)) < G*(g(z4(x, 1,0)) + G(=u (x,1)),
= Zk(x9 19 t)g(zk(x9 19 t)) - G(zk(x9 13 t)) + G(u;c(x3 t))’ (20)
< (1= a))z(x,1,08(z(x, 1,0) + ayu; g (W)
From (T9), (20) and assumption (A4), we have

E) < —%h(rnmuka)uz + %(h’DAukm

5“2 / ’
- /’ll - - = MZaZ uk(x’ t)g(uk(x9 t))dx
T (2D
Q
say
- (/41 - Mz%) zi(x, 1,08(z,(x, 1, 1))d x.
Q
Integrating over (0, 7) and using assumption (A3), we conclude that
t t
E (1) +0, / / u (x, g (u (x,1))dx + 6, / / z,(x, 1,0)g(z,(x, 1,1))dx < C,. (22)
0 Q 0 Q

where
$ay $ay
0, = (/41 I —hay ), 0, = (Hl I _ﬂ2a2>’
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and C, is a positive constant depending only on ||u0||H§(Q), [l ”H(} «@ and || /ol L2x0.1))- Noting (A2), (A3) and 1| we obtain
the first estimate

1
lu, ON753 + 1Aw DI + 1V, DI + 1V DOI + (hTAu)@) + € / / G(z;(x, 0,1) dodx (23)
Q 0

t t
+ / / w (x, $)g(u, (x, s))dxds + / / z,(x,1,5)g(z(x, 1, 5))dxds < C,,
0 O 0 Q

where C, is a positive constant depending only on ||u0||H3(Q), [Ju; ||H(;(Q), 1 /ol L2@x0.1))> Mos B> &, 7, 0, and 6.
It follows from (23) that

u, is uniformly bounded in L*(0, T; HS(Q)),

u), is uniformly bounded in L*(0,T; Hy (),

G(z,(x, p, 1)) is uniformly bounded in L*(0, T'; LY@ x (0, 1)),

ul g(u}) is uniformly bounded in L'(Q x (0,T)),

7. (., 1,.)8(z,(., 1,.)) is uniformly bounded in LY(Q x (0,7))).

Then, we derive the second estimate. Substituting w; by —Aw; in , multiplying by gl.’ ., and then summing with respect to i,
it holds that

1d

37 IVAROIP + 1Au,01] - / Ju (e, 0170 (x, D) A (x, D x
Q

+ U / |Vu;€(x, t)|2g'(uk(x, N)dx + p, / g (z,(x, 1, t))Vu;((x, HVz.(x,1,0)dx
Q

Q
t

— / h(t — s)/ VAu, (x,s)VAu (x,)dxds + / M (|| Vu(O)1*) Auy (x, DA (x,0)dx =0
0 Q Q
Using lemma 2.1 with ¢ = VAu,, we have

t

1d
sallt - / h(s)ds [ IV Au|I* + | Auy 1> + M (1| Va )| Ay |1 + hOV Awy (1)
0

= | e = M P i P Vi
J 24

+ U / |Vu2|2g’(uk)dx + u, / g (z;(x, 1,))Vu, Vz, (x, 1, 1)dx
Q Q
1 1
= —ShOIVAu | + S WOV Au)(@).
Substituting ¢; by —Ag; in (14), multiplying by A,,, summing with respect to i and integratin over ¢ € (0, 1), it follows that
T d 2 1 2 1 ’ 2 _
EE”VZI‘(I)”LZ(QX(O,I)) + Ellvzk(" 1’ t)” - Ellvuk(t)” - 0 (25)

Using the Green’s formula, we get

—/luﬁ(l"u;’Au;{dx = %/|u;((x,t)|”|Vu;{(x,t)|2dx—/|u;€(x,t)|"VuZ(x,t)Vu;{(x,t)dx. (26)
Q Q Q
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Combining (24) to (26), we obtain
t

