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Abstract. We establish nonexistence of nontrivial solutions (including sign-changing
ones) for some partial differential inequalities of elliptic and parabolic type containing non-
linear terms that depend on the positive and negative part of the sought function in different
ways. Systems of elliptic inequalities with similar structure are also considered. The proofs
are based on the test function method.
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1 Introduction

Starting from the 1960s, many mathematicians have considered sufficient conditions for
nonexistence of nontrivial (distinct from zero or some other constant a. e.) solutions to
nonlinear partial differential equations and inequalities in respective functional classes. A
method for studying this problem based on use of special test functions was suggested by S.
Pohozaev [1] and developed in his joint works with E. Mitidieri, V. Galaktionov, and other
authors (see, in particular, monographs [2], [3]), as well as in some works of the authors of the
present paper (see [4], [5], and references there). These papers dealt mostly with inequalities
where the nonlinear terms depended on the absolute value of the sought function. Here we
modify the test function method in order to obtain sufficient conditions for nonexistence of
nontrivial solutions for some quasilinear elliptic inequalities containing terms that depend
on the positive and negative parts of the sought function in a different way.

The rest of the paper consists of three sections. In §2, we prove nonexistence of nontrivial
solutions for some scalar quasilinear elliptic inequalities, in §3, for respective systems, and
in §4, for some parabolic problems.

2 Scalar inequalities
We will use the notation vy = max{u,0}, u— = —min{u,0}. We consider the quasilinear

elliptic inequality
—Apu > a(x)ud +b(x)u”  (x e R"), (2.1)
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where a(z) > ci]z|?t, b(z) > co)z|?? with some constants ¢;,co > 0, 81,3, € R for all
r e R

Definition 2.1.  We will say that a function v € W,"?(IR™), for which there exists

loc

a Ao > 0 such that u, € L™ *R"), u_ € LR, and |DufPu™' e LL_(IR") for

loc loc loc
A € [0, \ol, satisfies inequality (2.1) in the weak (distributional) sense, if for any nonnegative

test function ¢ € CJ(IR™) there holds the following inequality:

/ |\ Dul"2(Du, Dy) dz > / (a(z)u + b(a)u®)p de. (2.2)

Theorem 2.1. Let min(q;,q2) > p— 1 and

(-1 —pg _

po D=V = gy (2.3)
¢—p+1

Then inequality (2.1) has no weak solutions distinct from the identical zero a. e.

Proof. Introduce a family of test functions ¢, € C§(IR"™; [0, 1]) of the form

vr(z) = Vi(2) (2.4)

with s > L where ¢ = min(qi, ¢2), and ¥ € C}(IR™;[0,1]) such that

1 (|| £ R),
o) ={ o (5o, (25)

and there exists a constant ¢ > 0 such that
|Dyg(z)| <ecR™' (z€R"). (2.6)

Suppose that there exists a solution with u, # 0. Substituting p(z) = u;i(x)ch(x) with
A € (0, Ag] into (2.2), we get

/uﬂfugi(l + |z))Prpp dr < /(\Du]p_QDu, D(uz}ypr)) dx =
R" R"
= —)\/u€7+ +A Y Duy|Pogde + / |Duy [P%(Duy, Dpg) dv <
R" R"
<= / uzy | Duy [Pop dz + / |Duy [P~ Dpg| da.
R" R"
We represent the integrand in the right-hand side of the obtained relation in the form

p—1 1-p

_ AD o _ AD o
Du, | 1|D¢R|=(p_ up %oa) |DU+|p1-|Dson|~(p_ up? %OR) |

1 1
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Using the Young inequality

s s’

b
abga—+—/, a,b>0, s>1,
S s

where -
. Ap -1 o’ p—1
a= <m ugy SOR) [ Du [P,
1-p
b:‘D¢R"<% gilsOR) ,8:pp1,s’=p,
we get
[t |:rr>ﬁlgoRdx+A/u;A—1|Du+|psoRda: <
R™ R"™
<2 / WD Ponda ) [0 Dol b
i
i e.,

/u‘fug,i(l + |z))Prop do + % / u; M Duy |Pog do <
R" R"
< () / 1 D Pl da
e
and after passing to the limit as ¢ — 40 (which is admissible by the Lebesgue dominated
convergence theorem)

