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This article analyze singular optimal control problems (SOCP) from different areas
of engineering and applied mathematics. We use the notion of partial Hamiltonian
and we show that every singular optimal control problem can be written in the form
of current value or standard Hamiltonian. The partial Hamiltonian approach is used
to compute the partial Hamiltonian operators and first integrals. Then these first
integrals are utilized to construct the closed-form solutions of hybrid vehicle opti-
mal energy management model, optimal harvesting mathematical model and model
of membrane filtration system. We explain how one can use partial Hamiltonian
approach for both finite horizon and infinite horizon systems. This study provides a
new way of solving singular optimal control problems.
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1 INTRODUCTION

Differential equations play a major role in modeling almost all physical, natural or biological process regardless of difficulty
level. An analytical solution shows what variables are vital and importance of a specific variable relative to the other variables
or parameters in the solution. This enable mathematicians or scientists who formulated the problem in their model to track
the impact of the inputs on the outputs (their effect on the output, and the degree of that impact), with solid mathematical
backing. Exact solutions are generally faster and more reliable. However, to compute exact solutions has thus been a challenge
for researchers as it is difficult or some time impossible for non-linear differential equations using existing techniques.
First integrals are particular studied in the theory of Hamiltonian system. First integral plays a vital role and have widespread

applications in studies of dynamical system. Their values can be estimated as constants with specific physical significance. The
symmetry properties of a physical system are well connected to the first integral characterizing that system.
William Hamilton1 utilized the notion of Legendre transformation to develop the theory of Hamiltonian mechanics. Dorod-

nitsyn and Kozlov2 rewritten the Noether theorem in terms of Hamiltonian functions and symmetry operators. The partial
Hamiltonian version of Noether’s theorem was discussed by Naz et al.5 to construct the first integrals and closed-form solutions
of some current value Hamiltonian systems from economic growth. Later, this approach was illustrated through various models
of mechanics by Naz (see6). Afterwards, the concepts of Lagrangian and Hamiltonian gained worth in other fields as well, few of
which include continuum and fluid mechanics, mathematical biology, optimal control theory, engineering, quantum mechanics
and some other fields dealing with optimization problems. The major techniques to deal with the optimization problems include
calculus of variations, optimal control theory and dynamic programming. The calculus of variation approach is based on the
existence of standard Lagrangian which in turn provides the Euler-Lagrange set of equations. The optimal control theory deals
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with finding the control laws of continuous time problems. The dynamic programming is an algorithmic approach for solving
optimization problem by breaking it down into sub-problems.
Optimal control has been widely used in modeling physical systems and most of these models can be expressed as canoni-

cal Hamiltonian of two types: standard Hamiltonian and current value Hamiltonian. If a system admits Hamiltonian, then the
Pontryagin maximum principle gives the necessary condition for the solution of finite and infinite horizon optimal control prob-
lems3. There have been numerous approaches to deal with the optimization models but most of the models were solved by using
numerical techniques. The singular optimal control exhibit lacking of a general method to find the analytical solutions. The local
stability of certain systems (13-17) has been discussed by numerical methods.
In this article, we investigate new approach which include first integrals and closed form solutions of singular optimal control

problems. The method introduced here is applicable to any system with arbitrary number of state and control variables. The
partial Hamiltonian approach5 is used to compute partial Hamiltonian operators and first integrals. Using the partial Hamiltonian
approach we find the first integrals and closed-form solutions of hybrid vehicle model, bio-economics growth model and water
filtration system.

2 PRELIMINARIES

In this section, we present the basic operators and definitions adapted from literature5-8 .
Let (qi, pi) = (q1, ....., qn, p1, ....., pn) be the phase space coordinates and t the independent variable. Suppose U (t, qi, pi) and
V (t, qi, pi) are differentiable and integrable functions and let

q̇i = U (t, qi, pi),
ṗi = V (t, qi, pi), i = 1, 2, ..., n, (1)

be a system of 2n first order ordinary differential equations.
The operator

D = )
)t
+ q̇i )

)qi
+ ṗi

)
)pi

, i = 1, 2, ..., n.

is known as the total derivative operator with respect to time t. The summation convention applies for repeated indices. The
relation between variables t, p and q is

ṗi = D(pi), q̇i = D(qi).

The Euler operator and variational operator are given by
�
�qi

= )
)qi

−D )
)q̇i

,

and
�
�pi

= )
)pi

−D )
)ṗi

.