1d

2dt
0

1
+Tllvzk(t)||i2(gx(0’1)):| + E”VZk(" 19t)”2 + ﬂ] / |Vu;€|2g,(uk)dx
Q

1
= / |l |PVu! Vi, dx — p, / g (z;(x, L,n)Vu, Vz (x, 1, 1)dx + §||Vu;((t)||2
Q Q
1 1
+M (Vi ) Aug|2(Vit, Vi) = ShOIVAu|1? + S (W OV Au)(@)

From Young inequality we have, for all # > 0, that

2
ab < na* + b—, where a,b € R*.
4n +

Assumption (A2), (23) and using Young’s inequality with # = 1/2, we obtain

M'(IVu ) Aw 1> (Vi Vi)
< M'(IVu I 1 Au P Vay [ Ve |

1 2 1

< 5 (M AValP) A Va1 + 1V 1P
1 ) c

< SNV A1t + =

ﬂZ C22a+3 + C2
<
From the generalized Holder inequality and Sobolev embedding theorem H. g(Q) — H é (Q) & L2P*+D(Q), we get

[ WPV < W 19 e 190
Q

IN

1
oo N A G VATTAZZATR

From Young inequality and (23)), we deduce

2(p+1)Cp
[ 1PV Vi dx < n||Vu" || + ———2 || A |12
Vil Vi X = mi vy 4 k
Q
Similary, Young inequality and assumption (A4) leads to
c)*C
~ty / Vil Vz,(x, 1,0g (z(x, 1,0) < 0l V2, (. Lol + ("24‘#

Q
Taking account to (28)-(28) into (27) yields

t

1d
sl - / h($)ds |11V Au|l* + IAG P + MUV )l Au 1 + OV Aw)@) +2 / CARNEARCE:
Q

0

1
+r||Vzk(t>||2Lz(Qx(o,l))] + G = mIVZG LI+ / Vi, 1°g' () dx
Q

2(p+1) c’

s 1 1
< V! IIP + ——2 (| Au) |I* - 5h(z)||VAuk||2 + §<h’DVAuk)<t> + Cy(n).

4n

—— 1—/h(s)ds ||VAuk||2+||Au;||2+M(||Vuk||2)||Auk||2+h|jVAuk(t)+2/|u;|ﬂ|vu;|2dx
Q

@7

(28)

(29)



AUTHOR ONE ET AL 9

Multiplying by gl’]’( and summing with respect to i, it holds that
[ i+ v
Q

t

=—/uZAZukdx+/h(t—s)/Auk(x,s)AuZ(x,t)dxds
Q

Q 0

- / M|V, |1)Vu, Vil dx — p, / w, gW))dx — p, / ul! g(z"(x, 1,1)dx.
Q Q Q
Differentiating with respect to ¢, multiplying by h; . and summing with respect i, it follows

Td 12 1 d 2

_— + —— = 0, 30
3 gl + 5 ol (30)
Integrating (30) with respect to ¢ € (0, 1) and summing with (3.28), we obtain that

2 2, 7d 2 1 )
/ |y 171 17dx + |V ||* + EE“Z,’(HU(QX(OJ)) + §||Z,’((1,I)||
Q

t

=_/u;;AZukdx+/h(t—s)/Auk(x,s)Au;g(x,t)dxds+%uu;’nz (31)
Q

Q 0

- / M(||Vu, |1)Vu Vil dx — p, / w!g))dx — p, / ull g(z"(x, 1,1))dx.
Q Q Q
In what follows, we will estimate the right hand side in (3T). Using Green formula and Young’s inequality, we get

/uZ(x, DA (x,0)dx = —/VuZ(x, DV Au, (x, t)dx
Q Q

1
< AV OI + 2 IV A OIF. (32)
Applying Cauchy-Schwarz inequality and Young’s inequality, we obtain from assumption (A2) and that

- [ MOV < 81T P9
Q

2 ~2r+1

< |V ||* + —2—. 33
< llVe/|l n (33)

