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Abstract

The dynamic 13C labelling experiment, as an emerging experimental tech-

nique, can be utilized to investigate the intracellular metabolism under chang-

ing physiological environment. A well known in silico analysis in metabolic

flux analysis is the structural identifiability analysis. It comes from the fact

that some enrichment measurement sets cannot uniquely elucidate all intra-

cellular fluxes. To the best of our knowledge, the structural identifiability

analysis of dynamic isotope experiments is not available in the literature.

In this work, it is shown that if one measurement plan makes the dynamic

isotopic fractions balance equations structurally identifiable then for any ar-

bitrary small time interval the plan also makes the equations structurally

identifiable. Based on the fact, in order to resolve the local structural identi-

fiablity problem of the dynamic isotopic fractions balance equations approx-

imated with piecewise affine intracellular fluxes, one should check the local

structural identifiablity for the corresponding cascaded linear time invariant

system at each sampling point with the approach proposed in our earlier

work (Lin et al., Math Biosci. 2018; 300:122-129). Two simulated metabolic

networks are adopted to demonstrate the utility of the proposed method.

Keywords: Dynamic isotope experiments, Local structural identifiability,

Taylor series expansion, Dynamic cumomer balance equations, Linear

parameter varying systems
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1. Introduction

Isotope experiments1 have been widely utilized to qualitatively and quan-

titatively elucidate intracellular fluxes. Although valuable biological insights

can be obtained through qualitative isotope experiments2, the quantitative

isotope experiments are more popular in strain engineering3 and fermenta-

tion processes optimization4,5. Traditionally, to quantify intracellular fluxes,

cell culture has to be cultivated under steady state intracellular metabolic

condition. However, in practical, the cell culture is cultivated under changing

physiological environments. Not only concentrations of key metabolites such

as carbon and nitrogen sources are varying with respect to time, but also

pH and temperature are varying as well. This may result in the non-steady

state intracellular metabolic condition. The emergence of dynamic isotope

experimental technique6,7 is essential to investigate the cell metabolism under

changing physiological environment.

The framework of the dynamic isotope experiment is composed of three

steps. Firstly, the dynamic fraction balance equations for a metabolic net-

work that can be simulated for certain tracer configuration and certain intra-

cellular fluxes and pools are proposed. Secondly, the experiment is conducted

and the measurements with GC/MS or NMR are obtained at each sampling

point. Finally, the experimental fractions are fitted with the proposed net-

work.

In our recent work8, in order to make the computed isotopic fractions sta-

ble at the first step, the stability issue of the dynamic isotope experiment is
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investigated. However, at the last step of the experiment, the structural iden-

tifiability analysis issue is arose. It comes from the fact that some enrichment

measurement sets can not uniquely elucidate all intracellular fluxes. The goal

of the structural identifiability analysis of isotope experiments is to conduct

in silico analysis to verify that if the proposed enrichment measurement sets

can uniquely elucidate all intracellular fluxes. The flux identifiability analy-

sis issue for steady state isotope experiments has been investigated by some

researchers in the last two decades9,10,11. The structural identifiability is-

sue for isotopically non-stationary 13C labeling experiments is investigated

recently12. However, to the best of our knowledge, the investigation of the

structural identifiability analysis of dynamic isotope experiments is not avail-

able in the literature.

In this work, it is shown that if one measurement plan makes the dy-

namic isotope experiment of a metabolic network structurally identifiable

then for any arbitrary small time interval the plan also makes the network

identifiable. The cascaded linear time varying systems in dynamic isotope

experiments transfers to the cascaded linear time invariant systems at each

sampling point. For the cascaded linear time invariant systems, only one

single time point, for example, the initial time point, is necessary to achieve

the structural identifiability analysis12. Based on the fact, in order to resolve

the local structural identifiablity problem of the dynamic balance equations

of isotopic fractions approximated with piecewise affine fluxes, one can check

the local structural identifiablity with the Taylor series approach13 for the
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corresponding cascaded linear time invariant system at each sampling point.

The rest of the paper is organized as follows. Section 2 introduces the

formulation of cascaded linear dynamic models in dynamic isotope experi-

ments. In section 3, the method to conduct local structural identifiability for

the cascaded linear time varying systems approximated with the piecewise

affine intracellular fluxes is proposed. The method to obtain the optimal mea-

surements for dynamic isotope experiments is introduced in section 4. The

structural identifiability analysis for two simulated networks is conducted in

section 5. Section 6 concludes the work with discussion.

2. Cascaded linear time varying models in isotope experiments

This section introduces the formulation of cascaded linear dynamic mod-

els in dynamic isotope experiments. Method to estimate the piecewise affine

approximation of the intracellular fluxes is introduced6,14 in the section.