The canonical or standard HamiltonianH(t, qi, pi) satisfies the canonical Hamiltonian system

q̇i = )H
)pi

, ṗi = −
)H
)qi

. (2)

The generators of symmetry in phase space co-ordinates and time is defined as

X = �(t, qi, pi)
)
)t
+ �i(t, qi, pi)

)
)qi

+ �i(t, qi, pi)
)
)pi

. (3)

The operator in (3) is a Hamiltonian operator related to the Hamiltonian function H(t, qi, pi), if there exists a gauge term
B(t, qi, pi) such that

�i
)H
)pi

+ piD(�i) −X(H) −HD(�) = D(B). (4)

Solving equation (4) for unknowns �, �i and B, the first integrals for system (1) can be constructed from (see5)

I = pi�i − �H − B. (5)
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The system of equations (1) can be expressed in canonical system (2) if there exist a canonical Hamiltonian. However, for
nonholonomic system of equations it is not possible to find a standard Hamiltonian, so there was a need of some alternative
technique that allow us to formulate the given problem in the form of canonical co-ordinates. Luckily, there is a road-map
to this problem motivated by the partial Hamiltonian approach. The partial Hamiltonian technique6 is an analogy of partial
Noether’s approach. In the absence of canonical Hamiltonian, the partial Hamiltonian function, also known as the current value
Hamiltonian, satisfy the canonical Hamiltonian system.

q̇i = )H
)pi

, ṗi = −
)H
)qi

+ Γi(t, qi, pi). (6)

The partial Hamiltonian determining equation in this case attains the form5

�i
)H
)pi

+ piD(�i) −X(H) −HD(�) = D(B) − (�i − �
)H
)pi

)(Γi). (7)

Once the partial Hamiltonian operator and gauge terms are computed from (7), then the first integrals can be constructed from

I = pi�i − �H − B. (8)

3 OPTIMAL PATH OF SOME PHYSICAL PROBLEMS

In this section, we discuss some important physical problems. We express the given functional in the form of canonical/partial
Hamiltonian system and then using Hamiltonian version of Noether’s theorem5 compute first integrals. These first integrals will
be utilized along with the Hamiltonian system in order to find the closed form solutions.

3.1 Hybrid vehicle optimal energy management
We study the following series hybrid energy management13, where the power split between the different sources allows
optimizing fuel consumption, the energy storage level is the state variable. Fuel consumption is the functional

min
u(t)∈Φ(t)

J (u) =

T

∫
0

l(t, x, u)dt, (9)

to be minimized subject to the energy storage level and specified limits
dx
dt

= f (t, x, u), (10)

with

f (t, x, u) = −
a′[Im(t) − u(t)]2 + b′[Im(t) − u(t)] + c′

Q
, (11)

where a′, b′ and c′ are the constants of battery current model and Q is the energy storage capacity. Im(t) is the motor current
and can be easily computed by using the proposed technique.
The proposed initial and final state of charge values of the batteries (Yuan et al., 2013)

x(0) = x0, x(T ) = xT (12)

must be controlled between two limits of the state of charge.
In (9) l(t, x, u) = au(t)2 + bu(t) + c, is the fuel mass rate with constants of auxiliary power unit fuel consumption a, b and
c. The current provided by the auxiliary power unit is denoted by Iapu(t) = u(t), and is limited by the physical constraint:
Iapu(t) ∈ [0, Iapu].
The Hamiltonian function associated with (9) is

H(t, x, u, �) = au2 + bu + c − �
Q
[a′(Im − u)2 + b′(Im − u) + c′], (13)
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where �(t) is the co-state variable. The necessary first order conditions for optimal control for finite horizon are
)H
)u

= 0,

dx
dt

= )H
)�

, (14)
d�
dt

= −)H
)x

.