Similarly, we have

t
/ h(t —s) / Auy(x, s)Au (x,1)dxd s
0 Q

t

2
sn||vu;g||2+4i/(/h(r—snmuk(s)ws) dx
n

Q 0
t

2
gn||Vu’k’||2+4in/(/h(t—s)(wAuk(s)—VAuk(r)|+|VAuk(t)|)ds) dx

Q 0
1
= ||V ||> + —1.
nllVu |l pm
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Applying Holder’s inequality and Young’s, we get
t 2 t 2
1] < /h(s)ds ||VAuk(t)||2 +/ /h(t— $)|VAu,(s) = VAu, (t)|ds | dx

0 Q 0
t t

+ 2/ / h(t — s)|VAu,(s) — VAu,(t)|ds / h(t — s)|VAu(t)|ds | dx

o \o 0
t 2 t 2
<2 /h(s)ds ||VAku(t)||2 + 2/ /h(t — )|VAu,(s) = VAu, (t)|ds | dx.
0 e \o

<2(1 = B2 IVAwOI* +2(1 — B)(ROVAu (@),

then, we obtain estimation
t
/h(t - s)/Auk(x, $)Au! (x, t)dxds
0 o (34)
a-8) (- ﬂ )
<l VP + = S IVAWOI + =, == (HOV Au)(0).

And also by Young’s inequality and Sobolev embedding theorem, we obtaln

2
M
—H / ng(uL)deﬂCSZIIVMZIIZ+ﬁ / |g () dx. (35)
Q Q
M2
43 / u;gg(zk(x,l,z»dxSnC§||Vu’k’||2+ﬁ / lg(z*Cx, 1,0)Pdx. (36)
Q Q

Taking into account (32)-(36) into (31)) yields

C2

’ "2 2 s " 2, td L, 2
/ i 9 1u! P x + <1 ~3-21C2 - = >||Vuk<t>|| + 2O gy + 310
Q

2 2p4l (37
20-p) +1 5 ) , &G ﬁ1
< TIIVA u (0| + — Ig(uk)l dx+ —= Ig(zk(x,l,t))l dx + —— pm + —— (hOVAu)(®).
Thus from 29), (37), we obtain
t
1d
EE[ /h(S)dS IV Au|I* + | A, 12+ M(||Vu]? )||Auk||2+(h|:|VAuk)(t)+T||Z ||Lz(QX(01))
0
1
+2/|u 1?1V | dx+T||Vzk(t)||L2(QX(01))] (E—n)IIVzk(.,l,;)||2+,u1/IVu;{|2g’(uk)dx+/|u;€|ﬂ|u;€’|2dx
C? 1
<1—4n 211C2——>|IV (R EACDT 8
2(p+1) ~p
21— ;) + 1 c
< 2P Ly ol + —/ 16 dx+—/|g<zk<x Lopldx + =2 aul |12
4n 4n
ﬂ 2 ~2r+1
! 1(hDVAuk)<t>+ i DVAuk><t>——h<t)||VAuk||2 + Cy().
Using (A4), @ and the mean value theorem, we obtain
/Qr |g(u;{)|2dXdS = /Qr lg(u) — gO)]|g(w))|dxds (39)

< ¢ /Qr gupu dxds < ¢;C,,
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and / lg(z,(x,1,9)*dxds < ¢,C,, where O = Qx(0,T). (40)
Or
Integrating over (0, T), using (39), (@0), and (A3), it yields

1

1- / h(s)ds | IVAu|* + | Aw |1? + MUV )| Aw 1 + (ROVAu)@ + 711212 001y, T 2 / lug |1V, |*d x
Q