Under the metabolic unsteady state condition, the metabolic network

balance equations can be established as follows,

dc

dt
= Nv (1)

where N represents the structure of the metabolic network, v is the vector

denoting time varying external fluxes and intracellular fluxes, c denotes the

time varying concentrations of the intracellular metabolic pools.

Wiechert and his coworkers15 propose cumomer labeling systems to de-

compose isotopomer labeling systems into cascaded linear dynamic systems
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for isotopically non-stationary 13C labelling experiments. For dynamic iso-

tope experiments, after the transformation, one can also represent the dy-

namic cumomer balance equations as cascaded linear time varying systems

as follows,

bdiag([c1Ii,1, · · · , cLIi,L])
dyi
dt

= Hi(v)yi + di(yi′, v, tracers) (2)

such that

i′ < i for i = 1, ......, Nc

where yi is the time varying i-cumomer fractions with the ith weight, Hi is

the square coefficient matrix, di is the vector that is dependent on tracers

and previous cumomer fractions, Nc is the maximum weight of cumomer

fractions. ci is the concentration of the ith pool. Ii,l is the identity matrix

for the lth metabolic pool for the i-cumomer fractions, L is the total number

of intracellular metabolites. bdiag(.) stands for block diagonalization opera-

tor. The change of the external fluxes, for example, the rate of the feeding

stream, can result in the dynamics of cumomer fractions. The initial values

of cumomer fractions, yi,0, for i = 1, · · · , Nc, can be determined from the cell

culture state before the dynamic isotope experiments. The Eq. 2 for the

metabolic network reactions in Fig. 3 are listed in Table 3. From the result,

one can immediately observe:

1. The ith diagonal tuples of Hi are the negative values of the summation

of the influxes to the ith pool.

2. The summation of the tuples for each row of [Hi di] is zero.
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Since the number of samples is finite, the piecewise affine approximation

of the intracellular fluxes is adopted6,14 to approximately estimate the intra-

cellular fluxes and concentrations of the intracellular pools. Assume that the

cell culture is at the metabolic steady-state state at t0, such that C(t0) is

measured and v(t0) is determined from the steady state isotope experiment.

For sampling time, t1 to tK , one can define a first order polynomial function,

P1, for v(t) as follows

v(t) = P1(v(tk−1), bk, t) if t ∈ [tk−1 tk] (3)

for k = 1, · · · , K. bk is the slopes of the piecewise affine approximate of the

intracellular fluxes for the kth sampling time interval.

From Eq.1, one can obtain

dc

dt
= N1vd +N2vf +N3vext (4)

where vd is the dependent flux vector, vf is the free flux vector, vext is the

measured external flux vector. N1, N2 and N3 are composed of corresponding

columns of N for vd, vf and vext, respectively. Since the vext is measured, bk

is partially known such that

bk =













bk,vd

bk,vf

bk,vext













(5)
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One can define

b̄k =







bk,vd

bk,vf






(6)

as unknown parameters for k = 1, · · · , K.

v(t) and c(t) can be defined as

v(t) = P1(v(tk−1), bk, t) (7)

c(t) = P2(v(tk−1), bk, t, c(tk−1)) (8)

if t ∈ [tk−1 tk] for k = 1, · · · , K. P1 and P2 are the first order polynomial

function and the second order polynomial function, respectively.

Eq. 2 can be transformed as follows

dyi
dt

= H̄i(P1, P2, t)yi + d̄i(yi′, P1, P2, tracers, t) (9)

for i = 1, · · · , Nc. H̄i and d̄i are coefficient matrices. Note that in Eq. 9

the intracellular fluxes are piecewise affine approximated in t ∈ [tk−1 tk] for

k = 1, · · · , K.

Assume certain cumomer fractions are measured at [t1, · · · , tK ], one can

estimate b̄1 to b̄K with the following objective function

K
∑

k=1

‖yi,c(tk)− yi,m(tk)‖
2 (10)

where yi,c(tk) and yi,m(tk) are calculated and measured cumomer fractions at

tk, respectively, for k = 1, · · · , K and i = 1, · · · , Nc.
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Assume that certain measurements at each sampling time are obtained

for the linear time varying compartmental system, the goal of the dynamic

isotope experiments is to uniquely estimate the piecewise dynamic of intra-

cellular fluxes and the concentrations of the intracellular pools in Eq. 9 for

cell culture under certain cultivation condition.

Remark 1. In isotope experiments, the mass distribution vectors (MDVs)

are measured instead of cumomer fractions. The MDV is the measured mass

spectra for a certain fragment of metabolite molecular with a mass spectrom-

eter which can be represented as certain linear combination of isotopomer

fractions. Since there is a one to one relationship between isotopomer frac-

tions and cumomer fractions, the MDVs can also be regarded as a certain

linear combination of cumomer fractions. The relationship of MDVs, iso-

topomer fractions and cumomer fractions is shown in Fig. 1.