System (14) along with HamiltonianH in (13) yields:

� =
Q(2au + b)

−2a′(Im − u) − b′
, (15a)

dx
dt

= − 1
Q
[a′(Im − u)2 + b′(Im − u) + c′], (15b)

d�
dt

= 0. (15c)

We solve system of equations (15) by using the Hamiltonian version of Noether-type theorem. The canonical Hamiltonian
determining Eq. (4) with the aid of (13) and (15) takes the form

�
[

�t +
dx
dt
�x
]

−
[

au2 + bu + c + �dx
dt

][

�t +
dx
dt
�x
]

= Bt +
dx
dt
Bx, (16)

where � = �(t, x), � = �(t, x) and B = B(t, x). One can also choose �, � and B as function of (t, x, �) but one has to face
difficulty in solving the determining equations. Separating Eq. (16) with respect to u and its powers, we obtain a system of partial
differential equations in unknowns � , � and B:

u4 ∶
aa′�x
Q

−
�a′2�x
Q2

= 0, (17)

u3 ∶
ba′�x
Q

−
ab′�x
Q

+
4�a′2Im�x

Q2
+
2�a′b′�x
Q2

−
2aa′Im�x

Q
= 0, (18)

u2 ∶
a′Bx
Q

+
ac′�x
Q

+
ca′�x
Q

+
�a′�t
Q

−
bb′�x
Q

−
�a′�x
Q

−
�b′2�x
Q2

−
6�a′b′Im�x

Q2

+
aa′I2m�x
Q

+
ab′Im�x
Q

−
6�a′2I2m�x

Q2
−
2�a′c′�x
Q2

−
2ba′Im�x

Q
− a′�t = 0, (19)

u ∶ −
b′Bx
Q

+
6�a′b′I2m�x

Q2
+
4�a′c′Im�x

Q2
+
bc′�x
Q

−
2a′ImBx

Q
−
cb′�x
Q

+
�b′�x
Q

+
2�a′Im�x

Q
+
bb′Im�x
Q

−
�b′�t
Q

+
ba′I2m�x
Q

−
2ca′Im�x

Q
(20)

− b�t +
4�a′2I3m�x

Q2
−
2�a′Im�t

Q
+
2�b′2Im�x

Q2
+
2�b′c′�x
Q2

= 0,

u0 ∶ −
�c′�x
Q

+
cc′�x
Q

+
�c′�t
Q

−
�c′2�x
Q2

+
a′I2mBx
Q

+
b′ImBx
Q

+
c′Bx
Q

+ ��t

− c�t −
�a′I2m�x
Q

−
�b′Im�x
Q

+
ca′I2m�x
Q

+
cb′Im�x
Q

+
�a′I2m�t
Q

−
�a′2I4m�x
Q2

(21)

+
�b′Im�t
Q

−
�b′2I2m�x
Q2

− Bt −
2�a′b′I3m�x

Q2
−
2�a′c′I2m�x

Q2
−
2�c′b′Im�x

Q2
= 0.

Solving Eqs. (17 - 19), we arrive at

� = c1t + c2,
� = c1x + c3, (22)

B =
Qc1ax
a′

+ r(t),
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where r(t) is the constant of integration as t and x are acting as independent variables. In order to solve Eqs. (20 - 21), the
following cases need to be considered.
Case 1: c1 = 0
For this case, we find

� = c2,
� = c3, (23)
B = c4.

Making the specific choice for constants (taking one constant equal to unity and rest to zero) the Hamiltonian operators and the
gauge terms are

X1 =
)
)t
, B = 0, (24)

X2 =
)
)x
, B = 0.

Using (5), we evaluate the following first integrals with the aid of Hamiltonian operators and the gauge terms

I1 = −au2 − bu − c +
�
Q
[a′(Im − u)2 + b′(Im − u) + c′], (25)

I2 = �. (26)

We use the first integrals obtained in Case 1 to construct the closed-form solution. Setting I1 = A1, I2 = A2 and using (15a) -
(15b), we obtain

x(t) =
x0T + (xT − x0)t

T
, (27)

Im(t) =
−Qab′T −Qba′T + (A1a′ −Qa)

√

4Qa′x0T − 4Qa′xTT − 4a′c′T 2 + b′2T 2

2Qaa′
, (28)

u(t) =
−QbT + A1

√

4Qa′x0T − 4Qa′xTT − 4a′c′T 2 + b′2T 2

2Qa
. (29)

Case 2: c1 ≠ 0, Im = −
ab′+ba′

2aa′
.

Some simple but lenghty manipulations yield

� = c1t + c2,
� = c1x + c3, (30)

B = 4Qa2a′x + 4a2a′c′t − a2b′2t − 4aa′2ct + a′2b2t
4aa′2

c1 + c4.

We obtain the following operator and the gauge term

X3 = t
)
)t
+ x )

)x
, B = 4Qa2a′x + 4a2a′c′t − a2b′2t − 4aa′ct + a′2b2t

4aa′2
.

