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Abstract Recently, much attention has been given to multi-granulation rough sets (briefly, MGRS) and different kinds of multi-granulation
rough set models have been developed from various viewpoints. In this paper, we propose two types of MGRS models under neighborhood
systems from the topological view, where a target concept is approximated by employing the j-neighborhoods and j-adhesion neighbor-
hoods of objects in a given universe set. Therefore, we investigate some of basic properties of the two types of MGRS models, and discuss
the relationships and differences among the classical MGRS model and some other new models. Also, for each new MGRS model, an
algorithm will be presented.

Keywords Rough sets ·Multi-granulation Rough Sets (MGRS) · Neighborhood systems (NS) · Topology ·Multi-granulation topological
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1 Introduction

Rough set theory, proposed by Pawlak [16,17], is a mathematical tool for characterizing the uncertainty by the difference between
the lower and upper approximations. Presently, Presently, rough set has been demonstrated to be useful in various areas such as pattern
recognition, image processing, feature selection, neural computing, conflict analysis, decision support, data mining and knowledge dis-
covery process from large data sets [16-20]. A fundamental concept in Pawlak’s rough set model is the indiscernibility relation, which
is an equivalence relation. By such relation, the equivalence classes are then regarded as the basic knowledge for the construction of the
lower and upper approximations. The computation of approximations is a necessary step for attribute reduction and knowledge discovery.
As one of the most important research topics along with the fast development of rough set theory, attribute reduction has aroused wide
concern and study, and many attribute reduction techniques have been developed in last twenty years. In the information age, complex
data is often represented by a multi-source information system [8] in which data come from different sources. How to fuse such data
has become a challenging task in the community of granular computing (GrC) [33]. Information granulation is one of three basic issues:
information granulation, organization, and causation in granular computing. Information granulation involves decomposition of whole data
into parts called granules. Then, these granules are organized into a granular structure (or a granular space). In granular computing, the
granules induced by an equivalence relation (or a tolerance relation) form a set of equivalence classes (or tolerance classes), in which each
equivalence class (or tolerance class) can be regarded as a Pawlak information granule (or a tolerance information granule). In the view
point of Granular Computing [32,34],Pawlak’s rough set model and most of its extensions are constructed based on only one granular
structure,which is induced by a binary relation(a partition or a covering).Thus,one may call those models the single-granulation rough sets.
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As Qian et al.[25], have mentioned that,in many cases,a target concept is needed to describe concurrently from some independent environ-
ments,that is,multi-granulation spaces are needed.Therefore, Qian and Liang [24,25] introduced the concept of multi-granulation rough
sets(MGRS),where the approximations of a set of objects are defined by using multi-equivalence relations.The main difference between
single-granulation rough sets and multi-granulation ones lies in that the approximations of a target concept in multi-granulation rough
sets are constructed by using multi-distinct sets of information granules.When two attribute subsets in an information system contradict
each other or possess an inconsistent relationship, MGRS will show its advantages for knowledge discovery [25]. Many scholars have
extended the classical MGRS by using various generalized binary relations. For instance, Qian et al. [26] presented a multi-granulation
rough set based on multiple tolerance relations in incomplete information systems. Lin et al. [14] proposed a covering-based pessimistic
multi-granulation rough set, Xu et al. [29] proposed another generalized version, called variable precision multi-granulation rough set, and
Yang et al. [30] proposed a multi-granulation rough set based on a fuzzy binary relation. In fact, the basic idea of multi-granulation has
been also discussed by Khan et al. in [8].
From discussions above, our objective is to develop the multi-granulation rough set theory via topology theory by using two kinds of
neighborhood systems.

2 Preliminaries

In this section, we introduce some fundamental key concepts of topology, rough set and neighborhood systems [5,16]. Throughout
this paper, we suppose that the universe Ω is a non-empty finite set.
We present a brief overview of topological space, a closure operator, an interior operator, and a topology based on a set. They are all
important concepts in topology theory and they were used to study rough sets [11,23,31]. In this paper, these topological tools are also
employed to investigate multi-granulation rough sets.

Definition 1 [5] A topological space is a pair (Ω, τ) consisting of a setΩ and a family τ of subset ofΩ satisfying the following conditions:
1) Ω,φ ∈ τ ,
2) τ is closed under arbitrary union,
3) τ is closed under finite intersection.

The pair (Ω, τ) is called a topological space. The elements of Ω are called the points of the space and the subsets of Ω belonging to τ
are called open sets. The complement of the subsets of Ω belonging to τ are called closed sets. The family τ of all open subsets of Ω is
called a topology for Ω.

Definition 2 [31] Let R be any binary relation on a non empty set Ω, for any set A ⊆ Ω. The interior of A according to R defined as:
int(A)={x ∈ Ω : xR ⊆ A}.
If it satisfies the following conditions, then we call it a interior operator int : 2Ω → 2Ω on Ω. ∀X,Y ⊆ Ω,

(1) int(Ω) = Ω,
(2) int(X) ⊆ X ,
(3) int(int(X)) = int(X),
(4) int(X ∩ Y ) = int(X) ∩ int(Y ).

Definition 3 [31] Let R be any binary relation on a non empty set Ω, for any set A ⊆ Ω. The interior of A according to R defined as:
cl(A)={x ∈ Ω : xR ∩A 6= φ}.
If it satisfies the following conditions, then we call it a closure operator cl : 2Ω → 2Ω on Ω. ∀X,Y ⊆ Ω,

(1) cl(φ) = φ,
(2) X ⊆ cl(X),
(3) cl(cl(X)) = cl(X),
(4) cl(X ∪ Y ) = cl(X) ∪ cl(Y ).

Obviously, if R is an equivalence relation xR=[x]R and these definitions are equivalent to the original Pawlakś definitions.
In [24], Qian analyzed some restrictions of Pawlak classical rough set in practice and proposed a new extension of rough set i.e., multi-
granulation rough sets, in which a target concept can be approximated by multiple equivalence relations according to a users different
requirements. In other words, a target concept can be approximated by multiple granulation spaces in the view of granular computing [25].
Assume that Ω is a finite non-empty universe of discourse. Let R be an equivalence relation on Ω, Ω/R is a corresponding partition of Ω,
denoted by Ω/R={[x]R : x ∈ Ω} in which [x]R={y : y ∈ Ω, xRy} is an equivalence class consisting x.Ω/R can generate a topological
space, denoted as (Ω, τR), and Ω/R is a topology base of τR, each subset of τR is both open and close [4].

Definition 4 [24] Let (Ω,AT, f) be an information system. Suppose that X ⊆ Ω, R1, R2, ...Rn be n equivalence relations on Ω, the
lower approximation

∑n
i=1Ri(X) and the upper approximation

∑n
i=1Ri(X) of X with respect to R1, R2, ...Rn are defined as follows,

respectively,
(1)

∑n
i=1Ri(X)={x ∈ Ω : ∨([x]Ri ⊆ X), i ≤ n}.
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(2)
∑n
i=1Ri(X)={x ∈ Ω : ∧([x]Ri ∩X 6= φ), i ≤ n}.

From the above expressions, the operator ’∨’ is a disjunctive operator which here indicates that in multiple independent granular
structures, one needs only at least one granular structure to satisfy with the inclusion condition between an equivalence class and a target
concept. The expression (2) is the upper approximation of the optimistic multi-granulation rough set that can be also defined by the
complement of the lower approximation, which has been proved in [12]. the operator ’∧’ in expression (2) is a conjunctive operator
whose meaning is that in multiple independent granular structures, one needs all granular structures to satisfy with non-empty for joint
operator between an equivalence class and a target concept. And

∑n
i=1Ri(X) ⊆ X ⊆

∑n
i=1Ri(X). So we can label multi-granulation

rough set X= (
∑n
i=1Ri(X),

∑n
i=1Ri(X)), accordingly, we call (Ω,R1, R2, ..., Rn) a multigranulation approximation space in the

view of granular computing. And in [13], is defined interior and closure operators on an equivalence relation as follows ∀X ∈ Ω and
Γ={τ1, τ2, ..., τi}:
mint(X)=

⋃
{A ∈ τi : ∨(A ⊆ X), i ∈ n},

mcl(X)=
⋃
{A ∈ τi : ∧(A ∩X 6= φ), i ∈ n}.

Definition 5 [31] Let Ω be a finite nonempty universe. A function m : 2Ω →Ris called a measure of the granularity of a set if it satisfies
the following conditions: for all A,B ∈ 2Ω ,

(M1) m(A) ≥ 0

(M2) If A ⊂ B, then m(A) < m(B),
(M3) A ∼s B ⇐⇒ m(A) = m(B).

Where A ∼s B ⇐⇒ (∼ (A <s B),∼ (B <s A)), ” <s ” is the weak order that is an extension of ” ⊂ ”.

Definition 6 [9] Let T = Γ be a family of multigranulation topological rough spaces on Ω. A function G : Γ → R is called a measure
of granularity of a partition if it satisfies the following conditions for all Γ1, Γ2 ∈ T ,

(G1) G(Γ ) ≥ 0.
(G2) If Γ1 ⊂ Γ2, then G(Γ1) < G(Γ2),
(G3) Γ1 = Γ2 ⇐⇒ Γ1 = Γ2.

3 Multi-granulation rough sets approximations by using neighborhood systems

In this section, we use the definitions of j-neighborhood systems which are seen the first time in [1,31,3]. So, we use it to redefine the
MGRS approximations and generalize it.

3.1 The first type of neighborhood systems

Definition 7 [1,31] Let R be an arbitrary binary relation on a nonempty finite set U . The j-neighborhoods of x ∈ U is denoted by
(Nj(x)), ∀j ∈ {j1, j2, j3, j4, j5, j6, j7, j8}, which are defined as:

(1) Nj1(x) = {y ∈ U : xRy}, is used in [13] as an equivalence relation.
(2) Nj2(x) = {y ∈ U : yRx}.

(3) Nj3(x) =

{
y ∈ U :

⋂
x∈Nj1

(y)

Nj1(y)

}
.

(4) Nj4(x) =

{
y ∈ U :

⋂
x∈Nj2

(y)

Nj2(y)

}
.

(5) Nj5(x) = Nj1(x) ∪Nj2(x).
(6) Nj6(x) = Nj1(x) ∩Nj2(x).
(7) Nj7(x) = Nj3(x) ∪Nj4(x).
(8) Nj8(x) = Nj3(x) ∩Nj4(x).

Definition 8 Let (Ω,R) be an approximation space. Suppose that X ⊆ Ω, R1, R2, · · · , Rn be n binary relations on Ω, the lower
approximation

∑n
i=1 N Ri(X) and the upper approximation

∑n
i=1

N Ri(X) ofX with respect toR1, R2, · · · , Rn are defined as follows,
respectively,

(1)
∑n
i=1 N Ri(X) = {x ∈ Ω :

∨
(Nij(x) ⊆ X), i ≤ n}.

(2)
∑n
i=1

N Ri(X) = {x ∈ Ω :
∧

(Nij(x) ∩X 6= φ), i ≤ n}.
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Example 1 Let U = {a, b, c, d, e} and we have three binary relations
R1 = {(a, a), (a, b), (b, b), (b, c), (c, c), (d, b), (d, d), (d, e), (e, b), (e, d), (e, e)},R2 = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a),
(c, b), (c, c), (d, d), (e, e)} and R3 = {(a, a), (a, d), (b, a), (b, b), (b, d), (c, c), (d, a), (d, d), (e, a), (e, c), (e, d), (e, e)}. If X = {b, d},
then

∑3
i=1 N Ri(X) = {d} and

∑3
i=1

N Ri(X) = {a, b, d}

Theorem 1 Let (Ω,R) be an approximation space. Suppose that X ⊆ Ω, R1, R2, · · · , Rn be n binary relations on Ω. Then we have the
following properties are hold:

(1)
∑n
i=1

N Ri(φ) = φ.
(2) X ⊆ Y then

∑n
i=1

N Ri(X) ⊆
∑n
i=1

N Ri(Y ).
(3)

∑n
i=1

N Ri(∩j∈IXj) ⊆ ∩j∈I
∑n
i=1

N Ri(Xj).
(4)

∑n
i=1

N Ri(∪j∈IXj) ⊇ ∪j∈I
∑n
i=1

N Ri(Xj).
(5)

∑n
i=1

N Ri(Xc) = (
∑n
i=1

N Ri(X))c.

