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Abstract

The present article is devoted to developing the Legendre wavelet operational matrix method
(LWOMM) to find the numerical solution of two-dimensional hyperbolic telegraph equations
(HTE) with appropriate initial time boundary space conditions. The Legendre wavelets se-
ries with unknown coefficients has used for approximating the solution in both of the spatial
and temporal variables. The basic idea for discretizing two-dimensional HTE is based on
differentiation and integration of operational matrices. By implementing LWOMM on HTE,
HTE is transformed into algebraic generalized Sylvester equation. Numerical experiments
are provided to illustrate the accuracy and efficiency of the presented numerical scheme.
Comparisons of numerical results associated with the proposed method with some of the
existing numerical methods confirm that the method is easy, accurate and fast experimen-
tally. Moreover, we have investigated the convergence analysis of multidimensional Legendre
wavelet approximation.

Keywords: Telegraph equation, Legendre wavelets, Operational matrices, Kronecker
multiplications.

1. Introduction

Partial differential equations (PDEs) are of widespread interest because of their connec-
tion with phenomena in the physical world. Nowadays most of the physical problems can be
described in the form of mathematical models and these models are consist of PDEs. PDEs
are observed in many fields of engineering and applied sciences. Among these PDEs, hyper-
bolic PDEs play an important role in several areas of engineering and applied sciences. The
propagation of signal (digital and analog) through media, the propagation of electromag-
netic waves in the earth–ionosphere waveguide [1], mechanical wave [2], an ecological and
cosmological phenomena are modeled using hyperbolic PDEs [3]. Recently, many method-
ologies have been investigated to find the numerical solution of the telegraph equation due
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to their universal applications in the area of applied mathematics. Goldstien was the first
who derived the one-dimensional telegraph equation with probabilistic argument. He proved
that a particle which moves forward and backward direction with speed c satisfied hyperbolic
one-dimensional telegraph equation (for instant see [4]). Hyperbolic telegraph equations are
commonly used in wave phenomena [36] and also wave propagation of electric signal in [37],
. And also, an effort has been taken for the extended result for two-dimensional case of ran-
dom planar motion (see for instant [5]-[7]). Specially in two dimensional hyperbolic PDEs
such as telegraph equations in real-world applications, we should impose some boundary
limitations on the two-dimensional space variable. Neglecting spatial dimension in multi-
dimensional can affect the accuracy of the model for describing the chemical and physical
events. Therefore, multidimensional PDEs are considered by scientist and engineer to model
and simulate the aforementioned events. Among the PDEs model, parabolic PDEs model
can describe a phenomena with the help of some physical laws, but in some of the model,
it may be better modeled by hyperbolic PDEs. However, few articles are devoted to the
implementation of the analytical methods for solving the telegraph equation with boundary
conditions (see [8] ). Additionally in different circumference, direct symbolic differentiation
and integration in analytical schemes make them time-consuming. This is one more disad-
vantage of the analytical method for solving multidimensional PDEs. Because of these type
of disadvantage in PDEs, the robust and efficient tool should have a look to compute the
numerical solution of the problems.

In this article, we consider the more general form of two dimensional hyperbolic telegraph
equation as follows

∂2Φ(η, ξ, t)

∂t2
+ 2λ1

∂Φ(η, ξ, t)

∂t
+ λ2

2Φ(η, ξ, t) =
∂2Φ(η, ξ, t)

∂η2
+
∂2Φ(η, ξ, t)

∂ξ2

+F (η, ξ, t), (η, ξ, t) ∈ Ω× (0, T ],

(1)

where Ω = [0, 1]× [0, 1]× [0, 1] and t ∈ (0, T ].
The initial conditions and the Dirichlet boundary conditions are Φ(η, ξ, 0) = f1(η, ξ),

Φt(η, ξ, 0) = f2(η, ξ),
(2)

and  Φ(0, ξ, t) = f3(ξ, t), Φ(1, ξ, t) = f4(ξ, t),

Φ(η, 0, t) = f5(η, t), Φ(η, 1, t) = f6(η, t). (η, ξ, t) ∈ λ1 × (0, T ]
(3)

respectively, where λ1 and λ2 are constants.
Nowadays, researchers are focused on the numerical method for solving this type of

PDEs. Various numerical methods have been developed to solve hyperbolic PDEs and the
above telegraph equations (1)-(3) have been considered by some researchers for numerical
solutions. Dehghan and Ghesmati have used two meshless methods namely meshless local
Petrov-Galerkin (MLPG) and meshless local weak-strong (MLWS) to solve two-dimensional
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telegraph equations (1)-(3) in [9]. In [10], a semi discretization method which is uncondition-
ally stable has been proposed by F. Gao and C. Chi . R.K. Mohanty developed three-level
unconditionally stable schemes based on the finite difference ([11, 12]). In [13], Yousefi and
Dehghan used He’s variational iteration approach to solve one-dimensional telegraph equa-
tion numerically. However, In [14], authors used compact finite difference approximation
for space derivative. In [15], M. Lakestani and B. N. Saray developed operational matrix
approach based on interpolating scaling functions to solve the telegraph equation. Shokri
and Dehghan explored radial basis function in [16], a meshless method in [17] and a meshfree
technique in [18]. Moreover in [19], Saadatmandi and Dehghan approximate the solution in
terms of shifted Chebyshev polynomials to get the numerical solution. In [20] authors pro-
posed Taylor matrix method for the numerical solution of telegraph equation. Also, in [21]
authors implement Chebyshev wavelet method to solve one-dimensional telegraph equation
numerically. In the progress of solution of telegraph equation, various meshless techniques
have been developed. Dehgan and Mohebbi established a higher-order implicit collocation
method in [22]. An unconditionally stable implicit scheme has been presented by Mohanty
et al.[23]. Ding and Zhang [24] developed a fourth-order compact finite difference scheme.
Jiwari et al. [25] proposed a numerical technique based on polynomial differential quadra-
ture method (PDQM). Mittal and Bhatia proposed cubic B-spline collocation method in [26]
and differential quadrature method based on modified B-spline with space discretization in
[27] . Recently, an operational matrix approach based on Bernoulli polynomials is proposed
by S. Singh et al.[28]. The methods based on operational matrices have proved to be very
effective. The main advantage of using operational matrices is the sparsity of the operational
matrices. In the numerical analysis, operational matrices based on approximation technique
provides a powerful technique for approximating solutions of partial differential equations
which is arising from mathematical modelling (for instant see [29]-[33]). The motivation and
philosophy behind the operational matrix approach is that it have some characteristic as
follows:

• It reduces singularities from the proposed mathematical problems in an easy way.

• It does not only simplify the proposed problem but also speed up the computation.

• It is transformed the PDEs into the algebraic system.

• The method is computer-oriented, thus solving higher-order PDEs becomes a matter
of dimension increasing.

• The solution is convergent, even though the size of increment may be large.

The basic idea of an operational matrix technique is as follows:

• The unknown function or its derivatives with respect to time(or space) in the given
PDEs are approximated by linear combinations of the orthonormal basis functions and
truncating them up to optimal levels.
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• In this article, the operational matrix approximation the proposed problem converted
into simple algebraic equations whose solutions can be obtained using Sylvester’s ap-
proach that gives approximate solutions for PDEs.