In this case, following first integral corresponding to the Hamiltonian operator and gauge term is computed using Eq. (5)

I3 = �x − tH − 4Qa
2a′x + 4a2a′c′t − a2b′2t − 4aa′ct + a′2b2t

4aa′2
. (31)

Writting I3 = A3 and solving for x(t), we obtain

x(t) = −
(4u(t)2a2a′2 + 4u(t)aba′2 + 4a2a′c′ − a2b′2 + b2a′2)t

4a2a′Q
+ x0, (32)

Substituting the value of x(t) from Eq. (32) and initial and boundary conditions from Eq. (12) in Eq. (15b), we obtain

u(t) =
−ba′T ± a

√

−4a′xTQT + 4a′x0QT − 4a′c′T 2 + b′2T 2

2aa′T
, (33)

which represents the closed form solution of (9). The hybrid vehicle uses the engine as primary source and to save fuel it can
be switched on and off. So the optimal control can be obtained for a constant supply of current.
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3.2 Optimal Harvesting Problem
Allee effect plays an important role in the population dynamics. There are several process which generate allee effect. In this
section, we discuss an important depensation growth model14

max
E∈[Emin, Emax]

I(E) =

∞

∫
0

e−�t(pE(t)x(t) − cE(t))dt,

subject to:
dx
dt

= x(x − k)(1 − x) − Ex, x(0) = x0, (34)

where E (effort) and x (renewable resource) are control and state variables. Moreover, c, p and � denote cost per unit effort,
price per unit harvest and discount factor, respectively.
The current value Hamiltonian function for depensation growth model is

H(t, x, E, �) = pEx − cE + �[x(x − k)(1 − x) − Ex], (35)

where � is the co-state variable.
The necessary first order conditions for infinite horizon continuous optimal control yield

)H
)E

= 0,

dx
dt

= )H
)�

, (36)
d�
dt

= −)H
)x

+ r�.

System (36) with the help of (35) gives

� = p − c
x
, (37a)

dx
dt

= x(x − k)(1 − x) − Ex, (37b)
d�
dt

= −pE + �(−2x + 3x2 + k − 2kx + E) + ��. (37c)

Note that the Hamiltonian is linear in control variable E, hence, it is difficult to find the optimal solution. The Generalized
Legendre-Clebsch condition is used as singular control condition − )

)E
( )

2

)t2
HE) ≥ 0 , which gives rise to

k =
3px(t)2 + 2cx(t) − 2px(t) + �p − c

4px(t) − c − p
. (38)

In addition, if x∗(t) is the optimal singular solution, then the admissible singular effort will be

E∗(t) = x∗(t)2 + kx∗(t) + x∗(t) − k, (39)

hence, the optimal harvesting can be defined as

E(t) =

⎧

⎪

⎨

⎪

⎩

Emin if x(t) < x∗,
Emax if x(t) > x∗,
E∗ if x(t) = x∗,

(40)

where E(t) = Emin = 0 when x = 1 and E(t) = Emax =
(k−1)2

4
when x = k+1

2
, which implies 1 < x∗ < k+1

2
.

In order to find the value of x∗, we use the partial Hamiltonian approach. Assuming that � = �(t, x), � = �(t, x), B = B(t, x),
we can write the partial Hamiltonian determining equation (7) as

� )H
)�

+ �(�t + ẋ�x) − �
)H
)x

−H(�t + ẋ�x) = Bt + ẋBx − (� − ẋ�)Γ. (41)
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Substituting the values ofH and ẋ in Eq. (41) to obtain

�[�t + (x − x2 − k + kx − E)x�x] − �[pE + �(2x − 3x2 − k + 2kx − E)]−
[(px − c)E + �x(x − x2 − k + kx − E)][�t + (x − x2 − k + kx − E)x�x] (42)
= Bt + (x − x2 − k + kx − E)xBx − ��[� − (x − x2 − k + kx − E)x�].

Separation of Eq. (42) with respect to powers of E yields

E2 ∶ −�x�x2 + �xpx2 − �xcx = 0, (43)
E ∶ x(x − 1)(k − x)(2�x − px + c)�x + (�x − px + c)�t
− �x�x + xBx + (� − p)� + ��x� = 0, (44)
rest ∶ [��x3 − (�k + �)�x2 + k��x]� − �x2(x − 1)2(−x + k)2�x
+ [3�x2 − (2k + 2)�x + (k + �)�]� + �(x2 − x)(−x + k)�x (45)
− �x(x2 − x)(k − x)�t − (x2 − x)(k − x)Bx + ��t − Bt = 0.