Proof (1) Follows from Definition 8.

(2) By Definition 8 and if X1 ⊆ X2, then∑n
i=1

N Ri(X1) = {x ∈ Ω |
∧

(Nij(x) ∩X1 6= φ), i ≤ n}

⊆ {x ∈ Ω |
∧

(Nij(x) ∩X2 6= φ), i ≤ n}

=
∑n
i=1

N Ri(X2).

(3) From (2) and by Definition 8, if X1 ⊆ X2 ⊆ · · · ⊆ Xj , then∑n
i=1

N Ri(X1 ∩X2 ∩ · · · ∩Xj) =
∑n
i=1

N Ri(X1)

= {x ∈ Ω |
∧

(Nij(x) ∩X1 6= φ), i ≤ n}

⊆ {x ∈ Ω |
∧

(Nij(x) ∩X2 6= φ), i ≤ n}
...
⊆ {x ∈ Ω |

∧
(Nij(x) ∩Xj 6= φ), i ≤ n}

= ∩j∈I
∑n
i=1

N Ri(Xj).

(4) Analogue to (3) above.

(5) The complement of the j-lower approximation of X is

(
∑n
i=1 N Ri(X))c = {x ∈ Ω |

∨
(Nij(x) ⊆ X), i ≤ n}c

= {x ∈ Ω |
∧

(Nij(x))c ⊇ (Xc)}

= {x ∈ Ω :
∧

(Nij(x) ∩X 6= φ), i ≤ n}

=
∑n
i=1

N Ri(Xc).

The equality of (2) and (3) in Theorem 1 does not hold, in general, as shown in Example 2.

Example 2 In Example 1,
(1) TakeX1 = {b},X2 = {c} andX3 = {d}. Thus

∑3
i=1

N Ri (X1∪X2∪X3) = {a, b, c, d} and
∑3
i=1

N Ri(X1) ∪
∑3
i=1

N Ri(X2)

∪
∑3
i=1

N Ri(X3) = {b, c, d}. Therefore,
∑3
i=1

N Ri(∪j∈IXj) 6= ∪j∈I
∑3
i=1

N Ri(Xj) ∀j ∈ {1, 2, 3}.
(2) Take X1 = {b, d}, X2 = {b, cc} and X3 = {a, c, d, e}. Then

∑3
i=1

N Ri(X1 ∩ X2 ∩ X3) = {d} and
∑3
i=1

N Ri(X1) ∪∑3
i=1

N Ri(X2) ∪
∑3
i=1

N Ri(X3) = {a, b, d}. Therefore,
∑3
i=1

N Ri(∩j∈IXj) 6= ∩j∈I
∑3
i=1

N Ri(Xj) ∀j ∈ {1, 2, 3}.

Theorem 2 Let (Ω,R) be an approximation space. Suppose that X ⊆ Ω, R1, R2, · · · , Rn be n binary relations on Ω. Then we have the
following properties are hold:

(1)
∑n
i=1 N Ri(Ω) = Ω.

(2)
∑n
i=1 N Ri(∩j∈IXj) ⊆ ∩j∈I

∑n
i=1 N Ri(Xj).

(3)
∑n
i=1 N Ri(∪j∈IXj) ⊇ ∪j∈I

∑n
i=1 N Ri(Xj).

(4) X ⊆ Y then
∑n
i=1 N Ri(X) ⊆

∑n
i=1 N Ri(Y ).

(5)
∑n
i=1 N Ri(X

c) = (
∑n
i=1 N Ri(X))c.
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Proof Analogue to Theorem 1.

The equality of (2) and (3) in Theorem 2 does not hold, in general, as shown in Example 3.

Example 3 In Example 1,
(1) PutX1 = {a, b},X2 = {a, b, c} andX3 = {a, c, d, e}. Thus

∑3
i=1Ri(X1∩X2∩X3) = φ and

∑3
i=1 N Ri(X1)∩

∑3
i=1 N Ri(X2)∩∑3

i=1 N Ri(X3) = {a}. Therefore
∑3
i=1 N Ri(∩j∈IXj) 6= ∩j∈I

∑3
i=1 N Ri(Xj) ∀j ∈ {1, 2, 3}.

(2) Put X1 = {a}, X2 = {b} and X3 = {c}. Thus
∑3
i=1 N Ri(X1 ∪X2 ∪X3) = {a, b, c} and

∑3
i=1 N Ri(X1) ∪

∑3
i=1 N Ri(X2) ∪∑3

i=1 N Ri(X3) = {c}. Therefore
∑3
i=1 N Ri(∪j∈IXj) 6= ∪j∈I

∑3
i=1 N Ri(Xj) ∀j ∈ {1, 2, 3}.

By using Definition 8, we can define the accuracy measure as the following.

Definition 9 Let (Ω,Rn) be an approximation space. Suppose that A ⊆ Ω, R1, R2, · · · , Rn be n binary relations on Ω, the accuracy
measure of A is defined by

αN (A) =
|
∑n
i=1 N Ri(A)|

|
∑n
i=1

N Ri(A)|

Where |.| denotes the cardinality of the set.

Remark 1 If Ri, for i ∈ {1, 2, · · · , n} are binary relations on a nonempty set Ω. The properties does not hold, in general.
(1)

∑n
i=1 N Ri(φ) = φ.

(2)
∑n
i=1 N Ri(X) ⊆ X .

(3)
∑n
i=1 N Ri(

∑n
i=1 N Ri(X)) =

∑n
i=1 N Ri(X).

(4)
∑n
i=1 N Ri(Ω) = Ω‘.

(5) X ⊆
∑n
i=1 N Ri(X).

(6)
∑n
i=1 N Ri(

∑n
i=1 N Ri(X)) =

∑n
i=1 N Ri(X).

∀X ∈ Ω as in Example 4.

Example 4 Let R1 = {(a, b), (b, c)} and R2 = {(a, c), (b.c)} are any two binary relations on non-empty set Ω = {a, b, c}. Then we
have,

∑2
i=1 N Ri(φ) = {c} and

∑2
i=1 N Ri(Ω) = {a, b}. Hence (1) and (4) does not hold.

If X = {b}, then
∑2
i=1 N Ri(X) = {a, c} and

∑2
i=1 N Ri(X) = {a}. Consequently

∑2
i=1 N Ri(X) * X *

∑2
i=1 N Ri(X), i.e.,

(2) and (5) does not hold.
If X = {b}, hence

∑2
i=1 N Ri(

∑2
i=1 N Ri(X)) = {a, b, c} and

∑2
i=1 N Ri(X) = {b, c}. If X = {a, b, c}

∑2
i=1 N Ri(X) = {a, b}

and
∑2
i=1 N Ri(

∑2
i=1 N Ri(X)) = φ. Therefore (3) and (6) does not hold.

3.2 The second type of neighborhood systems

In the following, j-neighborhood systems for Zhu [35] will be used to define another MGRS model. In this model, some properties in
Remark 1 will be satisfied.

Definition 10 Let R be an arbitrary binary relation on a nonempty finite set U . The j-adhesion neighborhoods of x ∈ U is denoted by
(Pj(x)), ∀j ∈ {j1, j2, j3, j4, j5, j6, j7, j8}, which are defined as:

(1) Pj1(x)= {y ∈ U : Nj1(x) = Nj1(y)}.
(2) Pj2(x)= {y ∈ U : Nj2(x) = Nj2(y)}.

(3) Pj3(x)=

{
y ∈ U :

⋂
x∈Nj1

Nj1(y) =
⋂

y∈Nj1

Nj1(x)

}
.

(4) Pj4(x)=

{
y ∈ U :

⋂
x∈Nj2

Nj2(y) =
⋂

x∈Nj2
(y)

Nj2(x)

}
.

(5) Pj5(x)= Pj1(x) ∪Pj2(x).
(6) Pj6(x)= Pj1(x) ∩Pj2(x).
(7) Pj7(x)= Pj3(x) ∪Pj4(x).
(8) Pj8(x)= Pj3(x) ∩Pj4(x).

Definition 11 Let (Ω,R) be an approximation space. Suppose that X ⊆ Ω, R1, R2, · · · , Rn be n binary relations on Ω, the lower
approximation and the upper approximation with respect to R1, R2, · · · , Rn are

(1)
∑n
i=1 PRi(X) = {x ∈ Ω :

∨
(Pij(x) ⊆ X), i ≤ n}.
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(2)
∑n
i=1

PRi(X) = {x ∈ Ω :
∧

(Pij(x) ∩X 6= φ), i ≤ n}, respectively.

Example 5 From Example 1, if we have X = {b, d}, then
∑3
i=1 PRi(X) = {b, d} and

∑3
i=1

PRi(X) = {b, d}

From Examples 1 and 5, we note that∑n
i=1 N Ri and

∑n
i=1 PRi are independent. Also,

∑n
i=1

N Ri and
∑n
i=1

PRi are independent.

Theorem 3 Let (Ω,R) be an approximation space. Suppose thatX ⊆ Ω,R1, R2, · · · , Rn be n binary relations onΩ. Then the following
properties are hold:

(1)
∑n
i=1

PRi(Ω) = Ω.
(2)

∑n
i=1

PRi(φ) = φ.
(3) X ⊆

∑n
i=1

PRi(X).
(4) X ⊆ Y then

∑n
i=1

PRi(X) ⊆
∑n
i=1

PRi(Y ).
(5)

∑n
i=1

PRi(∩j∈IXj) ⊆ ∩j∈I
∑n
i=1

PRi(Xj).
(6)

∑n
i=1

PRi(∪j∈IXj) = ∪j∈I
∑n
i=1

PRi(Xj).
(7)

∑n
i=1Ri(

∑n
i=1

PRi(X)) =
∑n
i=1

P(X).
(8)

∑n
i=1

PRi(Xc) = (
∑n
i=1 PRi(X))c.

Proof (1) By Definition 11,∑n
i=1

PRi(Ω) = {x ∈ Ω | ∧(Pij(x) ∩Ω 6= φ), i ≤ n} = Ω. Thus,
∑n
i=1

PRi(Ω) = Ω.

(2) Similarly, from (1)
∑n
i=1

PRi(φ) = φ.

(3) Follows from Definition 11.

(4) By Definition 11 and if X1 ⊆ X2, then∑n
i=1

PRi(X1) = {x ∈ Ω | ∧(Pij(x) ∩X1 6= φ), i ≤ n}

⊆ {x ∈ Ω | ∧(Pij(x) ∩X2 6= φ), i ≤ n}

=
∑n
i=1

PRi(X2).

(5) From (4) and Definition 11, if X1 ⊆ X2 ⊆ ... ⊆ Xj , then∑n
i=1

PRi(X1 ∩X2 ∩ ... ∩Xj) =
∑n
i=1

PRi(X1)

= {x ∈ Ω | ∧(Pij(x) ∩X1 6= φ), i ≤ n}

⊆ {x ∈ Ω | ∧(Pij(x) ∩X2 6= φ), i ≤ n}
...
⊆ {x ∈ Ω | ∧(Pij(x) ∩Xj 6= φ), i ≤ n}

= ∩j∈I
∑n
i=1

PRi(Xj).

(6) Analogue to (5) above.

(7) By Definition 11, we have∑n
i=1

PRi(X) = {x ∈ Ω : ∧(Pij(x) ∩X 6= φ), i ≤ n}

⇐⇒ ⊆ {x ∈ Ω : ∧(Pij(x) ∩
∑n
i=1

PRi(X) 6= φ), i ≤ n}

⇐⇒ =
∑n
i=1

PRi(
∑n
i=1

PRi(X))

(8) The complement of the j-lower approximation of X is

(
∑n
i=1 PRi(X))c = {x ∈ Ω | ∨(Pij(x) ⊆ X), i ≤ n}c

= {x ∈ Ω | ∧(Pij(x))c ⊇ (Xc)}

= {x ∈ Ω : ∧(Pij(x) ∩X 6= φ), i ≤ n}

=
∑n
i=1

PRi(Xc).

