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Abstract. We establish nonexistence of nontrivial solutions (including sign-changing
ones) for some partial differential inequalities of elliptic and parabolic type containing non-
linear terms that depend on the positive and negative part of the sought function in different
ways. Systems of elliptic inequalities with similar structure are also considered. The proofs
are based on the test function method.
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1 Introduction

Starting from the 1960s, many mathematicians have considered sufficient conditions for
nonexistence of nontrivial (distinct from zero or some other constant a. e.) solutions to
nonlinear partial differential equations and inequalities in respective functional classes. A
method for studying this problem based on use of special test functions was suggested by S.
Pohozaev [1] and developed in his joint works with E. Mitidieri, V. Galaktionov, and other
authors (see, in particular, monographs [2], [3]), as well as in some works of the authors of the
present paper (see [4], [5], and references there). These papers dealt mostly with inequalities
where the nonlinear terms depended on the absolute value of the sought function. Here we
modify the test function method in order to obtain sufficient conditions for nonexistence of
nontrivial solutions for some quasilinear elliptic inequalities containing terms that depend
on the positive and negative parts of the sought function in a different way.

The rest of the paper consists of three sections. In §2, we prove nonexistence of nontrivial
solutions for some scalar quasilinear elliptic inequalities, in §3, for respective systems, and
in §4, for some parabolic problems.

2 Scalar inequalities

We will use the notation u+ = max{u, 0}, u− = −min{u, 0}. We consider the quasilinear
elliptic inequality

−∆pu ≥ a(x)uq1+ + b(x)uq2− (x ∈ IRn), (2.1)
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where a(x) ≥ c1|x|β1 , b(x) ≥ c2|x|β2 with some constants c1, c2 > 0, β1, β2 ∈ IR for all
x ∈ IRn.

Definition 2.1. We will say that a function u ∈ W 1,p
loc (IRn), for which there exists

a λ0 > 0 such that u+ ∈ Lq1−λloc (IRn), u− ∈ Lq2+λloc (IRn), and |Du|pu±λ−1 ∈ L1
loc(IR

n) for
λ ∈ [0, λ0], satisfies inequality (2.1) in the weak (distributional) sense, if for any nonnegative
test function ϕ ∈ C1

0(IRn) there holds the following inequality:∫
IRn

|Du|p−2(Du,Dϕ) dx ≥
∫
IRn

(a(x)uq1+ + b(x)uq2− )ϕdx. (2.2)

Theorem 2.1. Let min(q1, q2) > p− 1 and

n− βi(p− 1)− pqi
qi − p+ 1

≤ 0, i = 1, 2. (2.3)

Then inequality (2.1) has no weak solutions distinct from the identical zero a. e.

Proof. Introduce a family of test functions ϕη ∈ C1
0(IRn; [0, 1]) of the form

ϕR(x) = ψκ
R(x) (2.4)

with κ > pq
q−p , where q = min(q1, q2), and ψR ∈ C1

0(IRn; [0, 1]) such that

ψR(x) =

{
1 (|x| ≤ R),
0 (|x| ≥ 2R),

(2.5)

and there exists a constant c > 0 such that

|DψR(x)| ≤ cR−1 (x ∈ IRn). (2.6)

Suppose that there exists a solution with u+ 6≡ 0. Substituting ϕ(x) = u−λε,+(x)ϕR(x) with
λ ∈ (0, λ0] into (2.2), we get∫

IRn

uq1+u
−λ
ε,+(1 + |x|)β1ϕR dx ≤

∫
IRn

(|Du|p−2Du,D(u−λε,+ϕR)) dx =

= −λ
∫
IRn

uε,+ +λ−1 |Du+|pϕR dx+

∫
IRn

|Du+|p−2(Du+, DϕR) dx ≤

≤ −λ
∫
IRn

u−λ−1ε,+ |Du+|pϕR dx+

∫
IRn

|Du+|p−1|DϕR| dx.

We represent the integrand in the right-hand side of the obtained relation in the form

|Du+|p−1|DϕR| =
(

λp

p− 1
u−λ−1+ ϕR

) p−1
p

|Du+|p−1 · |Dϕη| ·
(

λp

p− 1
u−λ−1+ ϕR

) 1−p
p

.
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Using the Young inequality

ab ≤ as

s
+
bs
′

s′
, a, b > 0, s > 1,

where

a =

(
λp

2(p− 1)
u−λ−1ε,+ ϕR

) p−1
p

|Du+|p−1,

b = |DϕR| ·
(

λp

2(p− 1)
u−λ−1ε,+ ϕR

) 1−p
p

, s =
p− 1

p
, s′ = p,

we get ∫
IRn

uq1+u
−λ
ε,+(1 + |x|)β1ϕR dx+ λ

∫
IRn

u−λ−1+ |Du+|pϕR dx ≤

≤ λ

2

∫
IRn

u−λ−1+ |Du+|pϕR dx+ c(λ)