0

t t t
+T||Vzk(t)||iz(gx(0’l))+(1—211)/||Vzk(.,1,s)||2ds+/||z;{(.,1,s)||2ds+2//|u;€|ﬂ|u;€'|2dxds
0 0 0 Q
t

t
+(2—8n—4ncj—c3)/||vu;('||2ds+2y1//|vu;|2g'(uk)dxds 41)
0 0 Q

! 2p+D) o 227+l

20-p)* +1 / 5 pie,Cy  uicC, Ci7UC) / . (6°C)" +4C,m)T

< - - VA ds + + + A ds +

< G IVAu,||~ds oy oy |Au, ||°ds o
0 0

1-5
+— [ oOvau)©ds + ¢,
0

where C; is positive constant depending on ||ug || 34 Q) [[oe |l " and || foll H@x(0,1))" Taking # suitably small in Ib and using
Gronwall lemma, we obtained the second estimate.

t
IV A O + 186, O + 12O 0. + 1V 2O 2001 + / IVz, (. 1,9)|2ds
0 42)

t t
+/||Vu;(’(s)||2ds+/||z;c(.,1,s)||2dsSC4,
0 0

where C, is positive constant depending on [[ugl 32y 1411115 1 foll 11 @x0.1))» 2> 8(0), mg, By, 7, and T'. Estimate l) implies
0 0 0 ’

u;, is uniformly bounded in L*(0, T; H3Q)n Hg(Q)),
u;, is uniformly bounded in L®(0,T’; Hé(Q)),
u}! is uniformly bounded in L*(0, T; Hy(Q)),
z,. is uniformly bounded in L¥(0,T; L*((0, 1); H, (Q))),
z;{ is uniformly bounded in L*(0, T’; L*(Q % (0, 1)), “43)
z,(., 1,.) is uniformly bounded in L*(0, T'; H,(Q)),
z}(., 1,.) is uniformly bounded in L*(0, T; L*(Q)).
By and z,, = —7z, then
z, is bounded in L*(0,T’; Hd Q% (0, 1))).

Applying Dunford-Pettis theorem, we infer that there exists a subsequence (u;) of () and u such that

u, = u weakly star in L*(0,T; H*(Q) n HJ(Q)), (44)
u, = u' weakly starin L*(0,T; HS(Q)), (45)
) =" weakly in L*(0, T; H (). (46)

By Aubin’s lemma, it follows from (#4)-(46) that there exist a subsquence of u; still denote by u; such that

u; — u strongly in L*(0, T; H;(Q)) 47)

Sy gl
u; — u’ strongly in L*(0,T; H,(Q)) (48)
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which implies Vu; — Vu, Au; — Au and u; — ' almost everywhere in Q X (0, T'). Hence,

|u;.|"u;, — |u'|’u’  almost everywhere in Q X (0, T). (49)

M(||Vu;|H)Au; - M(||Vul*)Au  almost everywhere in Q x (0, T) (50)
On the other hand, by the Sobolev embedding theorem and the first estimate, this yields

T 26+
”ll”;lpu;”Lz(o,T;Lz(Q)) = /0 ||”;||2T(p+1)dt
D v 13 Var 1)
cf(”H)sz(’)H)T.

Thus using (A2), , , , and the Lions lemma (12,p 12.), we derive

IANIA

| |Pu’; — |u'|’u’ weakly in L%(0,T; L*(Q)). (52)
M(|[Vu;||))Au; =~ M(||Vul>)Au weakly in L*(0,T; L*(Q)) (53)
g(u;) = g(u) weakly in L*(0,T; L*(Q)). (54)
Similarly, by applying the Dunford-Pettis theorem, we infer that there exists a subsequence (z;) of (z,) and z such that
z, = z weakly star in L=(0,T; Hj (& x (0,1))), (55)
z, =z’ weakly star in L*(0, T} L*(Q % (0, 1)), (56)
2, = 2z, weakly in L*(0,T; LA(Q % (0, 1)),
z,(.,1,.) is bounded in L*(0, T; H,()), (57)

z}(.,1,.) is bounded in L*(0, T; L*(Q)).