The equality of (5) in Theorem 3 does not hold, in general, as in Example 6.
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Example 6 Let U = {a, b, c, d} and we have two binary relations
R1 = {(a, a), (b, b), (c, b), (c, c), (d, a)} and R2 = {(a, b), (b, a), (a, c), (c, a), (c, d), (d, c), (d, b)}. Then if we have X1 = {a, b}
and X2 = {b, d}, then ∩j∈I

∑2
i=1

PRi(Xj) = {a, b, d} and
∑2
i=1

PRi(∩j∈IXj) = {b}. Thus
∑2
i=1

PRi(∩j∈IXj) 6=
∩j∈I

∑2
i=1

PRi(Xj).

Theorem 4 Let (Ω,R) be an approximation space. Suppose thatX ⊆ Ω,R1, R2, · · · , Rn be n binary relations onΩ. Then the following
properties are hold:

(1)
∑n
i=1 PRi(Ω) = Ω.

(2)
∑n
i=1 PRi(φ) = φ.

(3)
∑n
i=1 PRi(X) ⊆ X .

(4)
∑n
i=1 PRi(∩j∈IXj) = ∩j∈I

∑n
i=1 PRi(Xj).

(5)
∑n
i=1 PRi(∪j∈IXj) ⊇ ∪j∈I

∑n
i=1 PRi(Xj).

(6)
∑n
i=1 PRi(

∑n
i=1 PRi(X)) =

∑n
i=1 PRi(X).

(7) X ⊆ Y then
∑n
i=1 PRi(X) ⊆

∑n
i=1 PRi(Y ).

(8)
∑n
i=1 PRi(X

c) = (
∑n
i=1

PRi(X))c.

Proof Analogue to Theorem 3.

The equality of (5) in Theorem does not hold, in general, as in Example 7.

Example 7 From Example 5, we have X1 = {a} and X2 = {d}, then
∑2
i=1 PRi(∪j∈IXj) = {a, d} and ∪j∈I

∑2
i=1 PRi(Xj) = φ.

Thus
∑2
i=1 PRi(∪j∈IXj) 6= ∪j∈I

∑2
i=1 PRi(Xj).

By using Definition 11, we can define the accuracy measure as the following.

Definition 12 Let (Ω,Rn) be an approximation space. Suppose that A ⊆ Ω, R1, R2, · · · , Rn be n binary relations on Ω, the accuracy
measure of A is defined by

αP(A) =
|
∑n
i=1 PRi(A)|

|
∑n
i=1

PRi(A)|

Where |.| denotes the cardinality of the set.

Example 8 illustrates a comparison between the accuracy measure for new MGRS models.

Example 8 (Chemical application) Let X = {x1, x2, x3, x4, x5} be five amino acids (AAs) which described in terms of five attributes:
a1 = PIE, a2 = SAC = surface area, a3 = MR = molecular refractivity, a4 = LAM = the side chain polarity and a5 = V ol =
molecular volume [28]. Table 1 shows all quantitative attributes of five AAs.

Table 1 Quantitative attributes of five amino acids.

X a1 a2 a3 a4 a5

x1 0.23 254.2 2.126 0.02 82.2
x2 0.48 303.6 2.994 1.24 112.3
x3 0.61 287.9 2.994 1.08 103.7
x4 0.45 282.9 2.933 0.11 99.1
x5 0.11 335.0 3.458 0.19 127.5

Consider five reflexive relations on X , Rk = {(xi, xj) ∈ X × X : xi(ak) − xj(ak) < σk
2 , i, j, k ∈ {1, 2, · · · , 5}}, where σk

represents the standard deviation of the quantitative attributes ak, k = 1, 2, 3, 4, 5. The right neighborhood for each element with respect
to the relation Rk, for k = 1, 2, 3, 4, 5. We have binary relations
R1 = {(x1, x1), (x1, x4), (x2, x1), (x2, x2), (x2, x3), (x2, x4), (x2, x5), (x3, x1), (x3, x2), (x3, x3), (x3, x4), (x3, x5), (x4, x4),
(x5, x1), (x5, x4), (x5, x5)}.
R2 = {(x1, x1), (x1, x2), (x1, x3), (x1, x4), (x1, x5), (x2, x2), (x2, x5), (x3, x2), (x3, x3), (x3, x4), (x3, x5), (x4, x2), (x4, x3),
(x4, x4), (x4, x5), (x5, x5)}.
R3 = {(x1, x1), (x1, x2), (x1, x3), (x1, x4), (x1, x5), (x2, x2), (x2, x3), (x2, x4), (x2, x5), (x3, x2), (x3, x3), (x3, x4), (x3, x5),
(x4, x2), (x4, x3), (x4, x4), (x4, x5), (x5, x5)}.
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R4 = {(x1, x1), (x1, x4), (x2, x1), (x2, x2), (x2, x3), (x2, x4) (x2, x5), (x3, x1), (x3, x3), (x3, x4), (x3, x5), (x4, x1), (x4, x4),
(x4, x5), (x5, x1), (x5, x4)}.
R5 = {(x1, x1), (x1, x2), (x1, x3), (x1, x4), (x1, x5), (x2, x2), (x2, x5), (x3, x2), (x3, x3), (x3, x4), (x3, x5), (x4, x2),
(x4, x3), (x4, x4), (x4, x5), (x5, x5)}.

Tables 2, 3, 4, 5 show a comparison between different kinds of j.

Table 2 A comparison between accuracies when j = j1 = j3.

P(X)
∑n
i=1 N Ri(X)

∑n
i=1 N Ri(X) αN (X)

∑n
i=1 PRi(X)

∑n
i=1 PRi(X) αN (X)

{a} φ {a} 0 {a} {a} 1
{b} φ {b, c} 0 {b} {b} 1
{c} φ {c} 0 φ {c} 1
{d} φ {a, c, d} 0 {d} {d} 1

{e} {e} X 1
5

{e} {e} 1

{a, b} φ {a, b, c, d} 0 {a, b} {a, b} 1

{a, c} φ {a, c, d} 0 {a} {a, c} 1
2

{a, d} φ {a, c, d} 0 {a, d} {a, d} 1

{a, e} {e} X 1
5

{a, e} {a, e} 1

{b, c} φ {b, c} 0 {b, c} {b, c} 1

{b, d} φ {a, b, c, d} 0 {b, d} {b, c, d} 2
3

{b, e} {b, e} X 2
5

{b, e} {b, e} 1

{c, d} φ {a, c, d} 0 {c, d} {c, d} 1

{c, e} {e} X 1
5

{e} {c, e} 1
2

{d, e} {e} X 1
5

{d, e} {d, e} 1

{a, b, c} φ {a, b, c, d} 0 {a, b, c} {a, b, c} 1

{a, b, d} φ {a, b, c, d} 0 {a, b, d} {a, b, c, d} 3
4

{a, b, e} {b, e} X 2
5

{a, b, e} {a, b, e} 1

{a, c, d} φ {a, c, d} 0 {a, c, d} {a, c, d} 1

{a, c, e} {e} X 1
5

{a, e} {a, c, e} 2
3

{a, d, e} {a, d, e} X 3
5

{a, d, e} {a, d, e} 1

{b, c, d} φ {a, b, c, d} 0 {b, c, d} {b, c, d} 1

{b, c, e} {b, e} X 2
5

{b, c, e} {b, c, e} 1

{b, d, e} {b, e} X 2
5

{b, c, e} {b, c, d, e} 3
4

{c, d, e} {e} X 1
5

{c, d, e} {c, d, e} 1

{a, b, c, d} φ {a, b, c, d} 0 {a, b, c, d} {a, b, c, d} 1

{a, b, c, e} {b, e} X 2
5

{a, b, c, e} {a, b, c, e} 1

{a, b, d, e} {a, b, d, e} X 4
5

{a, b, d, e} X 4
5

{a, c, d, e} {a, d, e} X 3
5

{a, c, d, e} {a, c, d, e} 1

{b, c, d, e} {b, c, d, e} X 4
5

{b, c, d, e} {b, c, d, e} 1

X X X 1 X X 1

4 Topological approach to MGRS by neighborhood systems

In this section, we give some topological approaches for new MGRS models using definitions 7 and 10.

4.1 The first type of topology by NS and its algorithms

Definition 13 [2] The topology which is generated by j-neighborhood systems is

Tj =
⋃
{A ∈ Ω : ∀x ∈ A,Nj(x) ⊆ A}

∀j ∈ {j1, j2, j3, j4, j5, j6, j7, j8} is called the topology generated by j-neighborhoods, denoted by Tj .

Example 9 Let X = {a, b, c, d} and R be a binary relation defined by

R = {(a, a), (b, b), (c, b), (c, c), (d, a)}

Then, we compute Tj as follows
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Table 3 A comparison between accuracies when j = j2 = j4.

P(X)
∑n
i=1 N Ri(X)

∑n
i=1 N Ri(X) αN (X)

∑n
i=1 PRi(X)

∑n
i=1 PRi(X) αN (X)

{a} {a} {a, d} 1
2

{a} {a} 1

{b} φ {b, e} 0 {b} {b} 1
{c} φ {b, c, d, e}} 0 φ {c} 0
{d} φ {d, e} 0 φ {d} 0
{e} φ {e} 0 {e} {e} 1

{a, b} {a} X 1
5

{a, b} {a, b} 1

{a, c} {a} X 1
5

{a} {a, c, d} 1
3

{a, d} {a} {a, d, e} 1
3

{a, d} {a, d} 1

{a, e} {a} {a, d, e} 1
3

{a, e} {a, e} 1

{b, c} {b, c} {b, c, d, e} 1
2

{b, c} {b, c} 1

{b, d} φ {b, c, d, e} 0 {b} {b, c, d} 1
3

{b, e} φ {b, e} 0 {b, e} {b, e} 1
{c, d} φ {b, c, d, e} 0 {c, d} {c, d} 1

{c, e} φ {b, c, d, e} 0 {e} {c, e} 1
2

{d, e} φ {d, e} 0 {e} {d, e} 1
2

{a, b, c} {a, b, c} X 3
5

{a, b, c} {a, b, c, d} 3
4

{a, b, d} {a} X 1
5

{a, b, d} {a, b, c, d} 3
4

{a, b, e} {a} X 1
5

{a, b, e} {a, b, e} 1

{a, c, d} {a, c, d} X 3
5

{a, c, d} {a, c, d} 1

{a, c, e} {a} X 1
5

{a, e} {a, c, d, e} 1
2

{a, d, e} {a} {a, d, e} 1
3

{a, d, e} {a, d, e} 1

{b, c, d} {b, c} {b, c, d, e} 1
2

{b, c, d} {b, c, d} 1

{b, c, e} {b, c} {b, c, d, e} 1
2

{b, c, e} {b, c, e} 1

{b, d, e} φ {b, c, d, e} 0 {b, e} {b, c, d, e} 1
2

{c, d, e} φ {b, c, d, e} 0 {c, d, e} {c, d, e} 1

{a, b, c, d} {a, b, c, d} X 4
5

{a, b, c, d} {a, b, c, d} 1

{a, b, c, e} {a, b, c} X 3
5

{a, b, c, e} X 4
5

{a, b, d, e} {a} X 1
5

{a, b, d, e} X 4
5

{a, c, d, e} {a, c, d} X 3
5

{a, c, d, e} {a, c, d, e} 1

{b, c, d, e} {b, c, e} {b, c, d, e} 3
4

{b, c, d, e} {b, c, d, e} 1

X X X 1 X X 1

(1) As j = j1, the topology Tj1 is

Tj1 = {X,φ, {a}, {b}, {a, b}, {a, d}, {b, c}, {a, b, c}, {a, b, d}}.

(2) As j = j2, the topology Tj2 is

Tj2 = {X,φ, {c}, {d}, {a, d}, {c, d}, {b, c}, {a, c, d}, {b, c, d}}.