Eqs. (43)-(44) give rise to

�(t, x) = F1(t), (46)
�(t, x) = �xlnxF1(t) + xlnx ̇F1(t) + xF2(t), (47)
B(t, x) = �px(lnx − 1)F1(t) + lnx(px − c) ̇F1(t) + pxF2(t) + F3(t). (48)

Replcing the values of �, � and B in Eq. (45) finally provides

F1(t) = c1, F2(t) = −c1� ln x, F3(t) = c2 .

Which in turn results in

�(t, x) = c1,
�(t, x) = 0, (49)
B(t, x) = −c1�px + c2.

For this case, the operator and the guage term are

X = )
)t
, B = −�px. (50)

Using formula (5), the first integral corresponding to the operator and gauge term is

I1 = cE − pEx − �[x2 − x3 − kx + kx2 − Ex] + �px. (51)

Taking in account DI1 = 0, we have I1 = A1. Eq. (51) can be expressed as

cE − pEx − �[x2 − x3 − kx + kx2 − Ex] + �px = A1.

Eqs. (37a-37c) with the help of (38) results in
x∗(t) = �,

�(t) =
px0 − c
x0

,
(52)

where � is an arbitrary constant along with the terminal condition

lim
t→∞

x(t) =

{

0 if x(0) < (k+1)
2
,

(k+1)
2

if x(0) ⩾ (k+1)
2
.

(53)

Using the terminal condition, we find

x∗(t) =

{

0 if x(0) < k,
−1 +

√

(2 − �) if x(0) ⩾ k.
(54)

The partial Hamiltonian approach provides an alternative way to obtain exact solutions of singular optimal control problems.
Observe that, when the threshold value k is less than the initial stock value x0, a stable optimal solution exist. The closed-form
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solutions are interpreted graphically. We consider the following three sets of parameter values and initial states x1 = 0.3, x2 =
0.8.
Set 1: When p = 1.6, c = 0.04, k = 0.08, � = 0.27, Emin = 0, Emax = 0.23.

Taking set 1 in account, the singular optimal solution is only possible if the initial state is greater than the Allee threshold value.
Since x1 > k, we have a stable optimal solution. Moreover, x∗ > x1 leads to E = Emin and the corresponding singular effort is
E∗ = 0.1611.
We compare the optimal control effort policies with the work of Sirinvasu et al.14, using the same parameter values and initial

conditions. For the parameter set 1, x∗ = 0.60741 is the optimal singular solution andE∗
2 = 0.2071 is the corresponding singular

effort.
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FIGURE 1 The optimal effort policy when k < x1 < x∗.

Time (t)

0 5 10 15 20 25

E
ff

o
rt

0

0.05

0.1

0.15

0.2

0.25
E

min

E
1

*
(Exact)

E
2

*
 (Numerical)

FIGURE 2 Comparison of exact and numerical solutions: when k < x1 < x∗.
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The optimal strategy for the optimal control problem (34) with initial state value x2 > x∗ > k is given by the effortE = Emax,
before switching to the singular optimal effort E∗ = 0.1611 (Fig. 3 ). Set 2: When p = 14.56, c = 2.3, k = 0.146, � =
0.355, Emin = 0, Emax = 0.25.
In this case, k < x1 ≤ x∗ < x2 and the singular effort is E∗ = 0.0980. The optimal effort policies corresponding to the initial
states are presented in (Fig. 5 -8 ).
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FIGURE 3 The optimal effort policy when k < x∗ < x2.
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FIGURE 5 The optimal effort policy with initial state x1 satisfying k < x1 ≤ x∗.
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The comparison of exact and numerical optimal control strategies when initial state value is less than the optimal value is
given in (Fig. 6 ) and it can be seen that the exact value requires less effort in all the cases.
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FIGURE 6 Comparison of exact and numerical solutions when k < x1 ≤ x∗.
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FIGURE 8 Comparison of exact and numerical solutions when k < x∗ < x2.
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Set 3:When p = 12.6, c = 1.5, k = 0.81, � = 0.23, Emin = 0, Emax = 0.02.
For set 3, all the initial states are less than the threshold value i.e k = 0.81, making all the solutions inadmissible.