Nowadays, ”Wavelets” has been an exceptionally famous subject of discussions in numer-
ous zones of logical and designing angles. Some view wavelets as another reason for speaking
to capacities, some consider it as a system for time-recurrence investigation, and others con-
sider it another numerical subject. Obviously, every one of them are right, since ”wavelets”
is a flexible apparatus with rich scientific substance and extraordinary potential for applica-
tions. In any case, as this subject is still amidst quick improvement, it is certainly too soon
to give a unified presentation. The subject of wavelets has had a spot in the core of engi-
neering, science, and mathematics. Wavelet is an energizing new technique for taking care of
troublesome issues in engineering, mathematics, and physics, with present day applications
as differing as wave proliferation, data compression, image processing, signal processing,
computer graphics, the detection of aircraft and submarines, medical image technology and
pattern recognition. As the contribution of wavelets by Chebyshev , Bernoulli, and Legendre
wavelets (for instant see [29]-[33])based solution of partial differential equations picked up
momentum in attractive way. Favourable circumstances of Wavelets bases over operational
matrix strategy have prompted enormous application in science and engineering. The exact
solution proves the accuracy and efficiency of wavelets operational matrix methods with the
good agreement of mathematical results. Likewise, the wavelets operational matrix strategy
is simple, efficient and delivers extremely precise numerical outcomes in impressively mod-
est number of basis function and hence reduces computational exertion. Additionally, the
technique is easy to apply for multidimensional problems.

So, firstly we transform equations (1)-(3) into its equivalent construction of integro-PDEs
which consists of both initial and boundary conditions and therefore, we can be solved in a
more suitable matter. Then by using the operational matrices of integration and differenti-
ation of Legendre wavelets together with completeness of these wavelets, the integro-PDEs
reduces to the system of algebraic Sylvester equation. Hence, we can achieve solution of
(1)-(3) in terms of Legendre wavelets on solving the Sylvester equation by generalised bi-
conjugate gradient stabilized method (BICGSTAB) (i.e. robust Krylov subspace iterative
method [28]).

The outline of this article is as follows. In section 2, we explain an introduction to the
Multidimensional Legendre wavelet, function approximation and convergence of approxi-
mations. In section 3, we constructed operational matrices based on Legendre wavelet for
multidimensional functional approximation with Kronecker multidimensional. In section
4, we proposed numerical method for solution. We employ some literature problems for
showing the ability of the new technique in the current investigation in section 5. Finally a
conclusion is given in section 6.

2. Preliminaries: Construction of basis functions and their properties

In this section, properties of Legendre wavelets and their associative operational matrices
will be review. Further, using the Kronecker multiplication, we will extend one dimensional
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operational matrix to multi dimensions. Legendre wavelets appeared in several different
tendencies of engineering and sciences. One can point out many applications of Legendre
wavelet in the numerical solution of partial differential equations (PDEs) like: Schrödinger
equation [34], Poisson equation in [35], etc. In this part of the article, properties of Legendre
wavelets will be discussed that have essential roles in the Legendre wavelet operational matrix
method (for instant see [31]).

2.1. Legendre wavelet [31]
Wavelets constitute a family of functions constructed from dilation and translation of

single function called the mother wavelet. When the dilation parameter a and the translation
parameter b vary continuously, we have the following family of continuous wavelets:

Ψa,b(η) = |a|−
1
2 Ψ

(
η − b
a

)
, a, b ∈ R, a 6= 0.

If the parameter a and b are restricted to the discrete values as a = a−k,0 , b = nb0a
−k
0 , a0 >

1, b0 > 0, n and k are positive integers, from the above Eq. we have the following family of
discrete wavelets :

Ψk,n(η) = |a0|−
k
2 Ψ(ak0η − nb0),

where, Ψk,n(η) form a wavelet basis for L2(R).In particular, when a0 = 2 and b0 = 1 then
Ψk,n(η form an orthonormal basis.

Legendre wavelet Ψn,m(η) = Ψ(k, n̂,m, η) have four arguments n̂ = 2n−1, n = 1, 2, ..., 2k−1, k ∈
Z+, m is the order of Legendre polynomials and η is normalized time. They are defined on
[0, 1) as follows (see [? ]):

Ψn,m(η) = Ψ(k, n̂,m, η) =

{ √
m+ 1

2
2

k
2 pm(2kη − n̂), if n̂−1

2k
≤ η < n̂+1

2k
;

0, if otherwise.
(4)

where, the coefficient
√
m+ 1

2
is for orthonormality.

2.2. Multi-dimensional Legendre wavelet
Three-dimensional Legendre wavelet can be expressed as product of one-dimensional

Legendre wavelet as follows:

Ψn,m,n′ ,m′ (η, ξ) =


Ψn,m(η)Ψn′ ,m′ (ξ) , if n̂−1

2k
≤ η < n̂+1

2k
,

n̂′−1
2k
′ ≤ ξ < n̂′+1

2k
′ ,

0 , otherwise,
(5)
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Three-dimensional Legendre wavelet can be expressed as product of one-dimensional
Legendre wavelet as follows:

Ψn,m,n′ ,m′ (η, ξ, t) =


Ψn,m(η)Ψn′ ,m′ (ξ)Ψn′′ ,m′′ (t) , if n̂−1

2k
≤ η < n̂+1

2k
,

n̂′−1
2k′
≤ ξ < n̂′+1

2k′
,

n̂′′−1
2k′′
≤ t < n̂′′+1

2k′′
,

0 , otherwise,

(6)

where,

Ψn,m(η) =

√
m+

1

2
2

k
2 pm(2kη − n̂), (7)

Ψn′ ,m′ (ξ) =

√
m′ +

1

2
2

k
′

2 pm′ (2
k
′

ξ − n̂′), (8)

Ψn′′ ,m′′ (t) =

√
m′′ +

1

2
2

k
′′

2 pm′′ (2
k
′′

t− n̂′′), (9)

and
m = 0, 1, 2, ...,M − 1,M ∈ Z+ ∪ {0} ,

m
′
= 0, 1, 2, ...,M

′ − 1,M ′ ∈ Z+ ∪ {0} ,

m
′′

= 0, 1, 2, ...,M
′′ − 1,M ′′ ∈ Z+ ∪ {0} ,

n̂ = 2n− 1, n̂′ = 2n′ − 1, n̂′′ = 2n′′ − 1,

n = 1, 2, 3, ..., 2k−1, n
′

= 1, 2, 3, ..., 2k
′−1, n

′′
= 1, 2, 3, ..., 2k

′′−1

here also Z+ is positive integer and pm, pm′ and pm′′ are Legendre polynomial of order m,m′
and m

′′ respectively which are defined over the interval [0, 1] and also three-dimensional
Legendre wavelet are orthonormal set over Ω = [0, 1]× [0, 1]× [0, 1].

2.3. Function approximation
Suppose that f(η) is an arbitrary function in L2([0, 1)), then it can be approximated as

follows:

f(η) =
∞∑
n=1

∞∑
m=1

fnmΨnm(η) (10)

If the infinite series (10) is truncated for m = M − 1, then approximation of (10) can be
represented as in the following form

f(η) =
2k−1∑
n=1

M−1∑
m=1

fnmΨnm(η) = F T
1 Ψ(η). (11)
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where Ψ(η) = [Ψ10(η),Ψ11(η), ...,Ψ1(M−1), ...,Ψ2k−10,Ψ2k−11, ...,Ψ2k−1(M−1)(η)]T and F T
7 is

1× (2k−1(M − 1)) vector given by:

F T
7 =



∫ 1

0
f(η)Ψ10(η)dη∫ 1

0
f(η)Ψ11(η)dη

...∫ 1

0
f(η)Ψ1(M−1)(η)dη

...∫ 1

0
f(η)Ψ2K−10(η)dη∫ 1

0
f(η)Ψ2K−11(η)dη

...∫ 1

0
f(η)Ψ2K−1(M−1)(η)dη



T

.