Remark 2. One can regard Eq. 9 as linear parameter varying systems16

which is a special class of nonlinear system. They can be regarded as an

extension of linear time invariant systems where the model parameters are

time varying.

3. Structural identifiability for dynamic isotope experiments

For certain initial conditions on cumomer fractions, intracellular fluxes,

concentrations of intracellular metabolites, measured external fluxes and

tracer composition, there exists the unique time trajectories of the mea-

sured fractions, for example, MDVs, and those of the concentrations of the
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intracellular pools through solving Eq. 1 and Eq. 217. However, as shown

in Fig. 2, given certain tracers and measured external fluxes, if one assumes

that there is an inverse system to map the trajectories of measured fractions

back to the trajectories of intracellular fluxes and those of concentrations of

intracellular metabolites, these trajectories could map back to several differ-

ent sets of trajectories instead of one unique set of trajectories. The main

contribution of the work is to propose a way to check the local structural

identifiability of the approximated model for dynamic isotope experiments

with piecewise affine fluxes.

3.1. Structural identifiability for cascaded linear time varying dynamic sys-
tems

The structural identifiablity condition for the dynamic cumomer balance

equations can be stated as follows,

Theorem 1. One measurement plan makes the cascaded linear time

varying system structurally identifiable if and only if it makes the dynamic

system structurally identifiable for any arbitrary small time interval of the

experiment.

Proof. The sufficient part of the theorem is straightforward, while the

necessary part of the theorem can be proved by contradiction.

Corollary 1. If and only if one measurement plan makes the resulting

dynamic system structurally identifiable at every sampling time point of the

dynamic isotope experiment then the plan makes the corresponding approx-

imated cascaded linear time varying dynamic systems with piecewise affine
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approximated fluxes structurally identifiable.

Proof. Theorem 1 indicates that the cascaded linear time varying dy-

namic system is structurally identifiable if and only if that the measurement

plan makes the system structurally identifiable at arbitrary time point. At

an arbitrary time point, the cascaded linear time varying systems turn out

to be the cascaded linear time invariant systems. As our earlier work12 in-

dicates that only one single time point, for example, the initial time point,

is necessary to achieve the structural identifiability analysis of the cascaded

linear time invariant systems. Therefore, if the measurement plan makes

the system structurally identifiable at every sampling point, then based on

the fact that there is an one to one relationship between the piecewise affine

approximated fluxes and the approximated pool sizes (Eq. 7 and Eq. 8)

and there is an unique line represented the piecewise affine flux between two

successive sampling points, one can prove the sufficient part of Corollary 1.

The necessary part of the corollary can be proved by contradiction.

3.2. Structural identifiability for cascaded linear time varying dynamic sys-
tems with piecewise affine approximated fluxes

From Corollary 1, the structural identifiability analysis of the approxi-

mated cascaded linear time varying dynamic systems with piecewise affine

fluxes can be conducted through the structural identifiability analysis of the

corresponding cascaded linear time invariant dynamic systems at every sam-

pling point. In this section, we extend the structural identifiability result

for isotopically non-stationary 13C labeling experiments12 to the cascaded
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linear time varying dynamic system for dynamic isotope experiments at one

sampling time point during the cultivation process.

[Lemma 2] Suppose that there is a vectorial function, ẑ(t, p), where p is

the parameter vector such that

dz

dt
= f(z, t, p) (11)

ẑ = g(z, p) (12)

For t = t0, if
¯̂
Z∞(t0, p) = [ẑT (t0, p), ˆ̇z

T
(t0, p), · · · , ẑ

(∞)T (t0, p)]
T is contin-

uously differentiable with respect to p, then ẑ(t, p) is locally structurally

identifiable at p∗ if ∂
¯̂
Z∞(t0,p)

∂p
|p∗ has full column rank.

Proof: Refer to Proposition 1 in Pohjanpalo’s work13.

The implication of Lemma 2 is that if an upper bound of the time deriva-

tives exists for the
¯̂
Z∞(t0, p), the local structural identifiability of Eq. 11 and

Eq. 12 can be determined at a single time point, t0.

[Theorem 2] For dynamic cumomer balance equations of dynamic iso-

tope experiments, Eq. 2, can be transformed to the equations as follows

dyi
dt

= H̃i(v)yi + d̃i(yi′, v, tracers) (13)

such that

i′ < i for i = 1, ......, Nc

Then, at each sampling time point (tj), ki,max = nyi such that for any k >

ki,max, y
(k)
i (tj, v, c) is a linear combination of yi(tj , v, c), ẏi(tj, v, c), · · · , y

(kmax)
i (tj, v, c)
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where nyi is the dimension of yi.