3.3 Membrane filtration system
In this section, we discuss the membrane filtration system which are widely used as physical separation techniques in different
industrial fields e.g. water desalination, waste-water treatment, food, medicine and biotechnology etc. The membrane provides
a barrier that separates substances. Sequences of filtration and relaxation (cleaning) are performed to limit membrane fouling.
The following system is operated by alternating two functional modes: Filtration and Relaxation. For this reason, we consider a
control that only takes value 1 during filtration period and 0 during membrane relaxation period. The dynamics of fouling layer
formed by attachment of mass m onto the membrane surface is governed by

dm
dt

= u(t)f1(m(t)) − {1 − u(t)}f2(m(t)). (55)

Our aim is to determine the optimal switching between two functioning nodes that maximize the water production of water
filtration process during the time interval [0,T]. The associated objective function is

max
u(t)∈U

J (u) =

T

∫
0

u(t)g(m(t))dt. (56)

Let us consider an experimentally validated functions18

f1(m) =
b

(e + m)
, f2(m) = am, g(m) =

1
e + m

,

where a, b and e are positive numbers, f1 and g are decreasing functions whereas f2 is an increasing function. The following
functional represents the aforesaid optimal membrane filtration problem:

max
u(t)∈U

J (u) =

T

∫
0

u(t) 1
e + m

dt, (57)

which we need to maximize with respect to the constraint,
dm
dt

=
bu(t)
(e + m)

− {1 − u(t)}am, m(0) = 0. (58)

The HamiltonianH associated with the problem is

H(m, �, u) = u
e + m

+ �(t)
[ ub
e + m

− (1 − u)am
]

,

where �(t) is an costate variable. Pontryagin’s maximum principle provides the following set of equations which are regarded
as an essential criteria for optimality

�(t) = − 1
b + (e + m)am

, (59a)

dm
dt

= ub
e + m

− (1 − u)am, (59b)

d�
dt

= u
(e + m)2

− �
[

− ub
(e + m)2

− a + ua
]

, (59c)

together with terminal condition �(T ) = 0.
Singular control strategy shows that

u∗(t) =

⎧

⎪

⎨

⎪

⎩

umin if m(t) > m∗

umax if m(t) < m∗

ū if m(t) = m∗,
(60)

where m∗ can be determined using the singular control condition − )
)u
( )

2

)t2
Hu) = 0, which gives m∗ =

√

b
a
. To determine the

value of ū, we use the partial Hamiltonian approach5.
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Assuming � = �(t, m) , � = �(t, m) and B = B(t, m), the partial Hamiltonian determining equation (4) gives rise to

− ��mam − ��au − �m
bu2

(e + m)2
+ ��tam − ��ma2m2 − Bm

bu
e + m

− Bmamu

− Bt + 2��ma2m2u − ��ma2m2u2 − ��m
b2u2

(e + m)2
− ��tamu + �m

amu
e + m

− ��t
bu

e + m
+ ��mamu + ��

bu
(e + m)2

+ ��t − �m
amu2

e + m
+ ��m

bu
e + m

(61)

− �t
u

e + m
+ ��a + � u

(e + m)2
+ Bmam − 2�

abmu2

e + m
+ 2��m

abmu
e + m

= 0.

The separation of Eq. (61) with respect to powers of � yields a system of linear partial differential equations

� ∶ �t(am − amu) − �m(a2m2 + a2m2u2 − 2a2m2) + �t + �a − �au

+ am�mu − am�m + �
bu

(e + m)2
− �m

b2u2

(e + m)2
− �m

2abmu
e + m

(62)

− �t
bu

e + m
+ �m

bu
e + m

− 2abmu
2

e + m
= 0,

�0 ∶ −
�mbu2

(e + m)2
−
Bmbu
e + m

+
�mamu
e + m

−
�mamu2

e + m
−

�tu
e + m

+
�u

(e + m)2

+ amBm − amuBm − Bt = 0. (63)

Separating Eq. (62) with respect to the powers of u yields

u2 ∶ − �ma2m2 − 2�m
abm
e + m

− �m
b2

(e + m)2
= 0, (64)

u ∶ �mam − �a + 2a2m2�m − �tam − �t
b

e + m
+ �m

b
e + m

+ 2�m
abm
e + m

+ � b
(e + m)2

= 0, (65)

u0 ∶ �tam − �ma2m2 − �mam + �t + �a = 0. (66)

From Eq. (64) and (65), we obtain

� = F1(t),

� =

⎡

⎢

⎢

⎢

⎢

⎣

Ḟ1 ln (aem + am2 + b)
2a

−
Ḟ1e arctan

(

ae+2am
√

a2e2−4ab

)

2
√

a2e2 − 4ab
+ F2

⎤

⎥

⎥

⎥

⎥

⎦

[

aem + am2 + b
e + m

]

.