(3) As j = j3, the topology Tj3 is

Tj3 = {X,φ, {a}, {b}, {d}, {a, b}, {a, d}, {b, c}, {b, d}, {a, b, c},
{a, b, d}, {b, c, d}}

(4) As j = j4, the topology Tj4 is

Tj4 = {X,φ, {c}, {d}, {c, d}, {a, d}, {b, c}, {a, c, d}, {b, c, d}}

(5) As j = j5, the topology Tj5 is
Tj5 = {X,φ, {a, d}, {b, c}}

(6) As j = j6, the topology Tj6 is

Tj6 = {X,φ, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c},
{b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}

(7) As j = j7, the topology Tj7 is
Tj7 = {X,φ, {d}, {a, d}, {b, c}, {b, c, d}}
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Table 4 A comparison between accuracies when j = j5 = j7.

P(X)
∑n
i=1 N Ri(X)

∑n
i=1 N Ri(X) αN (X)

∑n
i=1 PRi(X)

∑n
i=1 PRi(X) αN (X)

{a} φ X 0 {a} {a} 1
{b} φ X 0 {b} {b} 1
{c} φ X 0 φ {c} 0
{d} φ X 0 φ {d} 0
{e} φ X 0 {e} {e} 1
{a, b} φ X 0 {a, b} {a, b} 1

{a, c} φ X 0 {a} {a, c, d} 1
3

{a, d} φ X 0 {a} {a, d} 1
2

{a, e} φ X 0 {a, e} {a, e} 1
{b, c} φ {b, c} 0 {b, c} {b, c} 1

{b, d} φ X 0 {b} {b, c, d} 1
3

{b, e} φ X 0 {b, e} {b, e} 1
{c, d} φ X 0 {c, d} {c, d} 1

{c, e} φ X 0 {e} {c, d, e} 1
3

{d, e} φ X 0 {e} {d, e} 1
2

{a, b, c} φ X 0 {a, b, c} {a, b, c, d} 3
4

{a, b, d} φ X 0 {a, b} {a, b, c, d} 1
2

{a, b, e} φ X 0 {a, b, e} {a, b, e} 1
{a, c, d} φ X 0 {a, c, d} {a, c, d} 1

{a, c, e} φ X 0 {a, e} {a, c, d, e} 1
2

{a, d, e} φ X 0 {a, d, e} {a, d, e} 1
{b, c, d} φ X 0 {b, c, d} {b, c, d} 1

{b, c, e} φ X 0 {b, c, e} {b, c, d, e} 3
4

{b, d, e} φ X 0 {b, e} {b, c, d, e} 1
2

{c, d, e} φ X 0 {c, d, e} {c, d, e} 1
{a, b, c, d} φ X 0 {a, b, c, d} {a, b, c, d} 1

{a, b, c, e} φ X 0 {a, b, c, e} X 4
5

{a, b, d, e} φ X 0 {a, b, d, e} X 4
5

{a, c, d, e} φ X 0 {a, c, d, e} {a, c, d, e} 1
{b, c, d, e} φ X 0 {b, c, d, e} {b, c, d, e} 1

X X X 1 X X 1

(8) As j = j8, the topology Tj8 is

Tj8 = {X,φ, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c},
{b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}

Definition 14 For every j ∈ {j1, j2, j3, j4, j5, j6, j7, j8}, we call G is a j-open set if G ∈ Tj and the complement Gc = Ω−G of j-open
set is called a j-closed set. The set of all j-closed sets denoted by Fj .

Example 10 From Example 9, by the complement. Then we obtain the j-closed set for each Tj . For instance at j = j1, the j1-closed set
is

Fj1 = {X,φ, {b, c, d}, {a, c, d}, {c, d}, {b, c}, {a, d}, {d}, {c}}.

Definition 15 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relations R1, R2, · · · , Rn, respec-
tively, and X ⊆ Ω. Then we define mIj and mCj operators of X with respect to Γ , where Γ={T1,T2, · · · ,Tn}, respectively,
∀j ∈ {j1, j2, j3, j4, j5, j6, j7, j8}, as follows:

(1) mIj(X) = {G ∈ Ti :
∨

(G ⊆ X), i ∈ n},
(2) mCj(X) = {F ∈ Fi :

∧
(X ⊆ F), i ∈ n}.

Example 11 Consider X and R1 are given in Example 9, and we have another binary relation R2 = {(a, a), (a, b), (b, c), (c, c), (d, b)}.
Take j = j1 (and also j ∈ {j2, j3, j4, j5, j6, j7, j8} are similarly). The topology is determined by R2 is

Tj1 = {X,φ, {c}, {b, c}, {a, b, c}, {b, c, d}}

If X = {b, d}. Thus 2Ij1(X) = {b} and 2Cj1(X) = {b, d}.

Definition 16 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relationsR1, R2, · · · , Rn, respectively,
and X ⊆ Ω. Then the m-boundary, m-positive and m-negative regions of H using j-neighborhoods are denoted by m5j , m.j and m/j ,
respectively, ∀j ∈ {j1, j2, j3, j4, j5, j6, j7, j8}, and defined as with respect to Γ , where Γ={T1,T2, · · · ,Tn}, respectively, as follows:

(1) m5j(X) =m Cj(X)−m Ij(X),
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Table 5 A comparison between accuracies when j = j6 = j8.

P(X)
∑n
i=1 N Ri(X)

∑n
i=1 N Ri(X) αN (X)

∑n
i=1 PRi(X)

∑n
i=1 PRi(X) αN (X)

{a} {a} {a} 1 {a} {a} 1
{b} {b} {b} 1 {b} {b} 1
{c} φ {c} 0 {c} {c} 1
{d} φ {d} 0 {d} {d} 1
{e} {e} {e} 1 {e} {e} 1
{a, b} {a, b} {a, b} 1 {a, b} {a, b} 1

{a, c} {a} {a, c, d} 1
3

{a, c} {a, c} 1

{a, d} {a} {a, d} 1
2

{a, d} {a, d} 1

{a, e} {a, e} {a, e} 1 {a, e} {a, e} 1
{b, c} {b, c} {b, c} 1 {b, c} {b, c} 1

{b, d} {b} {b, c, d} 1
3

{b, d} {b, d} 1

{b, e} {b, e} {b, e} 1 {b, e} {b, e} 1
{c, d} {c, d} {c, d} 1 {c, d} {c, d} 1

{c, e} {e} {c, d, e} 1
3

{c, e} {c, e} 1

{d, e} {e} {d, e} 1
2

{d, e} {d, e} 1

{a, b, c} {a, b, c} {a, b, c, d} 3
4

{a, b, c} {a, b, c} 1

{a, b, d} {a, b} {a, b, c, d} 1
2

{a, b, d} {a, b, d} 1

{a, b, e} {a, b, e} {a, b, e} 1 {a, b, e} {a, b, e} 1
{a, c, d} {a, c, d} {a, c, d} 1 {a, c, d} {a, c, d} 1

{a, c, e} {a, e} {a, c, d, e} 1
2

{a, c, e} {a, c, e} 1

{a, d, e} {a, d, e} {a, d, e} 1 {a, d, e} {a, d, e} 1
{b, c, d} {b, c, d} {b, c, d} 1 {b, c, d} {b, c, d} 1

{b, c, e} {b, c, e} {b, c, d, e} 3
4

{b, c, e} {b, c, e} 1

{b, d, e} {b, e} {b, c, d, e} 1
2

{b, d, e} {b, d, e} 1

{c, d, e} {c, d, e} {c, d, e} 1 {c, d, e} {c, d, e} 1
{a, b, c, d} {a, b, c, d} {a, b, c, d} 1 {a, b, c, d} {a, b, c, d} 1

{a, b, c, e} {a, b, c, e} X 4
5

{a, b, c, e} {a, b, c, e} 1

{a, b, d, e} {a, b, d, e} X 4
5

{a, b, d, e} {a, b, d, e} 1

{a, c, d, e} {a, c, d, e} {a, c, d, e} 1 {a, c, d, e} {a, c, d, e} 1
{b, c, d, e} {b, c, d, e} {b, c, d, e} 1 {b, c, d, e} {b, c, d, e} 1

X X X 1 X X 1

(2) m .j (X) =m Ij(X),
(3) m /j (X) = Ω −m Cj(X).

Example 12 From Examples 9 and 11. Take j = j1 (and also j ∈ {j2, j3, j4, j5, j6, j7, j8} are similarly). So, we have
(1) 25j1(X) = {d}.
(2) 2 .j1 (X) = {b}.
(3) 2 /j1 (X) = {a, c}.

Theorem 5 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relations R1, R2, · · · , Rn, respectively,
and X ⊆ Ω. We have mIj(X) =

∑n
i=1 N Ri(X), mCj(X) =

∑n
i=1

N Ri(X).

Proof Follows from Definition 8 and 15.

According to above results of multi-granulation rough sets via neighborhood systems, we have Theorems 6, 7 and 8.

Theorem 6 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relations R1, R2, · · · , Rn, respectively,
and X ⊆ Ω. Then, with respect to the operators mIj , we have

(i) mIj(φ) = φ,
(ii) mIj(Ω) = Ω,
(iii) mIj(X) ⊆ X ,
(iv) if X ⊆ Y =⇒ mIj(X) ⊆m Ij(Y ),
(v) mIj(mIj(X)) =m Ij(X).

Proof (1) Since φ ∈ Ti and by Definition 15,
mIj(φ) = {A ∈ Ti :

∨
(Nj(A) ⊆ φ), i ∈ n} = φ.

Thus, mIj(φ) = φ.
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(2) Follows from Definition 15 and from (1).

(3) Follows from Definition 15.

(4) By Definition 15 and if X ⊆ Y, then

mIj(X ) = {A ∈ Ti :
∨

(Nj(A) ⊆ X), i ∈ n}

⊆ {A ∈ Ti :
∨

(Nj(A) ⊆ Y ), i ∈ n}

=m Ij(Y ).

(5) Follows from (3) and Definition 15.

Theorem 7 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relations R1, R2, · · · , Rn, respectively,
and X ⊆ Ω. Then, with respect to the operators mCj , we have

(i) mCj(Ω) = Ω,
(ii) mCj(φ) = φ,
(iii) X ⊆m Cj(X),
(iv) if X ⊆ Y =⇒ mCj(X) ⊆m Cj(Y ),
(v) mCj(mCj(X)) =m Cj(X).

Proof Analogue to Theorem 6.

Theorem 8 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relations R1, R2, · · · , Rn, respectively,
and X,Y ⊆ Ω. Then

(1) mIj(X ∩ Y ) =m Ij(X) ∩m Ij(Y ),
(2) mIj(X ∪ Y ) ⊇m Ij(X) ∪m Ij(Y ).

Proof
(1) It is sufficient to show mIj(X ∩ Y ) =m Ij(X) ∩m Ij(Y ).

By Definition 15, we have mIj(X ∩ Y ) = {A ∈ Ti :
∨

(Nj(A) ⊆ X ∩ Y ), i ∈ n},

since X ∩ Y ⊆ X and X ∩ Y ⊆ Y implies that Nj(A) ⊆ X and Nj(A) ⊆ Y . Thus, mIj(X ∩ Y ) ⊆m Ij(X) and mIj(X ∩ Y ) ⊆m
Ij(Y ) by (3). Therefore, mIj(X) ∩m Ij(Y )

= {A ∈ Ti :
∨

(Nj(A) ⊆ X), i ∈ n}
and

{A ∈ Ti :
∨

(Nj(A) ⊆ Y ), i ∈ n}

= {A ∈ Ti :
∨

(Nj(X) ∩Nj(Y ) ⊆ Ω), i ∈ n}

=m Ij(X ∩ Y ) =m Ij(X) ∩m Ij(Y ).

(2) Analogue to (1).

Example 13 From Examples 9 and 11, take j = j1 (and also j ∈ {j2, j3, j4, j5, j6, j7, j8} are similarly).
(1) If X = {a, b} and Y = {a}. Then, we have, 2Ij1(X ∩ Y ) = {a} and 2Ij1(X) ∩2 Ij1(Y ) = {a, b} ∩ {a} = {a}. Thus mIj(X ∩
Y ) =m Ij(X) ∩m Ij(Y )

(2) IfX = {b, d} and Y = {a}. Then we have, 2Ij1(X ∪Y ) = {a, b, d} and 2Ij1(X)∪2 Ij1(Y ) = {a, b}. Therefore, mIj(X ∪Y ) ⊇m
Ij(X) ∪m Ij(Y ).