Proof: At one sampling time point, t = tj , one can obtain the extended

derivatives of the measured fractions as follows,



















yi

ẏi
...

y
(k)
i



















t=tj

=



















I

H̃i(tj)

...

H̃k
i (tj)



















yi,t=tj +



















0

I

...

H̃
(k−1)
i (tj)



















d̃i,t=tj (14)

From the Cayley-Hamilton theorem17, at each tj , one has

H̃
nyi

i (tj) + β(nyi
−1)H̃

(nyi
−1)

i (tj) + · · ·+ β0I = 0

such that

det(H̃i(tj)− sI) = snyi + β(nyi
−1)s

nyi
−1 + · · ·+ β0.

Therefore, if k > nyi , y
(k)
i (tj) is the linear combination of yi(tj), · · ·, y

(nyi
)

i (tj).

Since tj can be an arbitrary time point, one proves the Theorem 2.

In isotope experiments, the fraction measurements, for example, MDVs,

can be represented as the linear combination of cumomer fractions. Sup-

pose for an experimental setup, for each sampling point, there are totally

Nm such measurements. One can check that if, given measured fractions,

the metabolic network is locally structurally identifiable with the following

theorem.

[Theorem 3] Suppose that there are Nm weighted measurements for each
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sampling time, j = 1, · · · , J , which can be represented as the following













ŷ1
...

ŷNm













tj

=













D̃11 · · · D̃1Nc

...
. . .

...

D̃Nm1 · · · D̃NmNc

























y1
...

yNc













tj

(15)

. For, j = 1, · · · , J , the above equation can be presented as the following

Ŷtj = D̃Ytj (16)

such that Ŷtj = [(ŷ1)
T , ......, (ŷNm

)T ]Ttj and Y = [(y1)
T , ......, (yNc

)T ]Ttj . Fur-

thermore, if one defines

¯̂
Y (tj , v, c) =



















Ŷ

Ŷ (1)

...

Ŷ (kmax)



















tj

(17)

such that kmax = max(ny1 , · · · , nyNc
). The dynamic cumomer balance equa-

tion for dynamic isotope experiments, Eq. 2, is locally structurally identifi-

able at p∗(tj), p(tj) = b̄j , if the
∂
¯̂
Y (tj ,p)

∂p
|p∗ is full column rank.

Proof: From Theorem 2, for k > kmax, Ŷ (k)(tj) is the linear combina-

tion of
¯̂
Y (tj , p). Since

¯̂
Y (tj, p) is continuously differentiable with respect to

p, through Lemma 2, one can conclude that Eq. 2 is locally structurally

identifiable at t = tj if the
∂
¯̂
Y (tj ,p)

∂p
|p∗ has full column rank. The algorithm to

calculate
∂
¯̂
Y (tj ,p)

∂p
is introduced in Appendix A.

Remark 1: The structural identifiability condition is not directly related
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to the local optimality condition of the nonlinear least squares problem with

the objective function as defined in Eq. 10. In this work, a necessary and

sufficient condition similar to Theorem 3 in12 can be proposed as well for the

cascaded linear time varying dynamic systems to satisfy the local optimality

condition of the nonlinear least squares problem.

Remark 2: Although in this work the dynamic cumomer balance equa-

tions are utilized for the proposed structural identification analysis, the ap-

proach can be readily extended to other balance equations18,19,20 that can be

formulated in cascaded linear dynamic equations.

4. Method to obtain the optimal measurement sets

The numerical rank of the Jacobian matrices is difficult to determine due

to the numerical overflow of double data type. Isermann et al.9 adopt in-

teger arithmetic to determine the rank of them. The algebraic calculation

of the ranks of these matrices requires symbolic computation which is com-

putationally very expensive for large matrices. Furthermore, when the di-

mension of the system increases the coefficients of the Jacobian matrices can

result in overflow. In our recent work12, multiprecision computing toolbox

for Matlab21 is adopted to avoid overflow. The approach can be introduced

as follows,

I. If the smallest singular values of the Jacobian matrices are zeros, the

rational Jacobian matrices are either algebraic rank deficient or that the free

parameters are the zeros of the matrices.
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II. The very small smallest singular values are due to either numerical

errors introduced by round off errors or the free parameters are close to the

zeros of the rational Jacobian matrices. However, the algebraic ranks of the

Jacobian matrices should be full. In this work, if the smallest singular value

is less than the predefined threshold, the Jacobian matrix is regarded as not

full column rank. The threshold can be defined as the product of maximum

size of the Jacobian and eps(σmax) as in the rank function of Matlab where

σmax is the largest singular value of the Jacobian.