A
[t tahPonds+ 5 [ DuPonds <

R” R” (2.7)
§c()\)/u+”p " DorlPoy * da,
Rn
whence
/ TN+ |z ordr < c()\)/ul)‘er_l]DgoR\pgp}{pdx. (2.8)
R" R"

Now represent the integrand in the right-hand side of (2.8) as

1 B1(— A+p 1 G=p)(@ =N +A—pt1

i
w D P = (i Bl ) Dy P o
Applying again the Young inequality with parameters
S W
a = (uy(l+ |z]) n=Fp™"),
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B1(— )\+p 1) (A-p)(g1=N)+A—p+1

b= |Dpg|"(1 + |z]) er "
@ — A / g — A
§=—7—-—""—7, §=——"7-7-—,
-A+p—1 ¢1—p+1

we arrive at

1 BAtpy) - BOsA)
5/ P+ |2 ordr < oA /|D90R|f“ (L fal) A g 0 d.
Rn

Using (2.4)—(2.5), we replace the left-hand side of this inequality by a smaller quantity

1 1
3 [ 0 e =g [ e

Br(0) Br(0)
and rewrite the right-hand side in the form

B1(p—1—X) 171’(‘11*)\)

/ ‘D§0R|ng1p+l(1+ |x|) a-rF g, -t g

Bar(0)

Taking into account condition (2.6), we get

p(a1=N+B1(p—1-X)

/ n- A(1 +|z))? de < cR" ot
Br(0)
which yields a contradiction as R — oo, if in (2.3) a strong inequality holds for ¢ = 1 and

A > 0 is sufficiently small. If in (2.3) we have an equality for i = 1, repeating the same
arguments for inequality (2.7), we obtain

(91 —N)+B1(p—1-X)

A e Pa1=N)+61 (p=1-3)
/u?; ML) dr o+ 5 / WP Duy Pop dr < cR™UITHETTY
Br(0) Br(0)

whence
_pla1=N)+B1(p—1-X)

/ u; M Duy |Pordr < cR" ar—ptT : (2.9)
Br(0)

Then, substituting ¢(z) = pgr(z) into (2.2), we have

/ (14 o) orde < /(\Du!” 2Du, Do) d:c</]Du|p ' | Do da

R"™ R"



and by the Holder inequality

p—1

P

/u$(1+|x|)51g03dx§ (R/u+’\1Du+padex X
1

Rn
P
<\ [l Dgn ol

n

Using (2.9) and applying once more the Holder inequality, and then condition (2.6), we get

p—1
pray
(p—=1)(n(q1 —p+1)—p(a1 =N)=B1 (P—1=N))
Q1 B1 — Q1 B1
/u+ (14 |z[)"prdr < cR pla1=p+1) / uf (14 |z])” prdx X
R"™ upp|Dyrg|
a1 —(p—1)(A+1)
pqy
e e =) BIAM) a1+ =BT
X |D90R|q1—(p—1)(/\+1)((1 + ‘;UD PR )Q1—(p—1)(/\+1) dz <
upp| Dy |
p—1
prqy
(p=1)(n(g1 —p+1)—p(g1 —A)=B1 (pP—1-N))+n(91 —(P—1)(A+1)) —pg1 +B81 (1 —p) (A+1) o 3
SCR Pq1 u+(1+|x|) IQORdCL’

supp| Dy Rl

—c| [ e fe)ends |

upp| Dy r|

where the right-hand side tends to 0 as R — oo similarly to (2.9), which again yields a
contradiction completing the proof of the fact that u, = 0 a. e. Similarly, using test
functions ¢(z) = u? (z)pr(z), we prove that u_ = 0 a. e. This completes the proof of the
theorem.

3 Systems of elliptic inequalities

Consider a system of quasilinear elliptic inequalities

{ —Ayu > a(x)o? +b(z)v?  (z € R"), (3.1)

—Av > c(x)ul! +d(z)u”? (x € R"),

where p,q,p1,q1,p2,¢2 > 1, p—1 <p1, ¢q—1 < q, a, b, cd are nonnegative functions such
that a(z) > c1(1 + |2))?, b(z) > co(1 + |2])?, c(z) > e3(1 + |z])7, d(z) > cs(1 + |2])? for
r€R", ¢,...,c4 >0, a,8,7,6 € R.