Now generalised (11) series as follows

f(η, ξ) =
2k−1∑
n=1

M−1∑
m=1

2k
′−1∑

n′=1

M ′−1∑
m′=1

fnmn′m′Ψnmn′m′(η, ξ) = F T
8 Ψ(η, ξ), (12)

Where, Ψ(η, ξ) = Ψ(η)⊗Ψ(ξ) (For the numerical solution, we used the concept of Kronecker
product (⊗) [31])is 2k−12k

′−1MM
′ × 1, vector given as follows:

Ψ = [Ψ1010, · · · ,Ψ101(M ′−1),Ψ1020 · · · ,Ψ102(M ′−1), · · · ,Ψ102k
′−10

, · · · ,
Ψ

102k
′−1(M ′−1)

, · · · ,Ψ1(M−1)10, · · · ,Ψ1(M−1)1(M ′−1),Ψ1(M−1)20, · · · ,Ψ1(M−1)2(M ′−1),

Ψ
1(M−1)2k

′−10
· · · ,Ψ

1(M−1)2k
′−1(M ′−1)

,Ψ2010, · · · ,Ψ201(M ′−1),Ψ2020, · · · ,

Ψ202(M ′−1), · · · ,Ψ202k
′−10

, · · · ,Ψ
202k

′−1(M ′−1)
, · · · ,Ψ2(M−1)10, · · · ,Ψ2(M−1)1(M ′−1),

Ψ2(M−1)20, · · · ,Ψ2(M−1)2(M ′−1),Ψ2(M−1)2k
′−10
· · · ,Ψ

2(M−1)2k
′−1(M ′−1)

, · · · ,

Ψ2k−1010, · · · ,Ψ2k−101(M ′−1),Ψ2k−1020, · · · ,Ψ2k−1(M−1)2k
′−1(M ′−1)

]T ,

(13)
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and

F T
8 =



∫ 1

0

∫ 1

0
f(η, ξ)Ψ1010(η)dηdξ∫ 1

0

∫ 1

0
f(η, ξ)Ψ1011(η)dηdξ

...∫ 1

0

∫ 1

0
f(η, ξ)Ψ101(M ′−1)(η)dηdξ

...∫ 1

0

∫ 1

0
f(η, ξ)Ψ111(M ′−1)(η)dηdξ∫ 1

0

∫ 1

0
f(η, ξ)Ψ121(M ′−1)(η)dηdξ

...∫ 1

0

∫ 1

0
f(η, ξ)Ψ2k−102k−10(η)dηdξ∫ 1

0

∫ 1

0
f(η, ξ)Ψ2k−102k−11(η)dηdξ

...∫ 1

0

∫ 1

0
f(η, ξ)Ψ2k−102k′−1(M ′−1)(η)dηdξ∫ 1

0

∫ 1

0
f(η, ξ)Ψ2k−112k′−1(M ′−1)(η)dηdξ

...∫ 1

0

∫ 1

0
f(η, ξ)Ψ2k−1(M−1)2k′−1(M ′−1)(η)dηdξ



T

. (14)

and

f(η, ξ, t) =
2k−1∑
n=1

M−1∑
m=1

2k
′−1∑

n′=1

M ′−1∑
m′=1

2k
′′−1∑

n′′=1

M ′′−1∑
m′′=1

fnmn′m′n′′m′′Ψnmn′m′n′′m′′(η) = F T
9 Ψ(η, ξ, t) (15)
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Where, Ψ(η, ξ, t) = Ψ(η)⊗Ψ(ξ)⊗Ψ(t) are 2k−12k
′−12k

′′−1MM ′M ′′×1, vector given as follows:

F T
9 =



∫ 1

0

∫ 1

0

∫ 1

0
f(η, ξ, t)Ψ101010(η, ξ, t)dηdξdt∫ 1

0

∫ 1

0

∫ 1

0
f(η, ξ, t)Ψ101011(η, ξ, t)dηdξdt

...∫ 1

0

∫ 1

0

∫ 1

0
f(η, ξ, t)Ψ10101(M ′′−1)(η, ξ, t)dηdξdt

...∫ 1

0

∫ 1

0

∫ 1

0
f(η, ξ, t)Ψ2(M−1)2(M ′−1)2(M ′′−1)(η, ξ, t)dηdξdt

...∫ 1

0

∫ 1

0

∫ 1

0
f(η, ξ, t)Ψ2k−102k′−102k′′−10(η, ξ, t)dηdξdt∫ 1

0

∫ 1

0

∫ 1

0
f(η, ξ, t)Ψ2k−102k′−102k′′−11(η, ξ, t)dηdξdt

...∫ 1

0

∫ 1

0

∫ 1

0
f(η, ξ, t)Ψ2k−102k′−102k′′−1(M ′′−1)(η, ξ, t)dηdξdt∫ 1

0

∫ 1

0

∫ 1

0
f(η, ξ, t)Ψ2k−102k′−112k′′−1(M ′′−1)(η, ξ, t)dηdξdt

...∫ 1

0

∫ 1

0

∫ 1

0
f(η, ξ, t)Ψ2k−102k′−1(M ′−1)2k′′−1(M ′′−1)(η, ξ, t)dηdξdt∫ 1

0

∫ 1

0

∫ 1

0
f(η, ξ, t)Ψ2k−112k′−1(M ′−1)2k′′−1(M ′′−1)(η, ξ, t)dηdξdt

...∫ 1

0

∫ 1

0

∫ 1

0
f(η, ξ, t)Ψ2k−1(M−1)2k′−1(M ′−1)2k′′−1(M ′′−1)(η, ξ, t)dηdξdt



T

. (16)

Theorem 1. The series
∑∞

n=1

∑∞
m=0

∑∞
n′=1

∑∞
m′=0

∑∞
n′′=1

∑∞
m′′=0 fnmn′m′n′′m′′Ψnmn′m′n′′m′′(η, ξ, t),

where Ψ(η, ξ, t) is three-dimensional Legendre wavelets which is defined in (6), is uniformly
converges to a continuous function f(η, ξ, t).

Proof. Let L2(λ1) be the Hilbert space and Ψ(η, ξ, t) is defined in (6) forms an orthonormal
basis. So for fixed k, k′ and k′′

f(η, ξ, t) =
M−1∑
m=0

M ′−1∑
m′=0

M ′′−1∑
m′′=0

fmm′m′′Ψmm′m′′(η, ξ, t), (17)

where,

fmm′m′′ =

∫ 1

0

∫ 1

0

∫ 1

0

f(η, ξ, t)Ψmm′m′′(η, ξ, t)dηdξdt,

= 〈f(η, ξ, t),Ψmm′m′′(η, ξ, t)〉 .
(18)

Now truncate series (18) upto N level as follows

f(η, ξ, t) =
N∑
m=0

N∑
m′=0

N∑
m′′=0

fmm′m′′Ψmm′m′′(η, ξ, t) = SN(say). (19)
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Now,

〈f(η, ξ, t), SN〉 =

〈
f(η, ξ, t),

N∑
m=0

N∑
m′=0

N∑
m′′=0

fmm′m′′Ψmm′m′′(η, ξ, t)

〉

=
N∑
m=0

N∑
m′=0

N∑
m′′=0

f̄mm′m′′ 〈f(η, ξ, t),Ψmm′m′′(η, ξ, t)〉 .

(20)

From (19) and (20)

〈f(η, ξ, t), SN〉 =
N∑
m=0

N∑
m′=0

N∑
m′′=0

f̄mm′m′′fmm′m′′ ,

=
N∑
m=0

N∑
m′=0

N∑
m′′=0

|fmm′m′′|2.