In the section, the optimal measurement sets issue for cascaded linear

dynamic systems is elucidated. One can state the problem as follows,

Given the cascaded linear time varying dynamic systems for a metabolic

network (Eq. 2) and the measured fractions (Eq. 15), what are the optimal

measured fractions needed to uniquely identify the trajectories of intracellular

fluxes and the concentrations of metabolite pools of the metabolic network

around the neighbourhood of the nominal values of them?

The measured fractions, Eq. 15, is error free. The optimal measurements

mean the minimal number of measurements. The optimal measurements sets

can then be determined as follows:

Step I. Assuming that measured fractions are obtained through Eq. 15,

calculate the Jacobian of the matrix as shown in Eq. 17 with respect to

the nominal free parameters, v∗(tj) and c∗(tj), at each sampling point for

j = 1, · · · , J .

Step II. Assume that only one measured fractions is needed. Gener-
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ate all possible measurement sets and the corresponding Jacobian matrices,

J∗

1 (tj), ..., J
∗

Nm
(tj) for j = 1, · · · , J .

Step III. Assume that all measured fractions are needed. Construct the

following matrix

Ĵ∗

Nm
(tj) =













J∗

1

...

J∗

Nm













tj

(18)

for j = 1, · · · , J . If every Ĵ∗

Nm
(tj) has full column rank, go to step IV.

Otherwise stop the algorithm.

Step IV. Start from the first combination of the measured fractions with

k = 1, construct the following matrix

Ĵ∗

k (tj) =













J∗

n1

...

J∗

nk













tj

(19)

where Ĵ∗

k (tj) is the Jacobian matrix of the selected measurement with max-

imum k measurements at the jth sampling time. J∗

n1
(tj), · · · , J

∗

nk
(tj) are the

corresponding Jacobian matrices in the current combination of the measured

fractions at the jth sampling time. If every Ĵ∗

k(tj) has full column rank,

record the measurements as one of optimal measurements sets. Otherwise,

go to the beginning of step IV to calculate the next Ĵ∗

k (tj) for j = 1, · · · , J .

The identifiability analysis stops when all combinations with maximum k
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measurements have been tested.

Step V. If any optimal measurements set has been found, then stop.

Otherwise, set k = k + 1 and go back to step IV.

5. Simulation case studies

5.1. A simple simulation case

A simple simulation case19 is adopted in this section to demonstrate the

utility of the proposed algorithms. The metabolic network as shown in Fig. 3

has three intracellular metabolite pools with six fluxes. v1 is the external flux

with assigned value. The atom transition information is listed in Table 1. The

dynamic metabolic network balance equations and the dynamic cumomer

balance equations are listed in Table 2 and Table 3, respectively. To simplify

the calculation, we assume that Nm = Nc and ŷi = yi for i = 1, · · · , Nc in

Eq. 15 in this section. The metabolic balance equation of the intercellular

pools is

dc

dt
= Nv

where

N =













1 −1 1 −1 −1 0

0 0 0 1 −1 0

0 1 −1 0 1 −1













At initial time, t0 = 0, cell culture is at steady state, v1 to v6, are equal

to 100, 110, 50, 20, 20, and 80 mmol/1010cell/hr, respectively. v1 and v6

are external fluxes. The concentration of the metabolites B,C and D are

0.012, 0.0071 and 0.0160 mmol/1010cell, respectively. The molar fraction of
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the A molecular labeled with 13C at the second carbon position is 0.5 while

the rest of the A molecular is not labeled. The initial conditions for Eq. 9

can be obtained through solving the corresponding steady state cumomer

balance equations. The cell culture is at steady state at the initial condition,

t0 = 0,, therefore, with D as the optimal measurement set, the system is

structurally identifiable with the chosen parameters9.

The corresponding approximated dynamic cascaded linear time varying

system with piecewise affine approximated fluxes is simulated with the bk

(Table 4) for k = 1, · · · , 4 for sampling time at t1 = 4, t2 = 6, t3 = 8, and

t4 = 10 hours, respectively. The resulting c(t) and v(t) are shown in Fig. 4

which indicates the system is under intracellular unsteady metabolic state.

The equations to describe the sizes of pools and the cumomer fractions at

M t ∈ (0 M tk] during the kth sampling interval such that M tk = tk − tk−1

are shown in the supplementary materials.