By Aubins lemma, it follows from @, @, @ and @ that there exists a subsequence of z; still denoted by z; and
subsequence of z j(., 1,.) still denoted by zj(.l, .), such that

z, = z strongly in L2(0, T; L*(Q x (0, 1))),
7, (. 1,.) = z(., 1,.) strongly in L*(0,T; L*(Q))
Also by (40), and Lions lemma, then
g(z,(, 1,.)) = g(z(., 1,.)) weakly in L*(0, T; L*(Q)).

Let D(0, T) be the space of C* functions with compact support in (0, T'). Multiplying (I3), (I4) by 6 € D(0, T) and integrating
over (0, T), it follows that
T T T

- —/Hl_ I /(Ilu;(t)ll”u;(t), w[)e’(t)dt+/(Auk(t),Aw,.)e(t)dt+/(Vu;’(t),vwi)9(t)d;
0

0 0

T T t
+ / M||Vu, ()1 (Vuy (£), Vw,)0(1)d1 + / / h(t — s)(VAu, (1), Vw)O(t)d sdt 58)
0 0 0

T T
+ 1 /(g(u;((t)), w)0)dt + p, /(g(zk(~, 1,0), w)o(t)dt = 0,
0 0

and
T T

T /(Z;{, q’i)LZ(Qx(O,l))a(t)dt + /(Zko, ¢i)L2(QX(O,1))9(t)dt =0. (59)
0 0
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Noting that {w; }?, is basis of H3(Q)n Hg(Q) and {¢,;}7

; 2, s basis of L*(Q % (0, 1)), we can pass to the limit in , and
obtain

t
[ |Pu”" + A%u— Au” — M(||Vul|®)Au — / h(t — s)A%u(s)ds
0
+ uy g + pp8(2(,1,.)) =0, in L*(0,T; H'(Q)),

vz +2z,=0, in L*0,T; L*(Q X (0,1)))

for arbitrary T > 0. From - , - and lemma 3.3.7 in®%, we conclude ;(0) — u(0) weakly in HX(Q), u/,(0) = u'(0)
weakly in H}(Q) and z,(0) — z(0) weakly in L2(Q x (0, 1)). Hence by , we have u(0) = uy, 1'(0) = u; and z(0) = f,.
Consequently, the global existence of weak solutions is established.

Step 2. Uniform decay of the energy.
To continue our proof, we need to introduce three new functionals

@(z):L/|u’|/’u’udx+/Vu’Vudx.
p+1
Q Q

t t

Y = — / \%74 / h(t — s)(Vu(t) — Vu(s))dsdx — pj-_l/ | |Pu / h(t — s)(u(t) — u(s))dsdx. (60)
Q Q

0 0

1
Y(1) = / / e 2°G(z(x, 0, 1))d od x
Q 0

We set
Ft)=NE@) +¢,0()+¥Y@)+e,Y(1), 61)

where N, €, and ¢, are suitable positive constants to be determined later.
Proposition 3.1. There exist positive numbers k; and k; such that
koE(t) < F(t) < k, E(1). (62)

Proof. Using (TT)), we get
1
1Y()] < EE(t). (63)

Thanks to Young inequality and the Sobolev embedding theorem, we deduce

|D@)| S% /lu'|”u'udx + /Vu'Vudx
P
Q

Q
1 (p+ 1)_1 1 1 (64)
S p+2””'”23 YT Il + SV 12+ S 1Vul?
1 1pt+2 (p+ I 2 ) , 1 5
=— ———C"2QEW0)/B)* ) IVd 1> + =] Vul*.
_p+2||ll||,,+2+< 012 = (2E©0)/p)) [[Vu'|| +2|| ul|

By Youngs inequality and Sobolev embedding theorem, the second term in the right hand side (60) can be estimated as follows

= Jo 017 [y Bt = $)((t) - u(s))dsdx|

p+1
1 P2
< LIS+ (fy = ol - uolds ) dx -
1 p+1
< p—iz||u’||l’:§ + % (/0’ h(s)ds) J3 ht =) [ lu(t) — u(s)|"*2dxds

Z1
< LW + S (1 - g CERBE©)/ B (RDAW(),
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Thus, from (63) we obtain

(1-ppc? 1!
o) < SIVW P+ L(hDA 0+ —5 175 + + LD (4 gy s E0)/ )R (ROIAYD).