Theorem 9 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relations R1, R2, · · · , Rn, respectively,
and X,Y ⊆ Ω. Then

(1) mCj(X ∪ Y ) =m Cj(X) ∪m Cj(Y ),
(2) mCj(X ∩ Y ) ⊆m Cj(X) ∩m Cj(Y ).

Proof Analogue to Theorem 8.

Example 14 From Examples 9 and 11, take j = j1 (and also j ∈ {j2, j3, j4, j5, j6, j7, j8} are similarly).
(1) IfX = {b, d} and Y = {a}. Then we have, 2Cj1(X∪Y ) = {a, b, d} and 2Cj1(X)∪2Cj1(Y ) = {a, b, d}. Therefore mCj(X∪Y ) =m

Cj(X) ∪m Cj(Y ).
(2) If X = {a, b} and Y = {b, c}. Then, we have, 2Cj1(X ∩ Y ) = {b} and 2Cj1(X) ∩2 Cj1(Y ) = {b, d}. Thus mCj(X ∩ Y ) ⊆m
Cj(X) ∩m Cj(Y ).
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Theorem 10 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relations R1, R2, · · · , Rn, respectively,
and X,Y ⊆ Ω. Then, mIj and mCj are interior and closure operators, respectively.

Proof Obvious.

Theorem 11 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relations R1, R2, · · · , Rn, respectively,
and X ⊆ Ω. Then, with respect to m5j(X), we have

(1) m5j(X) =m Cj(X) ∩m Cj(Xc),
(2) m5j(X) =m 5j(Xc),
(3) mCj(X) = X ∪m 5j(X),
(4) mIj(X) = X \m 5j(X),
(5) m5j(X) ∩m Ij(X) = φ,
(6) m5j(X1 ∪X2) ⊆m 5j(X1) ∪m 5j(X2),
(7) m5j(X1 ∩X2) ⊆m 5j(X1) ∪m 5j(X2),
(8) m5j(mCj(X)) ⊆m 5j(X),
(9) m5j(mIj(X)) ⊆m 5j(X).

Proof (1) By Theorem 6 and Definition 16, we have
m5j(X) =m Cj(X) ∩ (mIj(X))c =m Cj(X) ∩m Cj(Xc).

(2) Follows from (1), where
m5j(Xc) =m Cj(Xc) ∩ (mCj(Xc)c)

=m Cj(Xc) ∩m Cj(X) =m 5j(X).

(3) By (1) and Theorem 6, we have X ∪m 5j(X) = X ∪ (mCj(X) ∩m Cj(Xc))

= (X ∪m Cj(X)) ∩ (X ∪m Cj(Xc))

=m Cj(X) ∩ [X ∪ (mIj(X))c]

=m Cj(X) ∩Ω
=m Cj(X).

(4) X \m 5j(X) = X \ (mCj(X) ∩m Cj(Xc))
= X ∧ ([mCj(X) ∩m Cj(Xc)]c)
= X ∧ ([mCj(X)]c ∪ [mCj(Xc)]c)
= [X ∩m Ij(Xc)] ∪ [X ∩m Ij(X)]
= φ ∩m Ij(X)
=m Ij(X).

(5) It is clear.

(6) By Theorem 7 and Definition 16, we have

m5j(X1 ∪X2) =m Cj(X1 ∪X2) ∩ (mCj(X1 ∪X2)c)

⊆ [mCj(X1) ∪m Cj(X2)] ∩ [mCj(Xc
1) ∩m Cj(Xc

2)]

= [mCj(X1) ∪m Cj(X2) ∩m Cj(Xc
1) ∩m Cj(Xc

2)]

= [mCj(X1) ∩m Cj(Xc
1)] ∪ [mCj(X2) ∩m Cj(Xc

2)]

=m 5j(X1) ∪m 5j(X2).

(7) Analogue to (6) above.

(8) m5j(mCj(X)) =m Cj(mCj(X) ∩m Ccj (X)
⊆m Cj(X) ∩m Cj(mCcj (X))
⊆m Cj(X) ∩m Cj(Xc)
=m 5j(X).

(9) Analogue to (8).

Definition 17 Let R1 and R2 be any binary relations on a finite universe Ω, f1 and f2 are the subbase of R1 and R2 respectively. Then
we define a intersection mapping FN ∩ : Ω → 2Ω satisfies

FN ∩(x) = f1(x) ∩ f2(x).

Where f1(x) = {(Nj(x))R1
: x ∈ Ω} and f2(x) = {(Nj(x))R2

: x ∈ Ω}.
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Definition 18 Let T1,T2 are two topologies induced by R1 and R2. Then we can define u between two topologies which is defined as
follows

T1 u T2 =
⋃
{
⋂
FN ∩(x) : x ∈ Ω}.

Theorem 12 If T1,T2 are two topologies induced by R1 and R2, then T1 u T2 is a topology.

Proof Suppose Y be a finite universe, R1 and R2 two binary relations, and
T1={Ω,φ, (Nj(xi1))R1

, (Nj(xi2))R1
, · · · , (Nj(xik))R1

,⋃k
i=1(Nj(xik))R1

,
⋂k
i=1(

⋃k
i=1 Nj(xik))R1

},
T2={Ω,φ, (Nj(xj1))R2

, (Nj(xj2))R2
, · · · , (Nj(xjl))R2

,⋃l
i=1(Nj(xil))R2

,
⋂l
i=1(

⋃l
i=1 Nj(xil))R2

},
induced by R1 and R2, k, l ≤ |Ω|, where |.| is cardinality of Ω.

(i) According to the definition of T1 u T2, obviously, φ ∈ T1 u T2, Ω ∈ T1 u T2.
(ii) Assume that X,Y ∈ T1 u T2, then there exists two classes (Nj(x1))R1

∈ T1, (Nj(x2))R2
∈ T2 such that

X ⊆ (Nj(x1))R1
, Y ⊆ (Nj(x2))R2

.
Hence X ∩ Y ∈ (Nj(x1))R1

∩ (Nj(x2))R2
∈ T1 u T2.

(iii) Let T ∈ T1 u T2, suppose that
⋃
X∈T X /∈ T1 u T2. Then there at least exists an element x ∈ X ∈ T , we have an class Nj(x)

consisting x in T1 u T2 such that Nj(x) /∈ T1 u T2.
Thus Nj(x)=((Nj(x))R1

∩ (Nj(x))R2
) holds, a contradiction. Therefore, T1 u T2 is still a topology.

Example 15 Consider R1 and R2 are defined on Examples 1 and 11 respectively. Then we obtain by a relation R1

f1(a) = {a}, f1(b) = {b}, f1(c) = {b, c}, f1(d) = {a}.
And the relation R2

f2(a) = {a, b}, f2(b) = {c}, f2(c) = {c} and f2(d) = {b}.
Thus FN ∩(a) = {a},FN ∩(b) = φ,FN ∩(c) = {c} and FN ∩(d) = φ. Therefore

T1 u T2 = {Ω,φ, {a}, {c}, {a, c}}.

Similarly, we can prove that the intersection of the finite topologies is topology, i.e., umi=1τi is a topology with respect to
T1,T2, · · · ,Tn, denoted by umi=1Ti = Γ .

Definition 19 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relations R1, R2, · · · , Rn, respec-
tively. An intersection operation F∩ : Ω → 2Ω . Then (Ω,uni=1Ti) is called a multi-granulation topological rough space, denoted as
(Ω,uni=1Ti)=(Ω,Γ ).

Corollary 1 Let T1,T2 be two topologies on Ω, if for any X ∈ T1, there exists Y ∈ T2 such that X ⊆ Y . Then we call T1 finer than
T2, denoted by T1 ≤T T2. If T1 is strictly finer than T2, denoted by T1 <

T T2. If and only if X = Y , then T1 = T2. Similarly, let
Γ1, Γ2 be two multi-granulation topological rough spaces on X , if for any T1 ∈ Γ1, there exists T2 ∈ Γ2 such that T1 ≤T T2, then we
call Γ1 than Γ2, denoted by Γ1 ≤Γ Γ2. If Γ1 is strictly finer than Γ2, denoted by Γ1 <

Γ Γ2. If and only if T1 = T2, then Γ1 = Γ2.

Theorem 13 Let T1,T2, · · · ,Tn be n topologies onΩ induced by any binary relationsR1, R2, · · · , Rn, respectively. If T1 <
T T2 <

T

· · · <T Tn, then Γ = T1.

Thus, from the above definition, we know (Ω,Γ ) is finer than each topology on Ω.

Corollary 2 If T1 <
T T2, and SN

1 ,SN
2 are the topology subbase of T1,T2, respectively. Then SN

1 <T SN
2 .

Corollary 3 If Γ1 <
Γ Γ2, and SN

1M ,SN
2M are their family of the topology subbase of Γ1, Γ2, respectively. Then SN

1M <Γ SN
2M .

Theorem 14 Let SN
i be the topology subbase of Ti, then uni=1SN

i is a topology subbase of multi-granulation topological rough space
Γ .

Proof
(i) For any x ∈ X , there exists (Nj(x))Ri ∈ βi such that x ∈ (Nj(x))Ri . Since (Nj(x))Ri ∈ uni=1SN

i . Hence, let A = (Nj(x))Ri ∈
uni=1SN

i , we have x ∈ A.
(ii) For any A1, A2 ∈ uni=1SN

i , suppose x ∈ A1 ∩ A2, but A1 is a set which is intersection of (Nj(x))Ri , A2 is a set which is inter-
section of (Nj(y))Ri , then x = y, otherwise (Nj(x))Ri = (Nj(y))Ri . HenceA1∩A2 = φ. There existsA3 = φ obviously, φ ⊂ φ holds.

Therefore uni=1SN
i is a topology subbase of multi-granulation topological rough space (MGTRS) Γ .

Definition 20 Let (Ω,Γ ) be a MGTRS and X ⊆ Ω. Then the interior operator is defined as

Ij(X) =
⋃
{G ∈ Γ : G ⊆ X}.
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Definition 21 Let (Ω,Γ ) be a MGTRS and X ⊆ Ω. Then the closure operator is defined as

Cj(X) =
⋂
{F ∈ Γ c : X ⊆ F}.

Example 16 From Example 15, take j = j1 (and also j ∈ {j2, j3, j4, j5, j6, j7, j8} are similarly). If X = {a}, then Ij1(X) = {a} and
Cj1(X) = {a, c}.

Proposition 1 Let (Ω,Γ ) be a MGTRS and X,Y ⊆ Ω. Then, with respect to the interior operator Ij , we have
(i) Ij(φ) = φ,
(ii) Ij(Ω) = Ω,
(iii) Ij(X) ⊆ X ,
(iv) if X ⊆ Y =⇒ Ij(X) ⊆ Ij(Y ),
(v) Ij(Ij(X)) = Ij(X).
(vi) Ij(X ∩ Y ) = Ij(X) ∩ Ij(Y ),
(vii) Ij(X ∪ Y ) ⊇ Ij(X) ∪ Ij(Y ).

Proof By Definition 20 and Theorems 6 and 8.

Proposition 2 Let (Ω,Γ ) be a MGTRS and X,Y ⊆ Ω. Then, with respect to the closure operator Ij , we have
(i) Cj(φ) = φ,
(ii) Cj(Ω) = Ω,
(iii) X ⊆ Cj(X),
(iv) if X ⊆ Y =⇒ Cj(X) ⊆ Cj(Y ),
(v) Cj(Cj(X)) = Cj(X).
(vi) Cj(X ∪ Y ) = Cj(X) ∪ Cj(Y ),
(vii) Cj(X ∩ Y ) ⊆ Cj(X) ∩ Cj(Y ).

Proof By Definitions 21 and Theorems 7 and 9.