For this case, the external fluxes, v1 and v6 are measured. Therefore,

b̄k = [bk,v2 bk,v3 bk,v4 bk,v5 ]
T . The results of the local structural identifiability

analysis at nominal free parameters for t1 = 4, t2 = 6, t3 = 8, and t4 = 10

hours are shown in Table 5 and Table 6. As the results show, the optimal

measurement sets are B, C and D, respectively. It means that if all cumomer

fractions of any one of B, C and D are measured the free parameters of

the piecewise affine approximated fluxes for every sampling interval can be

uniquely estimated.
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5.2. A simulated TCA cycle case

The simulated TCA cycle as shown in Fig. 5 is chosen as the case study

in this section. There are six metabolite pools in the network. With totally

14 fluxes, there are 9 intercellular fluxes and 5 external fluxes. The atom

transition information is listed in Table 7. The dynamic metabolic balance

equations and the dynamic cumomer balance equations of the network are

listed in the supplementary materials. To simplify the calculation, we assume

that Nm = Nc and ŷi = yi for i = 1, · · · , Nc in Eq. 15 in this section. The

metabolic balance equation of the intercellular pools is

dc

dt
= Nv

where

N =















1 0 −1 0 0 0 0 0 0 1 −1 −1 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 −1 0 0 0 0 0 0 0 0
0 1 0 0 −1 1 −1 0 0 0 0 0 −1 0
0 0 0 0 0 0 1 −1 1 0 0 0 0 0
0 0 0 −1 0 0 0 1 −1 −1 1 0 0 −1















At initial time, t0 = 0, cell culture is at steady state, v1 to v14, are

equal to 101, 50, 10.4, 10.3, 50, 60.2, 20.0, 40, 20.1, 50, 90.5, 50, 40, and 50

mmol/1010cell/hr, respectively. v5, v8 and v10 are free fluxes. The concen-

trations of the metabolites PY R,ACCOA,CIT,AKG, SUC,OAA and CO2

are 0.0156, 0.0031, 0.0248, 0.0095, 0.0037, 0.0164 and 0.0135 mmol/1010cell,

respectively. At the initial time (t = 0), the external influx to α-ketoglutaric

acid pool is composed of tracers labeled with 13C at the second carbon posi-
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tion with molar fraction of 0.5, while the rest of the flux is composed of tracer

with 13C at all carbon positions. The influx to pyruvate pool is composed of

tracers labeled with 13C at all carbon positions with molar fraction of 0.5,

while the rest of the flux is composed of pyruvate with 13C at the first carbon

positions. The initial conditions for Eq. 9 can be obtained through solving

the corresponding steady state cumomer balance equations. The steady state

structural identifiability analysis shows that at the initial condition, t0 = 0,

with AKG or SUC or OAA as the optimal measurement set, the system is

structurally identifiable with the chosen parameters9.

The corresponding approximated dynamic cascaded linear time varying

system with piecewise affine approximated fluxes is simulated with the bk as

shown in the supplementary materials for k = 1, · · · , 4 for sampling time at

t1 = 4, t2 = 6, t3 = 8, and t4 = 10 hours, respectively. The resulting c(t) and

v(t) are shown in Fig. 6 which indicates the system is under intracellular

unsteady metabolic state.

For this case, the external fluxes, v1, v2, and v12 to v14 are measured.

Therefore, b̄k = [bk,v3 bk,v4 · · · bk,v10 bk,v11 ]
T . The results of the local structural

identifiability analysis at nominal free parameters for t1 = 4, t2 = 6, t3 = 8,

and t4 = 10 hours are shown in Table 8 to Table 11. As the results show,

the optimal measurement sets are PY R, CIT and SUC or CIT , SUC and

OAA. It means that if all cumomer fractions of PY R, CIT and SUC or

CIT or SUC or OAA are measured the free parameters of the piecewise affine

approximated fluxes for every sampling interval can be uniquely estimated.
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6. Conclusions

The dynamic isotope experiments make the traditional isotope experi-

ments applicable to quantify intracellular fluxes of the cell culture under the

changing physiological environment, for example, fed batch culture. The

piecewise affine approximated fluxes for every sampling interval are adopted

to approximate the corresponding cascaded linear time varying system.

A well known issue in isotope experiments is structural identifiability

analysis. It comes from the fact that some enrichment measurement sets

can not uniquely elucidate all intracellular fluxes. The goal of the structural

identifiability analysis of isotope experiments is to conduct in silico analysis

to verify that if the proposed enrichment measurement sets can uniquely

elucidate all intracellular fluxes. However, to the best of our knowledge,

the structural identifiability analysis of dynamic isotope experiments is not

available in the literature.