(p+2) (66)

From (63),(64). (66) and the choice of €|, €, and N, (62) can be established.

In order to obtain the exponential decay result of E(r) via (41, it is sufficient to prove that of F(r). To this end, we need to
estimate the derivative of F(r) first. Using (I)), we obtain

t

') ——|| W 11752 + 1V 1P = | Aull> = MVl Vall® + / h(t = s)(Au(s), Au(t))d's
0 (67)
—ul/u(x, He@' (x, t))dx—yz/u(x, Hg(z(x, 1,t))dx.
Q Q

By use of Youngs inequality and sobolev embedding theorem, we can estimate the right hand side of as follows:
fg ﬁ; h(t — s)Au(x, ) Au(x, s)dsdx < fg fot h(t — s)|Au(x, )| (JAu(x, s) — Au(x, t)| + |Au(x, t)|)dsdx
< Jy kOl AuN?ds + [, [y h(t = )| Aulx, )] |Au(x, s) — Au(x, 1)|dsdx (68)
< L+ fy i du@Pds + 3-(HOAw@).

-1 / u(x, Ng' (x, ))dx < unC| Au@)|)* + Z—};Ilg(u’(t))llz, (69)
Q

—H / ug(z(x, 1,0)dx < pnC2 || Aun)||* + Z—;ug(za, LI, (70)
Q

where 7 > 0. Here and in the following we use C; to represent the Poincare constant. From (A3), (68)-(70), we obtain

1
(1) < mIIVu’Ilﬁﬁ IV 17 = (1= (1= By + D+ ) = 4y + u)nC?) || Aul®

an
< =MV TalP + L g @I + L2 gz0, 10N + 5 HOAw )
n 4n 4n

Taking the derivative of ¥(7), it follows from that (6)

() = [ h(t — s)(Au(t), Au(r) — Au(s))dsdx
= Jo Bt = $)(VU' (1), Vu(t) — Vu(s))ds
+ fg fot h(t — )M (|| Vul|H)(Vu(@®), Vu(t) — Vu(s))d sdx
= Jo (o e = y8u(s)ds ) ( fy h@ = s)Butt) = Aus))ds ) dx
+u, fQ fot h(t — s)(u@) — u(s)gW' (1))dsdx
iy [y, fo At = )u(t) = u(s))g(z(x, 1,1))d sdx
—— Jo W@ = )W @1 (0, u(t) = u(s))ds = [y hSIIVU' @)]*ds
—=1 Jo R @117 ds

=L+ L+ L+ +I+ 1+
= Jo hOIVE OIPds = ~= [ h(s)llu! D)]|*dSs.
In what follows we will estimate I, ..., I, in (72).

(72)

1111 < nllAu()]® + ﬂl —— (hOAuw)(®), Vn > 0. (73)

() c?
|L] < nllVd' @) = ——= ' TAu)®), Vn > 0. (74)
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2 2 5CS2 2
|51 < (1 = pOMIVulPIIVull + 2 [ VulP (RO8w(0

5C?
< n(1 = BM(|Vull»||Vull* + 4—’;(2E(0)/mo)y(hDAu)(t)-

For I, in (72)), Applying Holder’s inequality and Young’s inequality, we get
t 2 t 2

[1,] < n/ /h(t—s)Au(s)ds dx+$/ /h(t—s)(Au(t)—Au(s))ds dx
Q

Q 0 0
t 2 t

<2n / h(s)ds| |Au®)]® + 2y + 4L) /h(s)ds (h™dAw)(t), VYn > 0.
n
0 0

By (A3), we obtain from that
1
|I,| < 2n(1 = B)*lAu@)|* + 2n + E)(l — B(hOAu)®), ¥n > 0.

Similarly,
M(h|:|Au)(t) Vi > 0.