Theorem 15 Let ΩR = {Nj(A1),Nj(A2), ...,Nj(Ak)}. Then we call

mN (Nj(A)) =
|Ω|
k

(1− 1

k.|Nj(A)| ).

A measure of granularity of a set Nj(A), k is the number of blocks in ΩR, denoted by |ΩR| = k.

Proof It is sufficient to show that m meets all the conditions in Definition 5.
(i) Obviously, mN (Nj(A)) = |Ω|

k (1− 1
k.|Nj(A)| ) ≥ 0.

(ii) If Nj(A) ⊂ Nj(B), then |Nj(A)| < |Nj(B)|, then

mN (Nj(A))−m(Nj(B))

= |Ω|
k (1− 1

k.|Nj(A)| )−
|Ω|
k (1− 1

k.|Nj(B)| )

= |Ω|
k (1− 1

k.|Nj(A)| − 1 + 1
k.|Nj(B)| )

= |Ω|
k ( 1

k.|Nj(B)| −
1

k.|Nj(A)| ) < 0,
i.e., m(Nj(A)) < m(Nj(B)).

(iii) If A ∼s B, then |Nj(A)| ≤ |Nj(B)| and |Nj(A)| ≥ |Nj(B)|. Hence mN (Nj(A)) = mN (Nj(B)).

Proposition 3 LetΩR be a classes ofΩ induced by any binary relation onΩ andX ∈ ΩR. The maximum granularity measure ofX with
respect to R is one. This value is achieved if and only if k = 1, max(mN (Nj(A))) = |Ω|(1− 1

|Ω| ).

Proposition 4 Let ΩR be a classes of Ω induced by any binary relation on Ω and X ∈ ΩR. The minimum granularity measure of X with
respect to R is one. This value is achieved if and only if k = |Ω|, min(mN (Nj(A))) = (1− 1

|Ω| ).

Example 17 From Example 15, the first topology have the following subbase Sj1 = {{a}, {c}}. Then mN ({a}) = 4
2 (1− 1

2∗1 ) = 1 and
mN ({c}) = 4

2 (1− 1
2∗1 ) = 1.

Theorem 16 Let (Ω,Γ ) be a MGTRS, mN : 2Ω → R a measure of the granularity of subsets of Ω, and SN
M = {A1, A2, ..., An} a

topology subbase of ΓN
M . Then a measure GN

M (Γ ) =
∑n
i=1m

N (Ai).p
N (Ai)

is a topological granularity of Γ , where pN (Ai) = |Ai|
|Ω| .

Proof It is sufficient to show that GN
M satisfies all the conditions in Definition 6.
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(i) Obviously, GN
M (Γ ) ≥ 0 holds.

(ii) Suppose Γ1 <
Γ Γ2, SN

1M ⊂ SN
2M holds. This means that every class of SN

2M is a union of one or more blocks of SN
1M and at least one

class of S
′N
M is the union of at least two blocks from SN

1M . By the fact Ω is a finite universe, there exists a finite sequence of partitions
SN
1M = SN

M1 ⊂ SN
M2 ⊂ ... ⊂ SN

Mi = SN
M2 such that exactly one block of SN

j+1 is the union of two classes from SN
j for j = 1, 2, ..., n−1

and n ≥ 2. We want to show thatG(SN
j ) < G(SN

j+1). Without loss of generality, suppose a class of SN
j+1 is obtained by the union of two

classes Aj1 and Aj2 of SN
j , that is,SN

j = {Aj1, Aj2, ..., Ajk}, k ≥ 2 and SN
j+1 = {Aj1 ∪Aj2, ...,∪Ajk}. According to the definition

of GN
M (Ω) and monotonicity of mN , we have:

GN
M (SN

j ) =
∑k
i=1m

N (Aji.p
N (Aji))

= mN (Aj1).pN (Aj1) +mN (Aj2).pN (Aj2) +
∑k
i=3m

N (Aji.p
N (Aji))

< mN (Aj1 ∪Aj2).pN (Aj1) +mN (Aj2 ∪Aj1).pN (Aj2) +
∑k
i=3m

N (Aji.p
N (Aji))

= mN (Aj1 ∪Aj2).pN (Aj1) + pN (Aj1) +
∑k
i=3m

N (Aji.p
N (Aji))

= mN (Aj1 ∪Aj2).pN (Aj1 ∪Aj1) +
∑k
i=3m

N (Aji.p
N (Aji))

= GM (SN
j+1).

Then Γ1 <
Γ Γ2 holds.

(iii) Assume that Γ1 = Γ2, SN
1M ⊂ SN

2M holds. And from Definition 19, G(Γ1) = G(Γ2) holds.

Proposition 5 Let (Ω,Γ ) be a MGTRS. The maximum topological granularity measure of T with respect to Ω is one. This value is
achieved if and only if mN = 1, max(GN

M (Γ )) = |Ω| − 1.

Proposition 6 Let (Ω,Γ ) be a MGTRS. The minimum topological granularity of s with respect to Ω is one. This value is achieved if and
only if mN = |Ω|, min(GN

M (Γ )) = 1− 1
|Ω| .

Thus, 1− 1
|Ω| ≤ G(ΓN

M ) ≤ |Ω| − 1.

Theorem 17 Let Γ1, Γ2 be two MGTRS. If Γ1 <
T Γ2, then GN

M (Γ1) < GN
M (Γ2).

Definition 22 Let (Ω,Γ ) be a MGTRS and SN
M = {A1, A2, · · · , An} is a topology subbase of Γ . Then the topological entropy of Γ is

defined as:

EN
M (Γ ) = 1− 1

|Ω|

q∑
i=1

mN (Ai).p
N (Ai),

where pN (Ai) = |Ai|
|Ω| .

Definition 23 Let (Ω,Γ ) be a MGTRS. Then Tk is significant in Γ , if EN
Γ (Ω,uqi=1Ti) 6= EN

Γ (Ω,uqi=1,i6=kTi). So, Tk is not signifi-
cant in Γ if EN

Γ (Ω,uqi=1Ti) = EN
Γ (Ω,uqi=1,i6=kTi).

Definition 24 Let (Ω,Γ ) be a MGTRS. The significance measure of Tk in Γ is defined as

SN
Γ (Tk) =

EN
Γ (Ω,uqi=1Ti)

EN
Γ (Ω,uqi=1,i 6=kTi)

.

Definition 25 Let Γ = {T1,T2, · · · ,Tq} be q topological spaces induced by any binary relations R1, R2, · · · , Rn, respectively on Ω.
If there exists a subset Γi = {Ti1,Ti2, · · · ,Tiq} ⊆ Γ , such that EN

Γ (Ω,uqi=1Ti) = EN
Γ (Ω,uqi=kTik), but EN

Γ (Ω,Ti1 uTi2 u · · · u
Tik u Ti(k+1)) 6= EN

Γ (Ω,T1 u T2 u · · · u Tq), then we call Γi is a granularity reduct of Γ .

Now, we establish Algorithm 1 to produce the intersection of topologies and Algorithm 2 to make reduction for topologies.

Algorithm 1. An algorithm for uni=1Ti

Input: x ∈ Ω and Binary Relations Ri.
Output: uni=1Ti.
1: for (i = 1; i <= |Ri|; i+ +)
2: for (k = 1; k <= |Rk|; k + +)
3: fi(x) = (Nj(x))Rk .
4: F iN ∩(x) =

⋂n
k=1 fi(x).

5: endfor
6: endfor
7: for (i = 1; i <= |Ri|; i+ +)
8: ui=1Ti =

⋃
(
⋂
F iN ∩(x)).
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9: endfor
10: end

Algorithm 2. An algorithm for a reduction

Input: Ω, ΩR and Multi-source information decision table.
Output: make a reduction ( reduct is a set which conserve the selected granularities).
1: reduct = φ
2: for (i = 1; i <= n; i+ +)

3: mN (Nj(Ai)) = |Ω|
k (1− 1

k.|Nj(Ai)| ), where k = |ΩR|
4: endfor
5: for (i = 1; i <= n; i+ +)

6: pN (Ai) = |Ai|
|Ω|

7: endfor
8: for (i = 1; i <= n; i+ +)

9: EN
M (Γ ) = 1− 1

|Ω|

q∑
i=1

mN (Ai).p
N (Ai)

10: endfor
11:for (i = 1; i <= |Ri|; i+ +)

12: SN
Γ (Tk) =

EN
Γ (Ω,uqi=1Ti)

EN
Γ (Ω,uqi=1,i 6=kTi)

, where k ≤ |Ri|
13: reduct = Tk
14: if(EN

Γ (Ω, reduct) = EN
Γ (Ω,uqi=1Ti))

15: goto: end
16: endif
17: endfor
18: end

4.2 The second type of topology by j-adhesion NS and its algorithms

Definition 26 The topology which is generated by j-adhesion neighborhood systems is

Tj =
⋃
{A ∈ Ω : ∀x ∈ A,Pj(x) ⊆ A}

∀j ∈ {j1, j2, j3, j4, j5, j6, j7, j8} is called the topology generated by j-adhesion neighborhoods, denoted by Tj .

Example 18 Let X = {a, b, c, d} and R be a binary relation defined by

R = {(a, a), (b, b), (c, b), (c, c), (d, a)}

Then, we compute Tj as follows. For instance at j = j1 :

Tj1 = {X,φ, {b}, {c}, {b, c}, {a, d}, {a, b, d}, {a, c, d}}.

Definition 27 For every j ∈ {j1, j2, j3, j4, j5, j6, j7, j8}, we call G is a j-open set if G ∈ Tj and the complement Gc = Ω−G of j-open
set is called a j-closed set. The set of all j-closed sets denoted by Fj .

Example 19 From Example 18, by the complement. Then we obtain the j-closed set for each Tj . For instance at j = j1, the j1-closed set
is

Fj1 = {X,φ, {a, c, d}, {a, b, d}, {a, d}, {b, c}, {c}, {b}}.

Definition 28 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relationsR1, R2, · · · , Rn, respectively,
and X ⊆ Ω. Then we define mLj and mUj operators of X with respect to Γ , where Γ = {T1,T2, · · · ,Tn}, respectively, ∀j ∈
{j1, j2, j3, j4, j5, j6, j7, j8}, as follows:

(1) mLj(X) = {G ∈ Ti :
∨

(G ⊆ X), i ∈ n},
(2) mUj(X) = {F ∈ Fi :

∧
(A ⊆ F), i ∈ n}.
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Example 20 Consider X and R1 are given in Example 9, and we have another binary relation R2 = {(a, a), (a, b), (b, c), (c, c), (d, b)}.
Take j = j1 (and also j ∈ {j2, j3, j4, j5, j6, j7, j8} are similarly). The topology is determined by R2 is

Tj1 = {U, φ, {a}, {d}, {b, c}, {a, d}, {a, b, c}, {b, c, d}}

If X = {b, d}. Thus 2Lj1(X) = {b, d} and 2Uj1(X) = U .

Definition 29 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relationsR1, R2, · · · , Rn, respectively,
and X ⊆ Ω. Then the m-boundary, m-positive and m-negative regions of H using j-neighborhoods are denoted by mBj , mPj and mNj ,
respectively, ∀j ∈ {j1, j2, j3, j4, j5, j6, j7, j8}, and defined as with respect to Γ , where Γ={T1,T2, ...,Tn}, respectively, as follows:

(1) mBj(X) =m Uj(X)−m Lj(X),
(2) mPj(X) =m Lj(X),
(3) mNj(X) = Ω −m Uj(X).

Example 21 From Examples 18 and 20. Take j = j1 (and also j ∈ {j2, j3, j4, j5, j6, j7, j8} are similarly). So, we have
(1) 2Bj1(X) = {a, c}.
(2) 2Pj1(X) = {b, d}.
(3) 2Nj1(X) = φ.

Theorem 18 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relations R1, R2, · · · , Rn, respectively,
and X ⊆ Ω. We have mLj(X) =

∑n
i=1 PRi(X), mUj(X) =

∑n
i=1

PRi(X).

Proof Follows from Definition 11 and 28.

According to the above propositions of multigranulation rough sets using neighborhood systems, we easily obtain the following results.