(21)

Now, we claim that

〈f(η, ξ, t), SN〉 =
N∑
m=0

N∑
m′=0

N∑
m′′=0

|fmm′m′′ |2forN ≥ N ′. (22)

Since

‖SN − SN ′‖2 = ‖
N∑
m=0

N∑
m′=0

N∑
m′′=0

fmm′m′′Ψmm′m′′(η, ξ, t)−
N∑
i=0

N∑
j=0

N∑
k=0

fijkΨijk(η, ξ, t)‖2,

= ‖
N∑

m=N ′+1

N∑
m′=N ′+1

N∑
m′′=N ′+1

fmm′m′′Ψmm′m′′(η, ξ, t)‖2,

=

〈
N∑

m=N ′+1

N∑
m′=N ′+1

N∑
m′′=N ′+1

fmm′m′′Ψmm′m′′(η, ξ, t),
N∑

i=N ′+1

N∑
j=N ′+1

N∑
k=N ′+1

fijkΨijk(η, ξ, t)

〉
,

=
N∑

m=N ′+1

N∑
m′=N ′+1

N∑
m′′=N ′+1

N∑
i=N ′+1

N∑
j=N ′+1

N∑
k=N ′+1

fmm′m′′ f̄ijk 〈Ψmm′m′′(η, ξ, t),Ψijk〉 ,

=
N∑

m=N ′+1

N∑
m′=N ′+1

N∑
m′′=N ′+1

|fmm′m′′|2.

(23)

Now using Bessel’s inequality series (23) is convergent and hence

‖SN − SN ′‖ → 0 as N,N ′ →∞. (24)
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So 〈SN〉 is Cauchy sequence in L2(λ1), i.e. SN → s(say). Now,

〈s− f(η, ξ, t),Ψmm′m′′(η, ξ, t)〉 = 〈s,Ψmm′m′′(η, ξ, t)〉 − 〈f(η, ξ, t),Ψmm′m′′(η, ξ, t)〉 ,

=
〈

lim
N→∞

SN ,Ψmm′m′′(η, ξ, t)
〉
− 〈f(η, ξ, t),Ψmm′m′′(η, ξ, t)〉 ,

= lim
N→∞

〈SN ,Ψmm′m′′(η, ξ, t)〉 − fmm′m′′ ,

= lim
N→∞

〈
N∑

m=N ′+1

N∑
m′=N ′+1

N∑
m′′=N ′+1

fmm′m′′Ψmm′m′′(η, ξ, t),Ψmm′m′′(η, ξ, t),Ψijk(η, ξ, t)

〉
− fmm′m′′ ,

= lim
N→∞

fmm′m′′ 〈Ψmm′m′′(η, ξ, t),Ψijk(η, ξ, t)〉 − fmm′m′′ ,

= fmm′m′′ − fmm′m′′ (using orthonormality of Legendre wavelets),

= 0.

(25)

Hence s = f(η, ξ, t).
Thus the series

∑∞
n=1

∑∞
m=0

∑∞
n′=1

∑∞
m′=0

∑∞
n′′=1

∑∞
m′′=0 fnmn′m′n′′m′′Ψnmn′m′n′′m′′(η, ξ, t) con-

verge uniformly to f(η, ξ, t).
Hence the theorem.

3. Operational Matrices

Let Ψ(t) = [Ψ0(t),Ψ1(t), ...,ΨN(t)]T be the basis functions. Then,

d

dt


Ψ0(t)
Ψ1(t)

...
ΨN(t)

 ≈

F 0 0 · · · 0
0 F 0 · · · 0
...

... . . . . . . ...
0 0 0 · · · F


2k−1M×2k−1M


Ψ0(t)
Ψ1(t)

...
ΨN(t)

 = DtΨ
T (t), (26)

in which F is M ×M matrix with entries

Fr,s =

{
2k
√

(2r − 1)(2s− 1), if r = 2, 3, ...M, s = 1, 2, ..., r − 1, (r + s)odd;
0, if otherwise.

And ∫ t

0


Ψ0(t′)
Ψ1(t′)

...
ΨN(t′)

 dt′ ≈

11





1
√

3 0 0 · · · 0 0 0

−
√

3
3

0
√

3
3
√

5
0 · · · 0 0 0

0 −
√

5
5
√

3
0

√
5

5
√

7
0 · · · 0 0 0

...
...

...
... . . . ...

...
...

0 0 0 0 · · ·
√

2M−3
(2M−3)

√
2M−5

0
√

2M−3
(2M−3)

√
2M−1

0 0 0 0 · · · 0
√

2M−1
(2M−1)

√
2M−3

0




Ψ0(t)
Ψ1(t)

...
ΨN(t)

 = ItΨ
T (t)

Here, It is 2k−1M × 2k−1M matrix.
The approximation given in section (2) for numerical method can be extended for the

higher dimension. Two variables functions, namely f3(ξ, t), f4(ξ, t), f5(η, t) and f6(η, t) in
L2([0, 1]× [0, 1]) can be approximated as:

f3(ξ, t) ≈
∑2k

′−1

n′=1

∑M ′−1
m′=0

∑2k
′′−1

n′′=1

∑M ′′−1
m′′=0 f

3
n′m′n′′m′′Ψm(ξ)Ψn(t) = ΨT (ξ)F3Ψ(t),

f4(ξ, t) ≈
∑2k

′−1

n′=1

∑M ′−1
m′=0

∑2k
′′−1

n′′=1

∑M ′′−1
m′′=0 f

4
n′m′n′′m′′Ψm(ξ)Ψn(t) = ΨT (ξ)F4Ψ(t),

f5(η, t) ≈
∑2k−1

n=1

∑M−1
m=0

∑2k
′′−1

n′′=1

∑M ′′−1
m′′=0 f

5
nmn′′m′′Ψm(η)Ψn(t) = ΨT (η)F5Ψ(t),

f6(η, t) ≈
∑2k−1

n=1

∑M−1
m=0

∑2k
′′−1

n′′=1

∑M ′′−1
m′′=0 f

6
nmn′′m′′Ψm(η)Ψn(t) = ΨT (η)F6Ψ(t),

(27)

where

F3 =


f 3

1010 f 3
1011 · · · f 3

101(M ′′−1) f 3
111(M ′′−1) · · · f 3

1(M ′−1)1(M ′′−1)

f 3
2020 f 3

2021 · · · f 3
202(M ′′−1) f 3

212(M ′′−1) · · · f 3
2(M ′−1)2(M ′′−1)

...
... . . . ...

...
...

f 3
2k′−102k′′−10

f 3
2k′−102k′′−11

· · · f 3
2k′−102k′′−1(M ′′−1)

f 3
2k′−112k′′−1(M ′′−1)

· · · f 3
2k′−1(M ′−1)2k′−1(M ′′−1)

 ,

F4 =


f 4

1010 f 4
1011 · · · f 4

101(M ′′−1) f 4
111(M ′′−1) · · · f 4

1(M ′−1)1(M ′′−1)

f 4
2020 f 4

2021 · · · f 4
202(M ′′−1) f 4

212(M ′′−1) · · · f 4
2(M ′−1)2(M ′′−1)

...
... . . . ...

...
...

f 4
2k′−102k′′−10

f 4
2k′−102k′′−11

· · · f 4
2k′−102k′′−1(M ′′−1)

f 4
2k′−112k′′−1(M ′′−1)

· · · f 4
2k′−1(M ′−1)2k′−1(M ′′−1)



F5 =


f 5

1010 f 5
1011 · · · f 5

101(M ′′−1) f 5
111(M ′′−1) · · · f 5

1(M ′−1)1(M ′′−1)

f 5
2020 f 5

2021 · · · f 5
202(M ′′−1) f 5

212(M ′′−1) · · · f 5
2(M ′−1)2(M ′′−1)

...
... . . . ...