151 < mnllg@)? + M(hDAu)(t)clﬂm Jo (%, 080 (x, D)dx +
Mz(l ﬁl)c (hDAM)(t)

1| < monllg(z(, L)|I> +
M(hmm)(n Vi > 0.

< ey fo 2(x, 1, 0g(2(x, 1, N)dx +

2
n 2(p+1) h(0)C
IL| <—— t
| 7|—p+1”u()||2(p+1) 4 ( +1)

2(p+1)
<= QEQ)||Vd|? -
P QEQ)? ||V || ot

2
< gy = MO
_p+1 4( +1)

where a, = C2"*V2E(0)). Combining - and — together, we arrive at

W) < LI (g =[S ) VW @I+ (1+201 = 5,)7) [l

‘e fQ u' (x, g (x, t))dx

————(W'OAu)(1)

2

(h OlAu)(r)

———— (W' OAw®), Vn >0,

st fo 206, 108G L 0Yx | (204 -+ LS ) (1= p) + L2 QEO)/myy | (OAw 0

(p+DROC?
—4(p+1m (W'OAu)(®), V>0

Taking also the derivative of Y’(¢) it follows from @ and (A4) that

1
Y'(t) = / / ez, (x, 0,1)g(z(x, 0,1))
Q 0

1
1 // [i(e_ZT"G(z(x, 0.1)) + 27e”3°G(x, o, t)] dodx
T do

Q
- / [e7>°G(z(x, 0,1)) = G/ (x,1))] dx = 2Y (1)
Q

—

T
-2t

/ z(x,1,0g(z(x, 1,1))dx.

a, , ae
<=2Y) + —= / u (x,)g(u(x, t))dx —
T
Q

Q

(75)

(76)

(77)

(78)

(79)

(80)

1)

(82)
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Then we conclude that from (61)),(71)), (8T) and (82) that for any # > #, > 0,
F'(t)=N E'(t) +ed' () + ¥ +6,Y' (1)
< =B I - [ — e —n (14 25)] IVWOIP = [e =01 = p)] B(IValP)
[e (1 — (=B +nm) = (4 + uz)nCZ) n(l +2(1 = )7 llAul?
g+ (g S ) a-p | craw (83)

(p+2)h(0)C? & epc
3 -] O - (Nel - ) fy ol (x 08 (x)dx

- <N02 _ - g, ,M) oo 206, 1,0g(2(x, 1,0)dx — 26, Y (1), ¥ >0,

where h, = /Ot(’ h(s)ds > 0, guaranteed by (A3). At this stage, we take € < A and # sufficiently small that

a2éh0—€1—n< p‘&) >0, as2 e, —n(l—p) >0,

and a, 2 ¢ (1-(1=B)A+n) —(uy +pu)nC2) —n (1+2(1—4)*) >0
2t

Choosing €, > for which

—26,Y(1) < —5//G(x,o, t)dxdo.

As long as €, €, and # are fixed, we choose N large enough that

27
€,ae €€ Hy
4n

2)h(0)C? C? 6C?
a5é€lﬁ_(p+ h(0) ] ) li+(2n+i+<m+u2> s>(1—ﬂ1 i

C
No, — 22 - en>0, NO,+

- Clﬂzrl > 07

and

2 4(p+ D 4n 25 4n
This applying the assumption (A3) and (83), we deduce
F'(1) < —a, W DI = a1V DI = as M (|| Vull®) — a,]| Aull?

p+2
(34)
— as(hOAw(®) — & / / G(x, 0.0)dxdo, Vi > 1,
hy—e . . ..
where a; = pee and 1i imply that there exists a positive constant M such that
F'(t) < —ME(1), Vt>1,. (85)
Combining (62) and (83)), we infer
F'() < _kMF(t)’ Vi > 1. (86)
1
Integrating (86) over (1, 1), it follows that
F(t) < F(ty)e 1, Vt>1t,. (87)

Consequently, (T2) can be obtained from (62)) and (87). The proof is complete.
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