Definition 3.1. A pair of functions (u,v): u,v € WP(IR") x WL4(IR™), for which
there exists a Ao > 0 such that u, € L NIRY), u_ € LE(R"), vy € LPNIRY), v €

LPPNIR™), |DulPo™ ! € LL (R™), and |Dul%u*' € LL_(IR") for A € [0, \q], is called a

loc
weak solution of system (3.1) if they satisfy the integral inequalities

/|Du|p 2(Du, D) dx > /( (x)o? + b(z)v? )y dx,
B? (3.2)
/|Dv|q 2(Du, Dy d > /( () + d()u) s di
Rn
for all nonnegative test functions o1, s € C5(IR™).
Theorem 3.1. Let .mi%piqj >(p—1)(¢g—1) and r1111n4aZ >n, mln b, > n, where
17]: k)

_pitlalg-D+e+nNp-1)  _ pp+Blp-1)+g+9)p-1)

! g —(p—1)(¢—1) P P2 — (p—1)(g—1 7

_rntlelg-D+etn)p-1) 2+ (Blp—-1)+q+0)p-1)

’ pe—(p-1g-1) pgp—(p—1)(g=1)

po—dutalg—Dtatye-1) " gn+@Bp-1)+e+d)p-1)

na — (p—1)(g—1) ’ poqi — (p—1)(g — 1 ’

p= (e D+aty)b-1 9+ Br-D+a+i)p-1)
g2 —(p—1)(g—1) ’ P2gz — (p—1)(g—1)

Then system (3.1) has no nontrivial weak solutions.

Proof. Let ¢z € C3°(IR"; IR, ) be the family of test functions from the previous section

with s¢ > 0 sufficiently large.
Substituting 1 (x) = u2 , (2)@r(x) into the first inequality (3.2) and @, (z) = 024 (2)pr(T)
into the second one so that € > 0 and max{l —p,1 — ¢} < =\ <0, we get

/(a(:c)vi1 +b(x)o?)ul Lo dr < )\/|Du+|pugyil<p3 dx+/(\Du+\p " Dpplu? dz, (3.3)

/ (el + d(2)u o2, pr de < A / Dv, [ ppde + / (IDv, [} [ Dprlo da. (3.4)

Applying the Young inequality to the first terms in the right-hand sides of the obtained

relations yields

A L |D90R| -
@@t +v@eyd onde + 5 [ 10wt onds <o [ S

D
/(c(x)uﬁf%—d(x)u 22 or dx—i——/|Dv+|qv_A Yor dx<d)\/| (’0_R1| v T da,




and after passing to the limit as ¢ — 0, to

/<<> L ()t o de + 2 / Dy Pus Yo de < o / Donl” 1 g, (35)

A Donlt
/(c(x)uﬁ1 + d(z)uP?)v Mo do + B / |Dvy |0 Yprda < d,\/ | fﬁ‘ v, (3.6)
YR

where the constants ¢y and d, are positive and depend only on p, g, and .
Similarly, substituting ¢;(z) = u2 _(x)pr(z) into the first inequality (3.2) and @q(x) =
v-2(7)pr(z) into the second one so that & > 0 and max{l —p,1 — ¢} < =A< 0, we get

A Dpprl|P
/(a(x)v?: +b(z)v®2)ut pp dr + 3 / |Du_[Pu? " ppdr < ey %uiﬂo_l dr, (3.7)
YR

A Dygrl?
/(c(x)u’i1 + d(z)u?*)v* o do + ’—2|/|Dv+|qvi_1g03dx < f,\/’ fﬁ‘ M dr, (3.8)
YR

where the constants ey and f) are positive and depend only on p, g, and .
Further, using the test function ¢ = ¢ in (3.2), similarly to the previous argument, we
obtain the relations

/(a(x)vﬁf + b(z)vP)prdr < / |DulP~!|Dog|dr =

(3.9)
/|Du+]”‘1\DgoR|dx+/|Du_|”‘1|DgoR|dx,

/(C(]])u}j_l + d(x)u”?)pg dx g/]Dv]qlngpR\dx =
/|Dv+|q_1|DgoR|d:E+/|Dv_|q_1|DgoR|dx.