It is shown that in order to make the resulting linear parameter varying

system16 locally structurally identifiable, one should check the local struc-

tural identifiability of the cascaded linear time varying system at every sam-

pling time. At a specific sampling time, the cascaded linear time varying

system is transferred to the cascaded linear time invariant system. As our

earlier work12 indicates that only one single time point, for example, the ini-

tial time point, is necessary to achieve the structural identifiability analysis

of the cascaded linear time invariant systems. Therefore, the Taylor series

approach13 can be utilized to conduct the local structural identifiability of
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the resulting system at each sample time. The method to obtain the opti-

mal measurements for dynamic isotope experiments is also introduced in the

work.

The structural identifiability analysis for two simulated networks is con-

ducted to demonstrate the utility of the proposed method. Our in silico

analysis experience shows that the variation of physiological conditions, for

example, the variation of the intracellular fluxes and/or the configuration of

tracers affect the result of the structural identifiability analysis.
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Figure 1: The relationship between isotopomer and cumomer fractions for molecular A
with three carbon atoms and MDV fractions for the fragment of molecular A with two
carbon atoms.

Figure 2: The structural identifiability issue in dynamic isotope experiments.

24



Figure 3: A simple metabolic network.
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Figure 4: The simulated intracellular fluxes and sizes of pools for the example as shown
in Fig. 3.
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Figure 5: A simulated TCA cycle example.
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Figure 6: The simulated intracellular fluxes and sizes of pools for the example as shown
in Fig. 5.
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Table 1: Stoichiometry and atom transitions for the metabolic network reactions in Fig.
3.

Reactions Atom Transformations
1 A → B abc → abc
2 B → D abc → abc
3 D → B abc → abc
4 B → C + E abc → bc+ a
5 B + C → D + E + E abc + de → bcd+ a+ e
6 D → F abc → abc

Table 2: The dynamic metabolic network balance equations for the metabolic network
reactions in Fig. 3.

Pools Dynamic metabolic network balance equations

1 B dcB
dt

= (v1 + v3)− (v2 + v4 + v5)
2 C dcC

dt
= v4 − v5

3 D dcD
dt

= (v2 + v5)− (v3 + v6)
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Table 3: The dynamic cumomer balance equations for the metabolic network reactions in
Fig. 3.

Cumomer Fractions Dynamic Cumomer Balance Equations

1 B1xx cB
dB1xx

dt
= −(v1 + v3)B1xx+ v1A1xx+ v3D1xx

2 Bx1x cB
dBx1x

dt
= −(v1 + v3)Bx1x+ v1Ax1x+ v3Dx1x

3 Bxx1 cB
dBxx1

dt
= −(v1 + v3)Bxx1 + v1Axx1 + v3Dxx1

4 C1x cC
dC1x

dt
= −v4C1x+ v4Bx1x

5 Cx1 cC
dCx1

dt
= −v4Cx1 + v4Bxx1

6 D1xx cD
dD1xx

dt
= −(v2 + v5)D1xx+ v2B1xx+ v5Bx1x

7 Dx1x cD
dDx1x

dt
= −(v2 + v5)Dx1x+ v2Bx1x+ v5Bxx1

8 Dxx1 cD
dDxx1

dt
= −(v2 + v5)Dxx1 + v2Bxx1 + v5C1x

9 B11x cB
dB11x

dt
= −(v1 + v3)B11x+ v1A11x + v3D11x

10 B1x1 cB
dB1x1

dt
= −(v1 + v3)B1x1 + v1A1x1 + v3D1x1

11 Bx11 cB
dBx11

dt
= −(v1 + v3)Bx11 + v1Ax11 + v3Dx11

12 C11 cC
dC11

dt
= −v4C11 + v4Bx11

13 D11x cD
dD11x

dt
= −(v2 + v5)D11x+ v2B11x+ v5Bx11

14 D1x1 cD
dD1x1

dt
= −(v2 + v5)D1x1 + v2B1x1 + v5Bx1xC1x

15 Dx11 cD
dDx11

dt
= −(v2 + v5)Dx11 + v2Bx11 + v5Bxx1C1x

16 B111 cB
dB111

dt
= −(v1 + v3)B111 + v1A111 + v3D111

17 D111 cD
dD111

dt
= −(v2 + v5)D111 + v2B111 + v5Bx11C1x

28



Table 4: The slopes (mmol/1010cell/hr2) of the piecewise affine approximate of the fluxes
for each sampling time interval for example shown in Fig. 3.

v1 v2 v3 v4 v5 v6
b1 0.51 0.22 0.5 0.39 0.35 -0.03
b2 0.15 0.20 0.5 0.40 0.40 0.70
b3 0.13 -0.70 -0.5 -0.40 -0.40 -1.40
b4 -1.70 0.20 0.5 0.40 0.40 0.70

Table 5: The local structural identifiability analysis results of the cumomer balance equa-
tions of the metabolic network reactions in Fig. 3 (Continuous).