...
...

f 5
2k′−102k′′−10

f 5
2k′−102k′′−11

· · · f 5
2k′−102k′′−1(M ′′−1)

f 5
2k′−112k′′−1(M ′′−1)

· · · f 5
2k′−1(M ′−1)2k′−1(M ′′−1)

 ,

F4 =


f 6

1010 f 6
1011 · · · f 6

101(M ′′−1) f 6
111(M ′′−1) · · · f 6

1(M ′−1)1(M ′′−1)

f 6
2020 f 6

2021 · · · f 6
202(M ′′−1) f 6

212(M ′′−1) · · · f 6
2(M ′−1)2(M ′′−1)

...
... . . . ...

...
...

f 6
2k′−102k′′−10

f 6
2k′−102k′′−11

· · · f 6
2k′−102k′′−1(M ′′−1)

f 6
2k′−112k′′−1(M ′′−1)

· · · f 6
2k′−1(M ′−1)2k′−1(M ′′−1)

 .
12



where,

f 3
n′m′n′′m′′ =

∫ 1

0

∫ 1

0

f3(ξ, t)Ψ(ξ, t)dξdt,

f 4
n′m′n′′m′′ =

∫ 1

0

∫ 1

0

f4(ξ, t)Ψ(ξ, t)dξdt,

f 5
n′m′n′′m′′ =

∫ 1

0

∫ 1

0

f5(η, t)Ψ(η, t)dηdt,

f 6
n′m′n′′m′′ =

∫ 1

0

∫ 1

0

f6(η, t)Ψ(η, t)dηdt.

Lemma 1. Let λ1 =
∫ 1

0
ΨT (η)dη and λ1IL = λ1I

T
L are the 1 × 2k−1M vectors, then the

following relations hold

(i) ΨT (ξ) = ΨT (η, ξ)P ,

(ii) ηΨT (ξ) = ΨT (η, ξ)P ,

(iii) η(λ1Iη ⊗ IΨT (ξ)) = ΨT (η, ξ)Q,

(iv) ξ(ΨT (η)I ⊗ λ1Iη) = ΨT (η, ξ)Q,

(v) ΨT (η) = ΨT (η, ξ)R,

(vi) ξΨT (η) = ΨT (η, ξ)R.

Proof. Let Ψ(η) = [Ψ10(η),Ψ11(η), ...,Ψ1(M−1)(η), ...,Ψ2k−10(η),Ψ2k−10(η), ...,Ψ2k−1(M−1)(η)]T

be the one dimensional Legendre wavelet basis of L2[0, 1]. Then ηΨT (ξ) can be written in
the following form

ηΨT (ξ) = η ⊗ΨT (ξ). (28)

Let η = g(η) ∈ L2[0, 1]. Then g(η) can be approximated in terms of Legendre wavelet basis
functions as

g(η) = η ≈
2k−1∑
n=1

M−1∑
m=0

gnmΨnm(η) = ATΨ(η)

where, A = [a10, a11, ..., a1(M−1), ..., a2k−10, a2k−11, ..., a2k−1(M−1)]
T and the coefficients of A are

calculated by the formula

ai =

∫ 1

0

ηΨi(η)dη

hence from Eq.(18)

ηΨT (ξ) = ΨT (η)A⊗ΨT (ξ) =
(
ΨT (η)⊗ΨT (ξ)

)
(A⊗ IN+1) = ΨT (η, ξ)P , (29)
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where,
P = A⊗ I.

Similarly, we can write (iii) as

η
(
λ1Iη ⊗ IΨT (ξ)

)
= (ηλ1Iη)⊗ IΨT (ξ).

Since, ηλ1IL is 1 × 2k−1M vector and each element of this vector is a function of η so we
can make similar argument as given in the proof of (ii).
Hence,

(ηλ1IL)⊗ IΨT (ξ) =
(
ΨT (η)BT

)
⊗ IΨT (ξ),

=
(
ΨT (η)⊗ΨT (ξ)

) (
BT ⊗ I

)
,

= ΨT (η, ξ)P,

(30)

where, P =
(
BT ⊗ IN+1

)
and

B =


c10 c11 · · · c1(M−1)

c20 c21 · · · c2(M−1)
...

... . . . ...
c2k−10 c2k−11 · · · c2k−1(M−1)

 = [cnm]2k−1M×2k−1M .

The coefficients cnm are calculated as follows

cnm =

∫ 1

0

[(ηλ1Iη) Ψnm(η)] dη.

Note: (a) All other matrices Q,R and R are calculated in the similar manner.

(b) If we take η = 1 then the proof of (i) is same as (ii). Similarly, the proof of (iv), (v)
and (vi) are same as (i), (ii) and (iii) respectively.

Lemma 2. If Dξ = I2k′−1M ′×2k′−1M ′⊗D2k′−1M ′×2k′−1M ′ , Iξ = I2k′−1M ′×2k′−1M ′⊗IL,2k′−1M ′×2k′−1M ′

and Iη = IL,2k−1M×2k−1M ⊗I2k′−1M ′×2k′−1M ′ , where I denotes the identity matrix then we have

(i) ∂Ψ(η,ξ)
∂ξ

= Ψξ(η, ξ) = DξΨ(η, ξ),

(ii) ∂2Ψ(η,ξ)
∂ξ2

= Ψξξ(η, ξ) = (Dξ)
2Ψ(η, ξ),

(iii)
∫ ξ

0
Ψ(η, ξ′)dξ′ ≈ IξΨ(η, ξ),

(iv)
∫ ξ

0

∫ ξ′
0

Ψ(η, ξ′′)dξ′′dξ′ ≈ (Iξ)
2Ψ(η, ξ),

(v)
∫ η

0
Ψ(η′, ξ)dη′ ≈ IηΨ(η, ξ),
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(vi)
∫ η

0

∫ η′
0

Ψ(η′′, ξ)dη′′dη′ ≈ (Iη)
2Ψ(η, ξ).

(vii) ∂Ψ(t)
∂t

= Ψt(t) = DtΨ(t),

(viii) ∂2Ψ(t)
∂t2

= Ψtt(t) = D2
tΨ(t),

Proof. See section 3.

4. Numerical Method of Solution

To find numerical solution of Eqs.(1)-(3), firstly, we will use all the initial and boundary
conditions on (1) then (1) will convert into partial integro-differential equation (PIDE). For
this purpose we rewrite Eq.(1) as follows

∂2Φ(η, ξ, t)

∂η2
=
∂2Φ(η, ξ, t)

∂t2
+ 2λ1

∂Φ(η, ξ, t)

∂t
+ λ2

2Φ(η, ξ, t)− ∂2Φ(η, ξ, t)

∂ξ2
− F (η, ξ, t). (31)

Integrating Eq.(31) in the interval [0, η], we obtain

Φη(η, ξ, t) = Φη(0, ξ, t) +

∫ η

0

(Φtt(η
′, ξ, t) + 2λ1Φt(η

′, ξ, t) + λ2
2Φ(η′, ξ, t)

−Φξξ(η
′, ξ, t)− F (η′, ξ, t))dη′.

(32)

further integrating Eq.(32) in the interval [0, η], we get

Φ(η, ξ, t) = Φ(0, ξ, t)︸ ︷︷ ︸
=f3(ξ,t)

+ηΦη(0, ξ, t) +

∫ η

0

∫ η′

0

(Φtt(η
′′, ξ, t) + 2λ1Φt(η

′′, ξ, t)

+λ2
2Φ(η′′, ξ, t)− Φξξ(η

′′, ξ, t)− F (η′′, ξ, t))dη′′dη′.

(33)

Put η = 1 in Eq.(33), we get

Φη(0, ξ, t) = Φ(1, ξ, t)︸ ︷︷ ︸
=f4(ξ,t)

−f1(ξ, t)−
∫ 1

0

∫ η

0

(Φtt(η
′, ξ, t) + 2λ1Φt(η

′, ξ, t)

+λ2
2Φ(η′, ξ, t)− Φξξ(η

′, ξ, t)− F (η′, ξ, t))dη′dη.