Apply the Holder inequality to each integral in the right-hand side of the obtained relations.
Taking into account (3.5)—(3.8), we get

(3.10)

/ |Du. P |Dggl dz <

T D p - . P
(/ | Du [Py soRd:c) ><( Donl” - ”dw) < (3.11)

p—1 1

D P DoplP -\ P

< ga (/‘ fﬁ’ UIH”_ldm) ? % (/l f,RJ ull I 1)dg:)p
Pr YR

and similar relations for the integrals

/|Du_|p_1|DgaR|dx, /|Dv+|q_1|Dng|d:v, /|DU_|q_1|Dg0R|d$.
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Applying the Holder inequality with the exponent r > 1 to the first integral in the
right-hand side of (3.11), we obtain

e el / e
D o pr ! Dog|P" .
( | (pR| ;Mp_ldm) < (/ c(z)u S;\er Lr ©OR dac) (/ c*T(x)—| ;’?h dx) ,
SOR YR
(3.12)
1 1
where — + — = 1.
Choosing the exponent r so that
(A+p—1)r=pi, (3.13)
from (3.11) and (3.12) we have
/|Du+|P—1|Dng| dx < g (/ c(z)ul g dm) "%
p=1 (3.14)

7 1

Dggl  \ 7 D z

([t )7 ([ lRek g 1)
YR “r

Applying the Holder inequality with the exponent y > 1 to the last integral in the right-hand
side of (3.14), we have

D v Dor  \”
/r PRl (1001 g, (/ ()l wRdﬁ) (/ _ )%d:p) |
QOR ¥R
(3.15)
1 1
where — + — = 1.
y oy
Choosing y in (3.15) according to (3.19) so that
(1=Np -1y =p, (3.16)

and taking into account (3.14), we arrive at the estimate

p—1

p—1 ol
DoplP" P
/c ()%da@ X
YR

/ |Duy [P | Dg|dz < gy ( / c(z)ul pp dx) o
1

1 oul
» v |Dpg|?
x (/o(z)uﬁlmx) (/ ge >'wi—3' dx) ,

which implies

/|Du+|P—1|DgoR] dr < gy </(c(x)u§f + d(z)uP?)pp dx) X

(3.17)

p=1 a

T, DonlP pr! / DonlPY py’

X /c‘r(m)‘r%da: /c Y (z )| fy]ﬂl dx :
YR Yr
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where the exponents r and y are chosen according to (3.13), (3.16). Substituting these
expressions for the exponents, due to the choice of g and conditions on ¢(x) and d(z) we
get
[ 1D D] do <
p-1 (3.18)

q1 v(1—p)—p+n(q1—p+1)

<on ([t +aonrondr) xR

We obtain similar estimates for

/]Du]plngoR\dx, /|Dv+\q1\Dng]dx, /\DvlqlngoR\dx.

Combining these estimates with (3.9) and (3.10) and introducing the notation

A=A(R) = /(a(x)vff +b(x)v?)prdr, B = B(R)= /(c(x)u’f + d(z)u”)pprdx,

we obtain the estimates

-1  ~v(1-p)—p+tn(q1—p+1) p—1 6(1—p)—p+tn(q;—p+1)

A<Cy, (BPMR o +B% R o

q—1 a(l-q)—g+n(p;—g+1) q—1 B(l-g)—g+n(po—q+l) (319)
B<D,|A» R P1 + Ar R P2 ,

Y

where the constants C, and D, are positive and depend only on the parameters of the
inequalities under consideration and on A. Therefore in each inequality (3.19) at least one
summand in the right-hand side is greater or equal to a half of the left-hand side. Hence we
get

A(R) < E)\Rn_i:ql,...,z;a', B(R) < FARn_izl,mA '7
where the constants F) and F) are positive and depend only on the parameters of the

inequalities under consideration and on A.
Taking R — 400, we come to a contradiction, which proves the theorem.

4 Parabolic problems

Let up € C(IR™). We will use the notation ug = max{ug,0}, ug— = —min{ug, 0}, uy =
max{u,0}, u_— = —min{u,0}. Consider the Cauchy problem

{ 9 — div(|DulP~2Du) > a(z, thu? + b(z, yu®? ((z,t) € R" x Ry), (A1)

u(z,0) = ug(x) (x € R"),

where a(z,t) > ci(1 + |z])™, b(z,t) > (1 + |z|)™® with some constants ¢, co > 0,
Bi, B2 € IR for all x € IR".