∫
IRn

u−λ+p−1ε,+ |DϕR|pϕ1−p
R dx,

i. e., ∫
IRn

uq1+u
−λ
ε,+(1 + |x|)β1ϕR dx+

λ

2

∫
IRn

u−λ−1+ |Du+|pϕR dx ≤

≤ c(λ)

∫
IRn

u−λ+p−1ε,+ |DϕR|pϕ1−p
R dx

and after passing to the limit as ε → +0 (which is admissible by the Lebesgue dominated
convergence theorem)∫

IRn

uq1−λ+ (1 + |x|)β1ϕR dx+
λ

2

∫
IRn

u−λ−1+ |Du+|pϕR dx ≤

≤ c(λ)

∫
IRn

u−λ+p−1+ |DϕR|pϕ1−p
R dx,

(2.7)

whence ∫
IRn

uq1−λ+ (1 + |x|)β1ϕR dx ≤ c(λ)

∫
IRn

u−λ+p−1+ |DϕR|pϕ1−p
R dx. (2.8)

Now represent the integrand in the right-hand side of (2.8) as

u−λ+p−1+ |Dϕη|pϕ1−p
η = (u+ρ

− β1
q1−λϕ

1
q1−λ
η )−λ+p−1 · |Dϕη|pρ

β1(−λ+p−1)
q1−λ ϕ

(1−p)(q1−λ)+λ−p+1
q1−λ

η .

Applying again the Young inequality with parameters

a = (u+(1 + |x|)−
β1
q1−λϕ

1
q1−λ
R )−λ+p−1,
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b = |DϕR|p(1 + |x|)
β1(−λ+p−1)

q1−λ ϕ
(1−p)(q1−λ)+λ−p+1

q1−λ
R ,

s =
q1 − λ

−λ+ p− 1
, s′ =

q1 − λ
q1 − p+ 1

,

we arrive at

1

2

∫
IRn

uq1−λ+ (1 + |x|)β1ϕR dx ≤ c(λ)

∫
IRn

|DϕR|
p(q1−λ)
q1−p+1 (1 + |x|)−

β1(−λ+p−1)
q1−p+1 ϕ

1− p(q1−λ)
q1−p+1

R dx.

Using (2.4)–(2.5), we replace the left-hand side of this inequality by a smaller quantity

1

2

∫
BR(0)

uq1−λ+ (1 + |x|)β1ϕR dx =
1

2

∫
BR(0)

uq1−λ+ (1 + |x|)β1 dx,

and rewrite the right-hand side in the form∫
B2R(0)

|DϕR|
p(q1−λ)
q1−p+1 (1 + |x|)−

β1(p−1−λ)
q1−p+1 ϕ

1− p(q1−λ)
q1−p+1

R dx.

Taking into account condition (2.6), we get∫
BR(0)

uq1−λ+ (1 + |x|)β1 dx ≤ cR
n− p(q1−λ)+β1(p−1−λ)

q1−p+1 ,

which yields a contradiction as R → ∞, if in (2.3) a strong inequality holds for i = 1 and
λ > 0 is sufficiently small. If in (2.3) we have an equality for i = 1, repeating the same
arguments for inequality (2.7), we obtain∫

BR(0)

uq1−λ+ (1 + |x|)β1 dx+
λ

2

∫
BR(0)

u−λ−1+ |Du+|pϕR dx ≤ cR
n− p(q1−λ)+β1(p−1−λ)

q1−p+1 ,

whence ∫
BR(0)

u−λ−1+ |Du+|pϕR dx ≤ cR
n− p(q1−λ)+β1(p−1−λ)

q1−p+1 . (2.9)

Then, substituting ϕ(x) = ϕR(x) into (2.2), we have∫
IRn

uq1+ (1 + |x|)β1ϕR dx ≤
∫
IRn

(|Du|p−2Du,DϕR) dx ≤
∫
IRn

|Du|p−1 · |DϕR| dx
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and by the Hölder inequality

∫
IRn

uq1+ (1 + |x|)β1ϕR dx ≤

∫
IRn

u−λ−1+ |Du+|pϕR dx


p−1
p

×

×

∫
IRn

u
(λ+1)(p−1)
+ |DϕR|pϕ1−p

R dx

 1
p

.