(34)

Substituting the value of Φη(0, ξ, t) from Eq.(34) to (33), we get

Φ(η, ξ, t) = ηf4(ξ, t) + (1− η)f3(ξ, t)− η
∫ 1

0

∫ η

0

(Φtt(η
′, ξ, t) + 2λ1Φt(η

′, ξ, t)

+λ2
2Φ(η′, ξ, t)− Φξξ(η

′, ξ, t)− F (η′, ξ, t))dη′dη +

∫ η

0

∫ η′

0

(Φtt(η
′′, ξ, t)

+2λ1Φt(η
′′, ξ, t) + λ2

2Φ(η′′, ξ, t)− Φξξ(η
′′, ξ, t)− F (η′′, ξ, t))dη′′dη′.

(35)
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To use boundary conditions in ξ, we integrate Φξξ(η, ξ, t) from 0 to ξ, we obtain∫ ξ

0

Φξξ(η, ξ
′, t)dξ = Φξ(η, ξ, t)− Φξ(η, 0, t), (36)

further integrating Eq.(36) from 0 to ξ, we get∫ ξ

0

∫ ξ′

0

Φξξ(η, ξ
′′, t)dξ′′dξ′ = Φ(η, ξ, t)− Φ(η, 0, t)− ξΦξ(η, 0, t),

or

Φ(η, ξ, t) = f5(η, t) + ξΦξ(η, 0, t) +

∫ ξ

0

∫ ξ′

0

Φξξ(η, ξ
′′, t)dξ′′dξ′. (37)

To use the condition Φ(η, 1, t) = f6(η, t), put ξ = 1 in Eq.(37), we get

Φξ(η, 0, t) = f6(η, t)− f5(η, t)−
∫ 1

0

∫ ξ

0

Φξξ(η, ξ
′, t)dξ′dξ, (38)

substitute the value of Φξ(η, 0, t) obtained by Eq.(38) into (37), we obtain

Φ(η, ξ, t) = ξf6(η, t) + (1− ξ)f5(η, t)− ξ
∫ 1

0

∫ ξ

0

Φξξ(η, ξ
′, t)dξ′dξ

+

∫ ξ

0

∫ ξ′

0

Φξξ(η, ξ
′′, t)dξ′′dξ′.

(39)

Now, our goal is to use the initial conditions (2). For this purpose, we use same process
which is used to use the boundary conditions in ξ i.e integrate Φtt(η, ξ, t) two times from 0
to t and obtain

Φ(η, ξ, t) = f1(η, ξ) + tf2(η, ξ) +

∫ t

0

∫ t′

0

Φtt(η, ξ, t
′′)dt′′dt′.

The above Eq. can be rewritten as

Φ(η, ξ, t) = f(η, ξ, t) +

∫ t

0

∫ t′

0

Φtt(η, ξ, t
′′)dt′′dt′ (40)

where, f(η, ξ, t) = f1(η, ξ) + tf2(η, ξ).
Since, we can obtain the original Eq. (1) with boundary conditions Φ(0, ξ, t) = f3(ξ, t)

and Φ(1, ξ, t) = f4(ξ, t) by differentiating two times Eqs. (35) and replacing η by 0 and 1 in
Eq. (35) respectively. Including this boundary conditions Φ(η, 0, t) = h1(η, t), Φ(η, 1, t) =
h2(η, t) and initial conditions Φ(η, ξ, 0) = f1(η, ξ), Φt(η, ξ, 0) = f2(η, ξ) received by replacing
ξ by 0 and 1 in Eq. (39) and t by 0 and 1 in Eq. (40) respectively. Hence, the Eqs. (35),(39)
and (40) are the equivalent formulation of the proposed problem (1)-(3). To solve these
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PIDE, all the known and unknown functions are approximated in terms of basis functions.
The known function of three variables F (η, ξ, t) can be approximated in terms of basis
functions as follows

F (η, ξ, t) ≈
2k−1∑
n=1

M−1∑
m=1

2k
′−1∑

n′=1

M ′−1∑
m′=1

2k
′′−1∑

n′′=1

M ′′−1∑
m′′=1

Fnmn′m′n′′m′′Ψnm(η)Ψn′m′(ξ)Ψn′′m′′(t) = ΨT (η, ξ)FΨ(t),

(41)
where ΨT (η, ξ) = ΨT (η) ⊗ ΨT (ξ) and F is matrix calculated in similar manner as F in
section 3. Similarly, we approximate f as follows

f(η, ξ, t) ≈ ΨT (η, ξ)FΨ(t). (42)

Similarly, the unknown function Ψ(η, ξ, t) is approximated in terms of basis functions as

Φ(η, ξ, t) ≈
2k−1∑
n=1

M−1∑
m=1

2k
′−1∑

n′=1

M ′−1∑
m′=1

2k
′′−1∑

n′′=1

M ′′−1∑
m′′=1

Φnmn′m′n′′m′′Ψnm(η)Ψn′m′(ξ)Ψn′′m′′(t) = ΨT (η, ξ)ΦapxΨ(t),

(43)
where

Φapx =



Ψ101010 Ψ202020 · · · Ψ2k−102k′−102k′′−10

Ψ101011 Ψ202020 · · · Ψ2k−102k′−102k′′−10
...

... . . . ...
Ψ10101(M ′′−1) Ψ20202(M ′′−1) · · · Ψ2k−102k′−102k′′−1(M ′′−1)

Ψ10111(M ′′−1) Ψ20212(M ′′−1) · · · Ψ2k−102k′−112k′′−1(M ′′−1)
...

... . . . ...
Ψ101(M ′−1)1(M ′′−1) Ψ202(M ′−1)2(M ′′−1) · · · Ψ2k−102k′−1(M ′−1)2k′′−1(M ′′−1)

Ψ111(M ′−1)1(M ′′−1) Ψ212(M ′−1)2(M ′′−1) · · · Ψ2k−112k′−1(M ′−1)2k′′−1(M ′′−1)
...

... . . . ...
Ψ1(M−1)1(M ′−1)1(M ′′−1) Ψ2(M−1)2(M ′−1)2(M ′′−1) · · · Ψ2k−1(M−1)2k′−1(M ′−1)2k′′−1(M ′′−1)



T

where, Φapx is (2k−1M2k
′−1M ′)× 2k

′′−1M ′′ matrix. It is to be noted that, we have to calcu-
late the unknown matrix Φapx.

Now, substitute the approximated value of F (η, ξ, t),Φ(η, ξ, t), f1(ξ, t) and f2(ξ, t) which
are given by Eqs. (41)-(43) and (27) in the right hand side of Eq. (35). After using the
operational matrices of differentiation and integration and Lemma 2, Eq. (35) reduces into
the following form

Φ(η, ξ, t) ≈ η(ΨT (ξ)F4Ψ(t)) + (1− η)(ΨT (ξ)F3Ψ(t))

−η
∫ 1

0

∫ η

0

ΨT (η′, ξ)
[
ΦapxD

2
t + 2λ1ΦapxDt + λ2

2Φapx − (DT
ξ )2Φapx − F

]
Ψ(t)dη′dη

+

∫ η

0

∫ η′

0

ΨT (η′′, ξ)
[
ΦapxD

2
t + 2λ1ΦapxDt + λ2

2Φapx − (DT
ξ )2Φapx − F

]
Ψ(t)dη′′dη′,
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or,

Φ(η, ξ, t) ≈ ηΨT (ξ)(F4 − F3)Ψ(t) + ΨT (ξ)F3Ψ(t)

−η(λ1Iη ⊗ΨT (ξ))(ΦapxD
2
t + 2λ1ΦapxDt + λ2

2Φapx − (DT
ξ )2Φapx − F )Ψ(t)

+ΨT (η, ξ)(ITη )2(ΦapxD
2
t + 2λ1ΦapxDt + λ2

2Φapx − (DT
ξ )2Φapx − F )Ψ(t).