Substituting the values of � and � in Eq. (66), we find

F1(t) = c1t + c2, (67)
F2(t) = c3. (68)

Similarly, separating Eq. (63) with respect to the powers of u and substituting the values of � and � from (67) and (68), the
solution of determining equation yields,
�(t, m) = c2 , �(t, m) = 0 , B(t, m) = c4.
Using formula (5), we obtain the following first integral of (56)

I = −
u(t)

e + m(t)
− �(t)

[

u(t)b
e + m(t)

− am(t) + u(t)am(t)
]

. (69)

Since this first integral is a solution along the constant, hence, writing I = A1, we have

−
u(t)

e + m(t)
− �(t)

[

u(t)b
e + m(t)

− am(t) + u(t)am(t)
]

= A1. (70)
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The solution of (59a-59c) along with (70) yields

ū =
e
√

ab + b

e
√

ab + 2b
, (71)

� = − 1

e
√

ab + 2b
. (72)

We have plotted the closed-form solution curves for optimal control u(t) and the dynamics of mass m(t) onto membrane surface
in Fig. 9 . All calculations were performed for specific parameter values, which has been experimentally validated by Benyahia
et al.18. In Fig. 9 , as m0 ≤ m̄, the process operates in filtration (u = 1) until m(t) = m̄. Then the singular control is applied
before switching back to filtration until total time.
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FIGURE 9 The dynamics of u(t) and m(t) for a = 25, b = 0.00275, e = 20
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4 CONCLUDING REMARKS

The optimal control problems exist in variety of areas of applied sciences. The partial Hamiltonian approach is a systemic
technique for the reductions of Hamiltonian/partial Hamiltonian systems using the first integrals. We have utilized partial Hamil-
tonian approach along with Pontryagin’s maximum principle to construct the closed-form solutions of optimal control problems.
This elegant approach has been used to solve singular optimal control problems of varying complexity level. In this article, we
have restricted our work to systems having one control and one state variable. A hybrid vehicle optimal energy management
model from engineering has been studied using partial Hamiltonian approach to obtain three first integrals. Using these first inte-
grals with ODEs obtained through Pontryagin’s principle, we evaluate the closed-form solutions for two distinct cases that arise
during the solution process of the model. In section 3.2, we have discussed the bio-economic growth model for the well known
harvesting problem. The partial Hamiltonian determining equation (7) has been formulated using the current value Hamiltonian
of this singular optimal control problem. We obtain one first integral, using which we evaluate the explicit expressions for opti-
mal values of control and state variables. The last section of this article discusses a membrane filtration system for which we
have considered experimentally validated functions for two functioning nodes. Application of partial Hamiltonian approach to
the system yields the first integral which is utilized to evaluate the optimal state expressions for the target variables. For physical
illustration, we have graphically presented the solutions for singular control problems and provided the comparison of our solu-
tions with those obtained using numerical scheme. It is observed that both solutions are in good agreement. We have shown that
our algorithmic approach presents an alternative way for the construction of exact solutions for a wide range of optimal control
models belonging to diverse areas.

References

1. William H, Barker, Howe R. Continuous symmetry: from Euclid to Klein. AMS. 2007.

2. Dorodnitsyn V, Kozlov R. Invariance and first integrals of continuous and discrete Hamiltonian equations. J Eng Math. 2010;
66:253-270.

3. Sattinger DH, Weaver OL. Lie groups and algebras with applications to physics, geometry, and mechanics. Berlin: Springer-
Verlag; 1986.

4. Kara AH, Mahomed FM, Naeem I, Wafo SC. Partial Noether operators and first integrals via partial Lagrangians. Math meth
appl sci. 2007; 30(16):2079-2089.