We define its weak solutions as follows.

Definition 4.1. A nonnegative function u € C*(IR" x IR, ) is called a weak (local)
solution of problem (4.1) if it satisfies the integral inequality

/ / (a(2)u® + b(ar)u b da dt — / (e, )0z, 1) — u(, o)z, t0)) dar <

to ]R): R" (42)
< // (— W% 1 | Duf2(Du D¢)) dz dt
— at )

to R™

for some t* > 0, for all ¢y,%; such that 0 < ¢y < t; < t*, and for any nonnegative function
¥ € CY((IR™) X [to,t1]) such that for all ¢ € [ty, ;] there holds 9 (-,t) € C3(IR"), and there
exists a Ao > 0 such that uy € L? *(R" x R,), u— € LZ™IR® x Ry) |DufPu® ! €

loc loc
Li (R" x R,) for A € [0, \g], and Jim u(x,t) = ug(x) for all z € R™. The supremum of all
—U4

possible values 7 = t; — tg is alled the life time of solution w. If it is infinite, the solution is

called global.

Remark 4.1. If u is sufficiently regular, inequality (4.2) can be obtained from (4.1) by
integration by parts.

Sufficient conditions for the nonexistence of nontrivial weak solutions of the Cauchy
problem (4.1) in this sense can be formulated as follows.

Theorem 4.1. Let p > 1, min(qy,q2) > p — 1,

2(p—B;) <0(gi—p+1) (i=1,2) (4.3)
and 3
P =P .

and the initial function ug is nonnegative.
Then problem (4.1) has no global weak solutions u in IR™ x Ry apart from the identical
zero a.e.

Proof.  Suppose hat a solution u of problem (4.1) does exist and consider its weak

formulation (4.2) with test functions vl (z,t)pr(z)T;(t), where pr = V7, 3 > mex L

In order to obtain a priori estimates of solutions to (4.1), we use a family of functions of
spatial variables ¥ € C3(IR";[0,1]), with a parameter R > 0 such that

_ 1 (2] £ R),
@DR(x) = { 0 (|JZ’ > 2R) (4~5)
and there exists a constant ¢ > 0 such that
|Dpp(x)| <cR7Y (x € R"), (4.6)
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and a family of time-dependent functions T, € C*([0, 7];[0,1]) with a parameter 7 > 0 such
that

_ 1 (0<i<7/2),
7””_{0(%M§t§ﬂ (4.7)
and, moreover,
37/4 | /| ,
TT " 1—7/
/ —|TT|7"’—1 dt <cr (4.8)
T/2
with some constant ¢ > 0 and r = qu—?, where v < 0 and |v| is sufficiently small.
In this case inequality (4.2) and our assumption on a(z,t) imply
cl/ / ul (1 + |2|) P oRT, dx dt + / u0+ prdr <
0 suppy¢r Supp ¥r
< 7/ / | DulPu " R T, dwdt—i—/ / u) | DulP~*(Du, Dpg)T, dz dt— (4.9)
0 suppy¢r 0 supp |Dyrg|
—/ / uy (ulorT)); du dt.
0 suppyr

Integrating by parts the last term in this inequality twice, for a sufficiently regular u we

get
/ / w(ulorTy)dr dt =

0 suppyr
-
T ou
_ y+1
= / uy @RTTCZHTO—/ BT —ul T dx dt =
Supp ¥R 0 suppsaR

= / ulﬂgoRTde

o Todz dt —
0 1+7// eonTrde

Supp Yr 0 suppeyr
1
= - 7+1 T.dx +—/ / ul )edx dt =
( 1+7) / on 14 Hon(T
Supp Yr 0 suppyr
1
=(——1 Tt ord ———/ / 1+ )edax dt.
<1+’Y ) / U 4 PRAT + uy pr(Ty)dx
Supp YR 0 suppyr

For any weak solution u of problem (4.1) this inequality can be obtained by approximation

11



with regular functions and a standard passage to the limit. Hence, (4.9) can be rewritten as

7+1
v+1
0 suppyr

1
cl/ / ul (1 + |2)) P RrT, dr dt + —— /

Supp ¥r
-

<7 / / | DulPul™ o RT, du dt + / / ul | DulP~*(Du, Dop)T, dudt—  (4.10)
0 suppyr

0 supp |DyRg|

+1// M oRpT! dr dt.
v

0 suppyr

Further we apply the Young inequality with appropriate parameters to the second and
third terms in the right-hand side