t1 = 4 hours t2 = 6 hours
σmax σmin threshold rank σmax σmin threshold rank

∂ȲB

∂p
1.48× 1018 4.76× 1012 1.2× 104 4 7.71 × 1020 3.41 × 1015 6.2× 106 4

∂ȲC

∂p
2.74× 1017 2.76× 1011 7.4× 102 4 1.90 × 1019 7.09 × 1012 9.4× 104 4

∂ȲD

∂p
8.27× 1017 2.83× 1012 6.0× 103 4 1.92 × 1020 2.25 × 1014 1.5× 106 4
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Table 6: The local structural identifiability analysis results of the cumomer balance equa-
tions of the metabolic network reactions in Fig. 3.

t3 = 8 hours t4 = 10 hours
σmax σmin threshold rank σmax σmin threshold rank

∂ȲB

∂p
3.46× 1015 1.46× 1010 2.3× 101 4 7.07 × 1016 6.49 × 1010 3.8× 102 4

∂ȲC

∂p
6.59× 1014 1.59 × 108 2.9 4 2.81 × 1015 4.13 × 108 1.2× 101 4

∂ȲD

∂p
3.26× 1016 1.82× 1011 1.9× 102 4 6.98 × 1016 1.92 × 1010 3.8× 102 4

Table 7: Stoichiometry and atom transitions for the metabolic network reactions in Fig.
5.

Reactions Atom Transformations

v1 PRYEX → PY R abc → abc
v2 GLUEX → AKG abced → abced
v3 PY R → ACCOA+ CO2 abc → bc+ a
v4 ACCOA+OAA → CIT ab+ cdef → fedbac

v6/v5 CIT ↔ AKG+ CO2 abcdef ↔ abcde+ f
v7 AKG → 0.5SUC + 0.5SUC + CO2 abcde → 0.5abcd + 0.5dcba + e

v8/v9 SUC ↔ OAA abcd ↔ abcd
v10/v11 OAA ↔ PY R+ CO2 abcd → abc+ d
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Table 8: The local structural identifiability analysis results of the cumomer balance equa-
tions of the metabolic network reactions in Fig. 5 at t=4 hours.

σmax σmin threshold rank

PY R/CIT/AKG 2.667 × 10107 1.126 × 1095 1.042 × 1095 9
PY R/CIT/SUC 2.668 × 10106 1.982 × 1095 8.732 × 1094 9
CIT/SUC/OAA 9.116 × 10106 3.102 × 1095 4.834 × 1094 9

Table 9: The local structural identifiability analysis results of the cumomer balance equa-
tions of the metabolic network reactions in Fig. 5 at t=6 hours.

σmax σmin threshold rank

PY R/CIT/SUC 6.688 × 1098 2.401 × 1087 3.253 × 1086 9
CIT/SUC/OAA 2.200 × 1098 5.666 × 1087 9.003 × 1085 9

Table 10: The local structural identifiability analysis results of the cumomer balance
equations of the metabolic network reactions in Fig. 5 at t=8 hours.

σmax σmin threshold rank

PY R/CIT/AKG 1.631 × 1093 4.111 × 1081 7.404 × 1080 9
PY R/CIT/SUC 1.632 × 1093 9.219 × 1081 6.204 × 1080 9

ACCOA/CIT/SUC 7.921 × 1091 6.899 × 1079 3.666 × 1079 9
CIT/SUC/OAA 6.753 × 1092 2.737 × 1082 3.434 × 1080 9
CIT/AKG/OAA 6.723 × 1092 5.639 × 1081 4.034 × 1080 9
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Table 11: The local structural identifiability analysis results of the cumomer balance
equations of the metabolic network reactions in Fig. 5 at t=10 hours.

σmax σmin threshold rank

PY R/ACCOA/CIT 1.907 × 1089 1.401 × 1077 6.349 × 1076 9
PY R/CIT/AKG 1.907 × 1089 4.8710 × 1078 9.038 × 1076 9
PY R/CIT/SUC 1.913 × 1089 3.518 × 1078 7.573 × 1076 9
PY R/CIT/OAA 2.370 × 1089 2.655 × 1077 7.573 × 1076 9

ACCOA/AKG/SUC 1.547 × 1088 3.318 × 1075 2.928 × 1075 9
ACCOA/CIT/SUC 1.600 × 1088 1.402 × 1077 8.951 × 1075 9
CIT/SUC/OAA 1.416 × 1089 7.026 × 1078 8.385 × 1076 9
CIT/AKG/OAA 1.408 × 1089 6.503 × 1078 9.849 × 1076 9
CIT/AKG/SUC 1.540 × 1088 7.744 × 1076 6.156 × 1075 9
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