(44)

Using (i), (ii) and (iii) of Lemma 1, we can rewrite Eq. (44) as

Φ(η, ξ, t) = ΨT (η, ξ)P (F4 − F3)Ψ(t) + ΨT (η, ξ)PF3Ψ(t)

−ΨT (η, ξ)Q(ΦapxD
2
t + 2λ1ΦapxDt + λ2

2Φapx − (DT
ξ )2Φapx − F )Ψ(t)

+ΨT (η, ξ)(ITη )2(ΦapxD
2
t + 2λ1ΦapxDt + λ2

2Φapx − (DT
ξ )2Φapx − F )Ψ(t).

(45)

Now Eq. (45) can be rewritten as

Φ(η, ξ, t) ≈ ΨT (η, ξ)XΨ(t), (46)

in which

X = P (F4 − F3) + PF1 + ((ITη )2 −Q)(ΦapxD
2
t + 2λ1ΦapxDt + λ2

2Φapx − (DT
ξ )2Φapx − F ).

Now, substitute the approximated value of Φ(η, ξ, t) from Eq.(46) and f3(η, t), f4(η, t)
from Eq. (27) in Eq. (39) and using the operational matrices and Lemma 2, we get

Φ(η, ξ, t) ≈ ξ(ΨT (η)F6Ψ(t)) + (1− ξ)ΨT (η)F5Ψ(t)

−ξ
∫ 1

0

∫ ξ

0

ΨT (η, ξ)(DT
ξ )2XΨ(t)dξ′dξ

+

∫ ξ

0

∫ ξ′

0

ΨT (η, ξ)(DT
ξ )2XΨ(t)dξ′′dξ′.

(47)

We can rewrite the above Eq. as

Φ(η, ξ, t) ≈ ξΨT (η)(F6 − F5)Ψ(t) + ΨT (η)F5Ψ(t)

−ξ(ΨT ⊗ λ1Iη)(D
T
ξ )2XΨ(t) + ΨT (η, ξ)(P T

η )2(DT
ξ )2XΨ(t).

(48)

By using (iv),(v) and (vi) of Lemma (1), above Eq. can be written as

Φ(η, ξ, t) ≈ ΨT (η, ξ)YΨ(t), (49)

where
Y = R(F6 − F5) +RF5 + ((ITξ )2 −Q)(DT

ξ )2X.

In the next step, Eq.(49) can be taken as an approximation for Φ(η, ξ, t). Substitut-
ing the approximated values of f(η, ξ, t), Φ(η, ξ, t) together with operational matrices of
differentiation and integration in the right hand side of Eq.(40), we get

Φ(η, ξ, t) ≈ ΨT (η, ξ)FΨ(t) + ΨT (η, ξ)Y D2
t I

2
t Ψ(t).
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On combining above approximation Φ(η, ξ, t) with Eq.(43), we get

ΨT (η, ξ)ΦapxΨ(t) = ΨT (η, ξ)FΨ(t) + ΨT (η, ξ)Ỹ D2
t I

2
t Ψ(t), (50)

Ỹ = R(F6 − F5) +RF5 + ((ITξ )2 −Q)(DT
ξ )2X̃

X̃ = P (F4 − F3) + PF3 + ((ITη )2 −Q)(ΨD2
t + 2λ1ΦapxDt + λ2

2Φapx − (DT
ξ )2Φapx − F ).

Eq.(50) can be reduced into the following matrix Eq.

Φapx +X1ΦapxY1 +X2ΦapxY2 = Z (51)

which is in the form of Sylvester Eq..
Where,

X1 = ((ITξ )2 −Q)(DT
ξ )2((ITη )2 −Q),

Y1 = −(D2
t + 2λ1Dt + λ2

2)D2
t I

2
t ,

X2 = ((ITξ )2 −Q)(DT
ξ )2((ITη )2 −Q)(DT

ξ )2,

Y2 = D2
t I

2
t

and

Z = F +RF5D
2
t I

2
t +R(F6 − F5)D2

t I
2
t + ((ITξ )2 −Q)(DT

ξ )2

(P (F4 − F3) + PF3 − ((ITη )2 −Q)F )D2
t I

2
t .

Finally, we get the system of equation in the form of Eq.(51) which is known as the
Sylvester equation. Some authors proposed numerical scheme to solve Sylvester equation
(for instant see [41]). In this article Sylvester equation (51) is solved for Φapx by robust
Krylov subspace iterative method (i.e.generalized BICGSTAB, [42]) and using Eq.(51), we
get the approximate solution of Eqs.(1)-(3) in terms of Legendre wavelet basis functions.

5. Numerical experiments

In this section, we provide some numerical examples to analyze the applicability of pro-
posed LWOMM for two dimensional hyperbolic telegraph equation (1). For the application
of proposed method, we have included three literature examples and examine the applicabil-
ity and effectiveness (Numerical simulations have been done with the help of Matlab). Since,
the proposed method is a numerical technique based on the Legendre wavelet function, we
can reach to the exact solutions if the solutions of the considered hyperbolic telegraph equa-
tions are in polynomial forms. Moreover, the presented method gain spectral accuracy for
dealing with two-dimensional hyperbolic telegraph equation which has exact solutions in
non-polynomial forms. We take k = k′ = k′′ = 3,M = M ′ = M ′′ = 4, 5, 6, 7 & t = 1 also
computed results have been shown in the Table in terms of relative errors, l2 and l∞. The
results are compared with Mittal and Bhatia [27] and found better accuracy by Legendre
wavelet at small number of basis function. In order to illustrate the performance of the
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LWOMM, we have considered the maximum absolute error, which is denoted by en. Also,
in some figures the history of error between the analytical and numerical solution, which is
computed by the proposed LWOMM, is represented as en = Φ − Φapx. Further, to assess
the performance of the method LWOMM we computed l2 and l∞ norms errors.

Example 1.In this example, we consider the HTE Eq.(1) in the domain (η, ξ, t) ∈ Ω
and F (η, ξ, t) = (−2λ1 + λ2

2 − 1)e−t sinh η sinh ξ. The initial and the Dirichlet boundary
conditions are given by  Φ(η, ξ, 0) = sinh(η) sinh(ξ),

Φt(η, ξ, 0) = − sinh(η) sinh(ξ)
(52)

 Φ(0, ξ, t) = 0, Φ(1, ξ, t) = e−t sinh(1) sinh(ξ)

Φ(η, 0, t) = 0, Φ(η, 1, t) = e−t sinh(η) sinh(1).
(53)

The exact solution is given by Φ(η, ξ, t) = e−t sinh(η) sinh(ξ). In this example, we have taken
λ1 = 10, λ2 = 5 and solved for N = 4, 5, 6 and 7 also see Figures 1-4 for error estimation.

Example 2. In this example, we consider the HTE Eq.(1) in the domain (η, ξ, t) ∈
Ω, with F (η, ξ, t) = 2 cos(t) sin(η) sin(ξ) − 2 sin(t) sin(η) sin(ξ). The initial and boundary
conditions are given by  Φ(η, ξ, 0) = sin(η) sin(ξ),

Φt(η, ξ, 0) = 0
(54)

and  Φ(0, ξ, t) = 0, Φ(1, ξ, t) = cos(t) sin(1) sin(ξ)

Φ(η, 0, t) = 0, Φ(η, 1, t) = cos(t) sin(η) sin(1).
(55)

The exact solution is given by

Φ(η, ξ, t) = cos t sin(η) sin(ξ).