T

/ / 1]Du\p2(Du,Dng)Tdedt§/ / u) | DulP~ | Dg|T, dz dt <
0 supp |Dyr|

0 supp |DyRr|
-

(4.11)
< m/ / |Du|pu1_1goRTdedt—|—c/ / W DR Py PT, dx dt,
0 suppyr

0 supp |DyR|

+1// ) oRT! da dt <
f)/

T og|T! | da dt <

+1\/ / Pl

0 suppy¢r 0 suppyr
< CZ/ / W (1 4 )P T dxdt+c/\TT’\qllTT T g / (1 +|a))
0 suppeyr

B1(y+1)
q1—1
0

prdz.
SUPp ¥R

Similarly the second term in the right-hand side of (4.11) can be estimated as

(4.12)
c/ / W DpglPoy PTy da dt <

0 supp |Derl

/ / ( LuB (14 Jal) ™ on + el Don| 07 (1 + [

B1(p+y—1)
0 supp |Dyrl|

(1=p)(p+y—1)—
q1—p+1

(g1+7v)
o T )TTd:cdt,

where due to (4.5)-(4.6) for s >

pq1
EoT one has

(4.13)
( ) (A-p)(g1+y+1)—~ (a1+7) (q14+7)
Don(a)[ 7o " (1) = #D(E - bn) @)W (6 v (@) <
(q1+ )
<c(1+|x]) Zlﬂpjl () (x € supp ¢r).
(4.14)
12



Combining inequalities (4.10)—(4.14), we get

/ 1
%1/ / ul (1 + |2)) PR T, do dt + —— / ugfgoR dr <
Y

+1
0 Bypr(0) Supp @R
, — L B1(v+1) —p(a1+1)+B1 (v+p—1)
/|T |q1 T / (1+|z]) o1 goRdx+/ dt / (1+ |=|) a1-p+1 dx
supp Yr Supp ¥Rr
(4.15)
Here we take into account that v < 0. Since ug is nonnegative, we have
% / ul (14 |z|) P R, dz dt <
0 Byr(0)
37/4
, -l B1(v+1)
/ T AR T g / (1 o) 5 o dat
7/2 Bsr(0)
T —p(q1+)+B1 (v+p—1)
+ / dt / (1+ |z]) a1-ptl dx
0 Bsgr(0)
This implies
r n } 2 G aa)
/ / w1+ |z|)PrppTrdedt < csR* (TR + 7, " "R™ a1 |, (4.16)
0 Byr(0)
where ¢3 > 0 and
1) —
@ —p+1
It is easy to see that the right-hand side of (4.16) attains its minimum at
1  y=B1(v+D) Lﬁ_—l
— + —2)— -1 1
. (’y + 1R =iy )«n v C4R<ﬁ1<p )—play <0 )’ (4.18)
a1 —

where ¢4 = c4(q1,p,7) = ¢(q1,p,0) > 0 as v — 0_. Substituting (4.18) into (4.16) and
taking R — oo, by condition (4.21), if |v| is sufficiently small, we get u, = 0 a.e. Similarly,
using test functions of the form u_"(x,t)pr(x)T,(t), we get u_ = 0 a.e. This completes the
proof.

Under additional assumptions on the behavior of the initial function one can obtain
sufficient conditions for nonexistence not only of global solutions of problem (4.1) bu for
local ones as well. Namely, there holds

13



Theorem 4.2. Let p > 1, min(q;,q2) >p— 1, and
Bi(pi —2) —p(gi —1) >0 (i = 1,2). (4.19)
Suppose that the initial function uy € C(IR"™) satisfies the inequality
uo(x)| = co(1 + |z])*  (z € R") (4.20)
with some constants co > 0 and p € IR, so that

Bi>pla—p+1)+p (i=1,2). (4.21)

Then problem (4.1) has no positive functions u in (IR") x [0,T] for any arbitrary small
T >0.

Proof. We combine (4.15) with (4.20) and choose 7 = 7* from (4.18). Due to (4.19) and
(4.21), this leads to a contradiction as R — oo, which proves the theorem.
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