Theorem 19 (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relationsR1, R2, · · · , Rn, respectively, and
X ⊆ Ω. Then, with respect to the operators mLj , we have

(i) mLj(Ω) = Ω,
(ii) mLj(φ) = φ,
(iii) mLj(X) ⊆ X ,
(iv) if X ⊆ Y =⇒ mLj(X) ⊆m Lj(Y ),
(v) mLj(mLj(X)) =m Lj(X).

Proof (1) Since φ ∈ Ti and by Definition 28,
mLj(φ) = {A ∈ Ti :

∨
(Pj(A) ⊆ φ), i ∈ n} = φ.

Thus, mLj(φ) = φ.

(2) Follows from Definition 28 and from (1).

(3) Follows from Definition 28.

(4) By Definition 28 and if X ⊆ Y, then

mLj(X) = {A ∈ Ti :
∨

(Pj(A) ⊆ X), i ∈ n}

⊆ {A ∈ Ti :
∨

(Pj(A) ⊆ Y ), i ∈ n}
=m Lj(Y ).

(5) Follows from (3) and Definition 28.

Theorem 20 (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relationsR1, R2, · · · , Rn, respectively, and
X ⊆ Ω. Then, with respect to the operators mUj , we have

(i) mUj(Ω) = Ω,
(ii) mUj(φ) = φ,
(iii) X ⊆m Uj(X),
(iv) if X ⊆ Y =⇒ mUj(X) ⊆m Uj(Y ),
(v) mUj(mUj(X)) =m Uj(X).

Proof Analogue to Theorem 19.

Theorem 21 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relations R1, R2, · · · , Rn, respectively,
and X,W ⊆ Ω. Then

(1) mLj(X ∩ Y ) =m Lj(X) ∩m Lj(Y ),
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(2) mLj(X ∪ Y ) ⊇m Lj(X) ∪m Lj(Y ).

Proof
(1) It is sufficient to show mLj(X ∩ Y ) =m Lj(X) ∩m Lj(Y ).

By Definition 15, we have mLj(X ∩ Y ) = {A ∈ Ti :
∨

(Pj(A) ⊆ X ∩ Y ), i ∈ n},

since X ∩ Y ⊆ X and X ∩ Y ⊆ Y implies that Pj(A) ⊆ X and Pj(A) ⊆ Y . Thus, mLj(X ∩ Y ) ⊆m Lj(X) and mLj(X ∩ Y ) ⊆m
Lj(Y ) by (3). Therefore,

mLj(X) ∩m Lj(Y )

= {A ∈ Ti :
∨

(Pj(A) ⊆ X), i ∈ n}

and

{A ∈ Ti :
∨

(Pj(A) ⊆ Y ), i ∈ n}

= {A ∈ Ti :
∨

(Pj(X) ∩Pj(Y ) ⊆ Ω), i ∈ n}

=m Lj(X ∩ Y ) =m Lj(X) ∩m Lj(Y ).

(2) Analogue to (1).

Example 22 Let Ω = {a, b, c, d, e} and we have three binary relations R1 = {(a, a), (b, b), (c, b), (c, c), (d, a)} and R2 =
{(a, b), (b, a), (a, c), (c, a), (c, d), (d, c), (d, b). Then the topology determined by R1 is

T1 = {Ω,φ, {c}, {a, d}, {a, b, d}, {a, c, d}}

and by R2 is

T2 = {Ω,φ, {b}, {c}, {b, c}, {a, d}, {a, b, d}, {a, c, d}}.

Therefore ifX1 = {a} andX2 = {d}, then we have 2Lj1(X1∪X2) = {a, b} and 2Lj1(X1)∪2Lj1(X2) = φ. Thus mLj(X1∪X2) 6=m

Lj(X1) ∪m Lj(X2).

Theorem 22 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relations R1, R2, · · · , Rn, respectively,
and X,Y ⊆ Ω. Then

(1) mUj(X ∪ Y ) = mUj(X) ∪mUj(Y ),

(2) mUj(X ∩ Y ) ⊆ mUj(X) ∩mUj(Y ),

Proof Analogue to Theorem 21.

Example 23 From 22, if we have X1 = {a, b} and X2 = {b, d}, then we have 2Uj1(X1 ∩ X2) = {b} and 2Uj1(X1) ∩2 Uj1(X2) =
{a, b, d}. Thus mUj(X1 ∩X2) ⊆m Uj(X1) ∩m Uj(X2).

Theorem 23 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relations R1, R2, · · · , Rn, respectively,
and X,Y ⊆ Ω. Then, mLj and mUj are interior and closure operators, respectively.

Proof Its obvious.

Theorem 24 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relations R1, R2, · · · , Rn, respectively,
and X ⊆ Ω. Then, with respect to mBj(X), we have

(1) mBj(X) =m Uj(X) ∩m Uj(Xc),

(2) mBj(X) =m Bj(Xc),

(3) mUj(X) = X ∪m Bj(X),

(4) mLj(X) = X \m Bj(X),

(5) mBj(X) ∩m Lj(X) = φ,

(6) mBj(X1 ∪X2) ⊆m Bj(X1) ∪m Bj(X2),

(7) mBj(X1 ∩X2) ⊆m Bj(X1) ∪m Bj(X2),

(8) mBj(mUj(X)) ⊆m Bj(X),

(9) mBj(mLj(X)) ⊆m Bj(X).
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Proof (1) By Theorem 19 and Definition 29, we have
mBj(X) =m Uj(X) ∩ (mLj(X))c =m Uj(X) ∩m Uj(Xc).

(2) Follows from (1), where
mBj(Xc) =m Uj(Xc) ∩ (mUj(Xc)c)

=m Uj(Xc) ∩m Uj(X) =m Bj(X).

(3) By (1) and Theorem 19, we have
X ∪m Bj(X) = X ∪ (mUj(X) ∩m Uj(Xc))

= (X ∪m Uj(X)) ∩ (X ∪m Uj(Xc))
=m Uj(X) ∩ [X ∪ (mLj(X))c]
=m Uj(X) ∩Ω
=m Uj(X).

(4) X \m Bj(X) = X \ (mUj(X) ∩m Uj(Xc))
= X ∧ ([mUj(X) ∩m Uj(Xc)]c)
= X ∧ ([mUj(X)]c ∪ [mUj(Xc)]c)
= [X ∩m Lj(Xc)] ∪ [X ∩m Lj(X)]
= φ ∩m Lj(X)
=m Lj(X).

(5) It is clear.

(6) By Theorem 20 and Definition 29, we have

mBj(X1 ∪X2) =m Uj(X1 ∪X2) ∩ (mUj(X1 ∪X2)c)

⊆ [mUj(X1) ∪m Uj(X2)] ∩ [mUj(Xc
1) ∩m Uj(Xc

2)]
= [mUj(X1) ∪m Uj(X2) ∩m Uj(Xc

1) ∩m Uj(Xc
2)]

= [mUj(X1) ∩m Uj(Xc
1)] ∪ [mUj(X2) ∩m Uj(Xc

2)]
=m Bj(X1) ∪m Bj(X2).

(7) Analogue to (6).

(8) mBj(mUj(X)) =m Uj(mUj(X) ∩m Ucj (X)
⊆m Uj(X) ∩m Uj(mUcj (X))
⊆m Uj(X) ∩m Uj(Xc)
=m Bj(X).

(9) Analogue to (8).

Definition 30 Let R1 and R2 be any binary relations on a finite universe Ω, f1 and f2 are the subbase of R1 and R2 respectively. Then
we define a intersection mapping F∩ : Ω → 2Ω satisfies

FP∩(x) = f1(x) ∩ f2(x).

Where f1(x) =
⋃
{(Pj(x))R1

: x ∈ Ω} and f2(x) =
⋃
{(Pj(x))R2

: x ∈ Ω}.

Definition 31 Let T1,T2 are two topologies induced by R1 and R2. Then we can define u between two topologies which is defined as
follows

T1 u T2 =
⋃
{
⋂
FP∩(x) : x ∈ Ω}.

Theorem 25 If T1,T2 are two topologies induced by R1 and R2, then T1 u T2 is a topology.

Proof Assume that Ω be a finite universe, R1 and R2 two binary relations, and
T1= {Ω,φ, (Pj(xi1))R1

, (Pj(xi2))R1
, · · · , (Pj(xik))R1

,⋃k
i=1(Pj(xik))R1

},
⋂k
i=1(

⋃k
i=1 Pj(xik))R1

, T1={Ω,φ, (Pj(xj1))R2
, (Pj(xj2))R2

, · · · , (Pj(xjl))R2
,⋃k

i=1(Pj(xil))R2

⋂k
i=1(

⋃k
i=1 Pj(xil))R2

},
induced by R1 and R2, k, l ≤ |Y |, where |.| is cardinality of Ω.

(i) Based on the definition of T1 u T2, obviously, φ ∈ T1 u T2, Ω ∈ T1 u T2.
(ii) Assume that X,Y ∈ T1 u T2, then there exists two classes (Pj(x1))R1

∈ τ1, (Pj(x2))R2
∈ τ2 such that

X ⊆ (Pj(x1))R1
, Y ⊆ (Pj(x2))R2

. Hence X ∩ Y ∈ (Pj(x1))R1
∩ (Pj(x2))R2

∈ T1 u T2.
(iii) Let T ∈ T1 u T2, suppose that

⋃
X∈T X /∈ T1 u τ2. Then there at least exists an element x ∈ X ∈ T , we have an class Pj(x)

consisting x in T1 u T2 such that Pj(x) /∈ T1 u T2.
Thus Pj(x) = ((Pj(x1))R1

∩ (Pj(x2))R2
) holds, a contraction. Therefore, T1 u T2 is still a topology.
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Example 24 Consider R1 is defined on Example 1 and R2 = {(a, b), (b, a), (a, c), (c, a), (c, d), (d, c), (d, b)}. Then we obtain by a
relation R1

f1(a) = {a, d}, f1(b) = {b}, f1(c) = {c}, f1(d) = {a, d}.
And the relation R2

f2(a) = {a}, f2(b) = {b, c}, f2(c) = {b, c} and f2(d) = {d}.
Thus FP∩(a) = {a, d},FP∩(b) = φ,FP∩(c) = {c} and FP∩(d) = {a, d}.
Therefore

T1 u T2 = {Ω,φ, {c}, {a, d}, {a, d, c}}.

Similarly, we can prove that the intersection of the finite topologies is topology, i.e., umi=1Ti is a topology with respect to
T1,T2, · · · ,Tn, denoted by umi=1Ti = Γ .

Definition 32 Let (Ω,T1), (Ω,T2), · · · , (Ω,Tn) be n topological spaces induced by any binary relationsR1, R2, · · · , Rn, respectively.
Then (Y,uni=1Ti) is called a MGTRS, denoted as (Ω,uni=1Ti) = (Ω,Γ ).

Corollary 4 Let T1,T2 be two topologies on Ω, if for any X ∈ T1, there exists Y ∈ T2 such that X ⊆ Y . Then we call T1 finer than
T2, denoted by T1 ≤T T2. If T1 is strictly finer than T2, denoted by T1 <

T T2. If and only if X = Y , then T1 = T2. Similarly, let
Γ1, Γ2 be two multi-granulation topological rough spaces on X , if for any T1 ∈ Γ1, there exists T2 ∈ Γ2 such that T1 ≤T T2, then we
call Γ1 than Γ2, denoted by Γ1 ≤Γ Γ2. If Γ1 is strictly finer than Γ2, denoted by Γ1 <

Γ Γ2. If and only if T1 = T2, then Γ1 = Γ2.

Theorem 26 Let T1,T2, · · · ,Tn be n topologies onΩ induced by any binary relationsR1, R2, · · · , Rn, respectively. If T1 <
T T2 <

T

· · · <T Tn, then Γ = T1.

Therefore, from the above definition, we know (Ω,Γ ) is finer than each topology on Ω.

Corollary 5 If T1 <
T T2, and SP

1 ,SP
2 are the topology subbase of T1,T2, respectively. Then SP

1 <T SP
2 .