5. Naz R, Mahomed FM, Chaudhry A. A partial Hamiltonian approach to current value Hamiltonian systems. Comm Nonlin
Sci Num Sim. 2014; 19(10):3600-3610.

6. Naz R. The applications of the partial Hamiltonian approach to mechanics and other areas. Int J Nonlin Mech. 2016; 86:1-6.

7. Naz R, Naeem I. The artificial Hamiltonian, first integrals and closed-form solutions of dynamical systems for epidemics. Z
Naturforsch A. 2018; 73(4):323-330.

8. Naz R, Freire IL, Naeem I. Comparison of different approaches to construct first integrals for ordinary differential equations.
Abstr Appl Anal. (2014). http://dx.doi.org/10.1155/2014/978636

9. Naeem I, Mahomed FM. Noether-type symmetries and conservation laws via partial Lagrangians. Nonlin Dyn. 2006; 45(3-
4):367-383.

10. Wolf T. A comparison of four approaches to the calculation of conservation laws.Eur J Appl Math. 2002; 13(2):129-152.

11. Naz R, Naeem I, Mahomed FM. A partial Lagrangian approach to mathematical models of epidemiology. Math Probl Eng.
2015. doi:10.1155/2015/602915

12. Naeem I, Mahomed FM. Noether-type symmetries and conservation laws via partial Lagrangians. Nonlin Dyn. 2006;
45:367-383.



21

13. Kareemulla T, Delprat S, Czelecz L. State constrained hybrid vehicle optimal energy management: an interior penalty
approach. IFAC PapersOnLine. 2017; 50(1):10040-10045.

14. Srinivasu PDN, Gurubilli KK. Bio-economics of a renewable resource subject to strong Allee effect. Commun Nonlinear
Sci. 2014; 19(6):1686-1696.

15. Clark CW. Mathematical bioeconimics. The optimal management of renewable resources. New York: Wiley-Interscience;
2001.

16. Bryson AE, Ho YC. Applied optimal control. Washington:Hemisphere Publishing; 1975.

17. Kalboussi N, Rapaport A, Bayen T, Ben Amar N, Ellouze F, Harmand J. Optimal control of membrane filtration systems.
IFAC PapersOnLine. 2017; 50(1):8704-8709.

18. Binyahia B, Charfi A, Benamar N, Heran M, Gramick A, Cherki B, Harmand J. A simple model of anaerobic membrane
bioreactor for control design: coupling the AM2b model with a simple membrane fouling dynamics. World Congress on
Anaerobic Digestion: Recovering (bio) Resources for the World. 2013; 13:171

19. Naz R, Naeem I. Generalization of approximate partial Noether approach in phase space. Nonlin Dyn. 2017; 88(1):735-748.

20. Johnpillai AG, Kara AH. Variational formulation of approximate symmetries and conservation laws. Int J Theor Phys. 2001;
40(8):1501-1509.

21. Mahomed KS, Moitsheki RJ. First integrals of generalized Ermakov systems via the Hamiltonian formulation. Int J Mod
Phys B. 2016; 30(28-29):1640019. doi:10.1142/S0217979216400191

22. Bahar LY, Kwatny HG. Dynamic response of some dissipative systems by means of functions of matrices. J Sound Vib.
1990; 137(3):433-442.

23. Bahar LY, Kwatny HG. Extension of Noether’s theorem to constrained non-conservative dynamical systems. Int J Nonlin
Mech. 1987; 22(2):125-138.

24. Haq BU, Naeem I. First integrals and analytical solutions of some dynamical systems. Nonlin Dyn. 2018; 95(3):1747-1765.

25. Naz R. A current value Hamiltonian approach for discrete time optimal control problems arising in economic growth theory.
(2018). rXiv:1801.03637 [math.OC]

26. Goh BS. Necessary conditions for singular extremals involving multiple controls. SIAM J Control. 1966; 4(4):716-731.

27. Yuan Z, Teng L, Fengchum S, Peng H. Comparative study of dynamical programming and Pontryagin’s minimum principle
on energy management for a parrallel hybrid electric vehicle. Energies. 2013; 6:2305-2318.


	First Integrals and Closed-form Solutions of Some Singular Optimal Control Problems
	Abstract
	Introduction
	Preliminaries
	Optimal path of some physical problems
	Hybrid vehicle optimal energy management
	Optimal Harvesting Problem
	Membrane filtration system

	Concluding remarks
	References