In this example, we have taken λ1 = 1, λ2 = 1 and solved for N = 4, 5, 6 and 7 also see
Figures 5-8 for error estimation.

Example 3. In this example, we consider the HTE Eq.(1) in the domain (η, ξ, t) ∈ Ω
with λ1 = 10, λ2 = 5 and F (η, ξ, t) = 22 cos(t) sinh(η) sinh(ξ)−20 sin(t) sinh(η) sinh(ξ). The
initial and Dirichlet boundary conditions are given below Φ(η, ξ, 0) = sinh(η) sinh(ξ),

Φt(η, ξ, 0) = 0
(56)

and  Φ(0, ξ, t) = 0, Φ(1, ξ, t) = cos(t) sinh(1) sinh(ξ)

Φ(η, 0, t) = 0, Φ(η, 1, t) = cos(t) sinh(η) sinh(1)
(57)
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The exact solution is given by

Φ(η, ξ, t) = cos t sinh(η) sinh(ξ).

In this example, we have taken λ1 = 10, λ2 = 5 and solved for N = 4, 5, 6 and 7 also see
Figures 9-12 for error estimation.

Table 1: Absolute error of LWOMM at eN(η, ξ, 1) for values of N = 4, 5, 6, 7 of Example 1
(η, ξ) N = 4 N = 5 N = 6 N = 7

(0.0,0.0) 9.8020e-16 1.0604e-14 5.8261e-14 4.6324e-13
(0.1,0.1) 7.5943e-05 2.4407e-04 1.0070e-04 7.5510e-05
(0.2,0.2) 2.4400e-04 9.3702e-04 3.7520e-04 2.8222e-04
(0.3,0.3) 3.1769e-04 2.0000e-03 7.4580e-04 5.5994e-04
(0.4,0.4) 1.4792e-05 3.1000e-03 1.1000e-04 8.2115e-04
(0.5,0.5) 1.0000e-03 4.2000e-03 1.3000e-03 9.7446e-04
(0.6,0.6) 3.2000e-03 5.0000e-03 1.3000e-03 9.5378e-04
(0.7,0.7) 6.7000e-02 5.2000e-03 9.6017e-04 7.4814e-04
(0.8,0.8) 1.2100e-02 4.8000e-03 3.9005e-04 4.2101e-04
(0.9,0.9) 1.9200e-02 3.8000e-03 2.5801e-04 9.4096e-05
(1.0,1.0) 2.8100e-02 2.5000e-03 6.6554e-04 1.6198e-04

Table 2: Norm error of LWOMM for values of N = 4, 5, 6, 7 of Example 1

Norm N = 5 N = 4 N = 6 N = 7 Mittal and Bhatia [27]
l2 2.3900e-02 1.1300e-02 2.6000e-03 2.1000e-03 1.7174e-04
l∞ 1.9200e-02 5.2000e-03 1.3000e-03 9.7446e-04 5.6395e-04

Table 3: Absolute error of LWOMM at eN(η, ξ, 1) for values of N = 4, 5, 6, 7 of Example 2
(η, ξ) N = 4 N = 5 N = 6 N = 7

(0.0,0.0) 6.6368e-14 1.0240e-15 3.9761e-18 3.8272e-18
(0.1,0.1) 2.7356e-04 7.1939e-05 2.9464e-04 1.2611e-05
(0.2,0.2) 1.1000e-03 2.8673e-04 1.1185e-04 3.7931e-05
(0.3,0.3) 2.4000e-03 6.1143e-04 2.3039e-04 5.6171e-05
(0.4,0.4) 4.1000e-03 9.8017e-04 3.6060e-04 5.3182e-05
(0.5,0.5) 6.3000e-03 1.3000e-03 4.7503e-04 2.6537e-05
(0.6,0.6) 8.8000e-03 1.6000e-03 5.5010e-04 1.3745e-05
(0.7,0.7) 1.1800e-02 1.8000e-03 5.7469e-04 5.1243e-05
(0.8,0.8) 1.5300e-02 2.0000e-03 5.6041e-04 7.5205e-05
(0.9,0.9) 1.9600e-02 2.7000e-03 5.5311e-04 9.9891e-05
(1.0,1.0) 2.5100e-02 4.4000e-03 6.4481e-04 1.3731e-05

Table 4: Norm error of LWOMM for values of N = 4, 5, 6, 7 of Example 2
Norm N = 4 N = 5 N = 6 N = 7 Mittal and Bhatia [27]
l2 3.9100e-02 6.3000e-03 1.4000e-03 2.1077e-04 9.8870e-05
l∞ 2.5100e-02 4.4000e-03 6.4481e-03 1.3731e-04 2.4964e-04
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Table 5: Absolute error of LWOMM at eN(η, ξ, 1) for values of N = 4, 5, 6, 7 of Example 3
(η, ξ) N = 4 N = 5 N = 6 N = 7

(0.0,0.0) 6.7126e-14 1.0492e-15 8.3206e-17 1.0593e-18
(0.1,0.1) 6.3835e-05 9.9583e-06 3.3025e-04 1.0929e-04
(0.2,0.2) 3.1414e-04 3.1003e-05 1.2000e-03 4.0642e-04
(0.3,0.3) 9.3733e-04 4.3952e-05 1.3000e-03 8.0493e-04
(0.4,0.4) 2.2000e-03 2.2048e-05 3.4000e-03 1.2000e-03
(0.5,0.5) 4.5000e-03 7.3449e-05 4.1000e-03 1.4000e-03
(0.6,0.6) 8.1000e-03 3.0522e-04 4.1000e-03 1.3000e-03
(0.7,0.7) 1.3600e-02 7.8217e-04 3.4000e-03 9.6647e-04
(0.8,0.8) 2.1300e-02 1.7000e-03 2.1000e-03 3.4296e-04
(0.9,0.9) 3.1600e-02 3.4000e-03 6.7019e-04 3.1452e-04
(1.0,1.0) 4.4700e-02 6.4000e-03 5.0796e-04 6.0130e-04

Table 6: Norm error of LWOMM for values of N = 4, 5, 6, 7 of Example 3
Norm N = 4 N = 5 N = 6 N = 7 Mittal and Bhatia [27]
l2 6.0900e-02 7.5000e-03 1.0500e-03 2.7000e-03 1.6144e-03
l∞ 4.4700e-02 6.4000e-03 6.7000e-04 1.4000e-04 3.6000e-04

6. Conclusion

The telegraph equations are of special interest as they are used to understand various
physical and complex phenomena. Two-dimensional hyperbolic telegraph equations (HTE)
are usually difficult to solve analytically. In this article, Legendre wavelet matrix method
(LWOMM) has been developed to tackle the two-dimensional HTE with Dirichlet bound-
ary conditions. For this purpose, we constructed operational matrices based on Legendre
wavelet for integration and differentiation for the solution of HTE. After implementing of
LWOMM on HTE, HTE converted into algebraic generalized Sylvester equation which is
solved by BICGSTAB method. The results of the numerical solution of Eq.(1) for a small
number of Legendre wavelet basis functions are illustrated in the form of Tables 1− 6 and
the Figures 1 − 12. Also, we have comprised propose method pointwise errors with the
some existing method [27] for different values of λ1, λ2, k,M, k′,M ′, k′′, and M ′′. Numerical
results of absolute errors, l2 & l∞ errors are provided in Tables 1, 3 & 5 and Table 2, 4 & 6
respectively . Moreover, theoretically convergence analysis for the solution approximation
is provided. So, we can say that the proposed method is very easy, gives better accuracy
at less time and efficient at a small number of Legendre wavelet basis by using convergence
analysis, absolute error, l2 error, l∞ error, error tables and error graphs.
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