Corollary 6 If Γ1 <
Γ Γ2, and SP

1M ,SP
2M are their family of the topology subbase of Γ1, Γ2, respectively. Then SP

1M <Γ SP
2M .

Theorem 27 Let SP
i be the topology subbase of Ti, then uni=1SP

i is a topology subbase of MGTRS Γ .

Proof
(i) For any x ∈ X , there exists (Pj(x))Ri ∈ SP

i such that x ∈ ∩(Pj(x))Ri . Note that (Pj(x))Ri ∈ uni=1SP
i . Hence, let B =

(Pj(x))Ri ∈ uni=1SP
i , we have x ∈ B.

(ii) For any B1, B2 ∈ uni=1SP
i , suppose x ∈ B1 ∩B2, but B1 is a set which is (Pj(x))Ri , B2 is a set which is (Pj(y))Ri , then x = y,

otherwise (Pj(x))Ri = (Pj(x))Ri . Hence B1 ∩B2 = φ. There exists B3 = φ obviously, φ ⊂ φ holds.

Therefore uni=1SP
i is a topology subbase of MGTRS Γ .

Definition 33 Let (Ω,Γ ) be a MGTRS, SP
M is a topology base of Γ , and X ⊆ Ω. Then the interior operator is defined as

Ij(X) =
⋃
{G ∈ Γ : G ⊆ X}.

Definition 34 Let (Ω,Γ ) be a MGTRS, βM is a topology base of Γ , and X ⊆ Ω. Then the closure operator is defined as

Cj(X) =
⋂
{F ∈ Γ c : X ⊆ F}.

Example 25 From Example 24. Take j = j1 (and also j ∈ {j2, j3, j4, j5, j6, j7, j8} are similarly). If X = {a}, then Ij1(X) = φ and
Cj1(X) = {a, d}.

Proposition 7 Let (Ω,Γ ) be a MGTRS and X,Y ⊆ Ω. Then, with respect to the operators Ij , we have
(i) Ij(φ) = φ,
(ii) Ij(Ω) = Ω,
(iii) Ij(X) ⊆ X ,
(iv) if X ⊆ Y =⇒ Ij(X) ⊆ Ij(Y ),
(v) Ij(Ij(X)) = Ij(X).
(vi) Ij(X ∩ Y ) = Ij(X) ∩ Ij(Y ),
(vii) Ij(X ∪ Y ) ⊇ Ij(X) ∪ Ij(Y ).

Proof By Definitions 33 and Theorems 19 and 21.

Proposition 8 Let (Ω,Γ ) be MGTRS and X,Y ⊆ Ω. Then, with respect to the operators Ij , we have
(i) Cj(φ) = φ,
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(ii) Cj(Ω) = Ω,
(iii) X ⊆ Cj(X),
(iv) if X ⊆ Y =⇒ Cj(X) ⊆ Cj(Y ),
(v) Cj(Cj(X)) = Cj(X).
(vi) Cj(X ∪ Y ) = Cj(X) ∪ Cj(Y ),
(vii) Cj(X ∩ Y ) ⊆ Cj(X) ∩ Cj(Y ).

Proof By Definitions 34 and Theorems 20 and 22.

Theorem 28 Let ΩR = {Pj(A1),Pj(A2), · · · ,Pj(Ak)}. Then we call

mP(Pj(A)) =
|Ω|
k

(1− 1

k.|Pj(A)| ).

A measure of granularity of a set Pj(A), k is the number of blocks in ΩR, denoted by |ΩR| = k.

Proof It is sufficient to show that m meets all the conditions in Definition 5.
(i) Obviously, mP(Pj(A)) = |Ω|

k (1− 1
k.|Pj(A)| ) ≥ 0.

(ii) If Pj(A) ⊂Pj(B), then |Pj(A)| < |Pj(B)|, then

mP(Pj(A))−m(Pj(B))

= |Ω|
k (1− 1

k.|Pj(A)| )−
|Ω|
k (1− 1

k.|Pj(B)| )

= |Ω|
k (1− 1

k.|Pj(A)| − 1 + 1
k.|Pj(B)| )

= |Ω|
k ( 1

k.|Pj(B)| −
1

k.|Pj(A)| ) < 0,
i.e., m(Pj(A)) < m(Pj(B)).

(iii) If A ∼s B, then |Pj(A)| ≤ |Pj(B)| and |Pj(A)| ≥ |Pj(B)|. Hence mP(Pj(A)) = mP(Pj(B)).

Proposition 9 LetΩR be a classes ofΩ induced by any binary relation onΩ andX ∈ ΩR. The maximum granularity measure ofX with
respect to R is one. This value is achieved if and only if k = 1, max(mP(Pj(A))) = |Ω|(1− 1

|Ω| ).

Proposition 10 Let ΩR be a classes of Ω induced by any binary relation on Ω and X ∈ ΩR. The minimum granularity measure of X
with respect to R is one. This value is achieved if and only if k = |Ω|, min(mP(Pj(A))) = (1− 1

|Ω| ).

Example 26 From Example 24, the first topology have the following subbase SP
j1 = {{a, d}, {c}, φ}. ThenmP({a, d}) = 4

3 (1− 1
3∗2 ) =

10
9 and mP({c}) = 4

3 (1− 1
3∗1 ) = 8

9 .

Theorem 29 Let (Ω,Γ ) be a MGTRS, mP : 2Ω → R a measure of the granularity of subsets of Ω, and SP
M = {A1, A2, ..., An} a

topology subbase of ΓP
M . Then a measure GP

M (Γ ) =
∑n
i=1m

P(Ai).p
P(Ai)

is a topological granularity of Γ , where pP(Ai) = |Ai|
|Ω| .

Proof It is sufficient to show that GP
M satisfies all the conditions in Definition 6.

(i) Obviously, GP
M (Γ ) ≥ 0 holds.

(ii) Suppose Γ1 <Γ Γ2, SP
1M ⊂ SP

2M holds. This means that every class of SP
2M is a union of one or more blocks of SP

1M and at
least one class of S

′P
M is the union of at least two blocks from SP

1M . By the fact Ω is a finite universe, there exists a finite sequence of
partitions SP

1M = SP
M1 ⊂ SP

M2 ⊂ ... ⊂ SP
Mi = SP

M2 such that exactly one block of SP
j+1 is the union of two classes from SP

j for
j = 1, 2, · · · , n−1 and n ≥ 2. We want to show thatG(SP

j ) < G(SP
j+1). Without loss of generality, suppose a class of SP

j+1 is obtained
by the union of two classes Aj1 and Aj2 of SP

j , that is,SP
j = {Aj1, Aj2, · · · , Ajk}, k ≥ 2 and SP

j+1 = {Aj1 ∪ Aj2, · · · ,∪Ajk}.
According to the definition of GP

M (Ω) and monotonicity of mP , we have:
GP
M (SP

j ) =
∑k
i=1m

P(Aji.p
P(Aji))

= mP(Aj1).pP(Aj1) +mP(Aj2).pP(Aj2) +
∑k
i=3m

P(Aji.p
P(Aji))

< mP(Aj1 ∪Aj2).pP(Aj1) +mP(Aj2 ∪Aj1).pP(Aj2) +
∑k
i=3m

P(Aji.p
P(Aji))

= mP(Aj1 ∪Aj2).pP(Aj1) + pP(Aj1) +
∑k
i=3m

P(Aji.p
P(Aji))

= mP(Aj1 ∪Aj2).pP(Aj1 ∪Aj1) +
∑k
i=3m

P(Aji.p
P(Aji))

= GM (SP
j+1).

Then Γ1 <
Γ Γ2 holds.

(iii) Assume that Γ1 = Γ2, SP
1M ⊂ SP

2M holds. And from Definition 32, G(Γ1) = G(Γ2) holds.

Proposition 11 Let (Ω,Γ ) be a MGTRS. The maximum topological granularity measure of T with respect to Ω is one. This value is
achieved if and only if mP = 1, max(GP

M (Γ )) = |Ω| − 1.
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Proposition 12 Let (Ω,Γ ) be a MGTRS. The minimum topological granularity of s with respect to Ω is one. This value is achieved if and
only if mP = |Ω|, min(GP

M (Γ )) = 1− 1
|Ω| .

Thus, 1− 1
|Ω| ≤ G(ΓP

M ) ≤ |Ω| − 1.

Theorem 30 Let Γ1, Γ2 be two MGTRS. If Γ1 <
T Γ2, then GP

M (Γ1) < GP
M (Γ2).

Definition 35 Let (Ω,Γ ) be a MGTRS and SP
M = {A1, A2, · · · , An} is a topology subbase of Γ . Then the topological entropy of Γ is

defined as:

EP
M (Γ ) = 1− 1

|Ω|

q∑
i=1

mP(Ai).p
P(Ai),

where pP(Ai) = |Ai|
|Ω| .

Definition 36 Let (Ω,Γ ) be a MGTRS. Then Tk is significant in Γ , if EP
Γ (Ω,uqi=1Ti) 6= EP

Γ (Ω,uqi=1,i6=kTi). So, Tk is not signifi-
cant in Γ if EP

Γ (Ω,uqi=1Ti) = EP
Γ (Ω,uqi=1,i6=kTi).

Definition 37 Let (Ω,Γ ) be a MGTRS. The significance measure of Tk in Γ is defined as

SP
Γ (Tk) =

EP
Γ (Ω,uqi=1Ti)

EP
Γ (Ω,uqi=1,i 6=kTi)

.

Definition 38 Let Γ = {T1,T2, · · · ,Tq} be q topological spaces induced by any binary relations R1, R2, · · · , Rn, respectively on Ω.
If there exists a subset Γi = {Ti1,Ti2, · · · ,Tiq} ⊆ Γ , such that EP

Γ (Ω,uqi=1Ti) = EP
Γ (Ω,uqi=kTik), but EP

Γ (Ω,Ti1 uTi2 u · · · u
Tik u Ti(k+1)) 6= EP

Γ (Ω,T1 u T2 u · · · u Tq), then we call Γi is a granularity reduct of Γ .

Now, we establish Algorithm 3 to produce the intersection of topologies and Algorithm 4 to make reduction for topologies.

Algorithm 3. An algorithm for uni=1Ti

Input: x ∈ Ω and Binary Relations Ri.
Output: uni=1Ti.
1: for (i = 1; i <= |Ri|; i+ +)
2: for (k = 1; k <= |Rk|; k + +)
3: fi(x) = (Pj(x))Rk .
4: F iP∩(x) =

⋂n
k=1 fi(x).

5: endfor
6: endfor
7: for (i = 1; i <= |Ri|; i+ +)
8: ui=1Ti =

⋃
(
⋂
F iP∩(x)).

9: endfor
10: end

Algorithm 4. An algorithm for a reduction

Input: Ω, ΩR and Multi-source information decision table.
Output: make a reduction ( reduct is a set which conserve the selected granularities).
1: reduct = φ
2: for (i = 1; i <= n; i+ +)

3: mP(Pj(Ai)) = |Ω|
k (1− 1

k.|Pj(Ai)| ), where k = |ΩR|
4: endfor
5: for (i = 1; i <= n; i+ +)

6: pP(Ai) = |Ai|
|Ω|

7: endfor
8: for (i = 1; i <= n; i+ +)

9: EP
M (Γ ) = 1− 1

|Ω|

q∑
i=1

mP(Ai).p
P(Ai)

10: endfor
11:for (i = 1; i <= |Ri|; i+ +)



24 a,∗ Mohamed Atef et al.

12: SP
Γ (Tk) =

EP
Γ (Ω,uqi=1Ti)

EP
Γ (Ω,uqi=1,i 6=kTi)

, where k ≤ |Ri|
13: reduct = Tk
14: if(EP

Γ (Ω, reduct) = EP
Γ (Ω,uqi=1Ti))

15: goto: end
16: endif
17: endfor
18: end

Conclusion

To extend the application domain of MGRS, the paper introduced two kinds of Multi-granulation rough set models. These models
depend on a special types of a NS and a j-adhesion NS. Some basic properties of these models will be studied. We show that new MGRS
models are generalized versions of MGRS models from the topological view. The introduced techniques are very useful in application
because it opens the way for more topological applications from real life problems.
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