Using (2.9) and applying once more the Hölder inequality, and then condition (2.6), we get

∫
IRn

uq1+ (1 + |x|)β1ϕR dx ≤ cR
(p−1)(n(q1−p+1)−p(q1−λ)−β1(p−1−λ))

p(q1−p+1)

 ∫
supp|DϕR|

uq1+ (1 + |x|)β1ϕRdx


p−1
pq1

×

×

 ∫
supp|DϕR|

|DϕR|
pq1

q1−(p−1)(λ+1) ((1 + |x|)β1(λ+1)ϕq1+1
R )

1−p
q1−(p−1)(λ+1)dx


q1−(p−1)(λ+1)

pq1

≤

≤ cR
(p−1)(n(q1−p+1)−p(q1−λ)−β1(p−1−λ))+n(q1−(p−1)(λ+1))−pq1+β1(1−p)(λ+1)

pq1

 ∫
supp|DϕR|

uq1+ (1 + |x|)β1ϕRdx


p−1
pq1

=

= c

 ∫
supp|DϕR|

uq1+ (1 + |x|)β1ϕRdx


p−1
pq1

,

where the right-hand side tends to 0 as R → ∞ similarly to (2.9), which again yields a
contradiction completing the proof of the fact that u+ ≡ 0 a. e. Similarly, using test
functions ϕ(x) = uλ−(x)ϕR(x), we prove that u− ≡ 0 a. e. This completes the proof of the
theorem.

3 Systems of elliptic inequalities

Consider a system of quasilinear elliptic inequalities{
−∆pu ≥ a(x)vq1+ + b(x)vq2− (x ∈ IRn),
−∆qv ≥ c(x)up1+ + d(x)up2− (x ∈ IRn),

(3.1)

where p, q, p1, q1, p2, q2 > 1,p − 1 < p1, q − 1 < q1, a, b, c d are nonnegative functions such
that a(x) ≥ c1(1 + |x|)α, b(x) ≥ c2(1 + |x|)β, c(x) ≥ c3(1 + |x|)γ, d(x) ≥ c4(1 + |x|)δ for
x ∈ IRn, c1, . . . , c4 > 0, α, β, γ, δ ∈ IR.

5



Definition 3.1. A pair of functions (u, v) : u, v ∈ W 1,p
loc (IRn) × W 1,q

loc (IRn), for which

there exists a λ0 > 0 such that u+ ∈ Lq1−λloc (IRn), u− ∈ Lq2+λloc (IRn), v+ ∈ Lp1−λloc (IRn), v− ∈
Lp2+λloc (IRn), |Du|pv±λ−1 ∈ L1

loc(IR
n), and |Du|qu±λ−1 ∈ L1

loc(IR
n) for λ ∈ [0, λ0], is called a

weak solution of system (3.1) if they satisfy the integral inequalities

−
∫
IRn

|Du|p−2(Du,Dϕ1) dx ≥
∫
IRn

(a(x)vq1+ + b(x)vq2− )ϕ1 dx,∫
IRn

|Dv|q−2(Dv,Dϕ2) dx ≥
∫
IRn

(c(x)up1+ + d(x)up2− )ϕ2 dx
(3.2)

for all nonnegative test functions ϕ1, ϕ2 ∈ C1
0(IRn).

Theorem 3.1. Let min
i,j=1,2

piqj > (p− 1)(q − 1) and min
i=1,...,4

ai > n, min
i=1,...,4

bi > n, where

a1 =
pp1 + (α(q − 1) + q + γ)(p− 1)

p1q1 − (p− 1)(q − 1)
, a2 =

pp1 + (β(p− 1) + q + δ)(p− 1)

p2q1 − (p− 1)(q − 1)
,

a3 =
pp1 + (α(q − 1) + q + γ)(p− 1)

p1q2 − (p− 1)(q − 1)
, a4 =

pp2 + (β(p− 1) + q + δ)(p− 1)

p2q2 − (p− 1)(q − 1)
,

b1 =
qq1 + (α(q − 1) + q + γ)(p− 1)

p1q1 − (p− 1)(q − 1)
, b2 =

qq1 + (β(p− 1) + q + δ)(p− 1)

p2q1 − (p− 1)(q − 1)
,

b3 =
qq1 + (α(q − 1) + q + γ)(p− 1)

p1q2 − (p− 1)(q − 1)
, b4 =

qq2 + (β(p− 1) + q + δ)(p− 1)

p2q2 − (p− 1)(q − 1)
.

Then system (3.1) has no nontrivial weak solutions.

Proof. Let ϕR ∈ C∞0 (IRn; IR+) be the family of test functions from the previous section
with κ > 0 sufficiently large.

Substituting ϕ1(x) = uλε,+(x)ϕR(x) into the first inequality (3.2) and ϕ2(x) = v−λε,+(x)ϕR(x)
into the second one so that ε > 0 and max{1− p, 1− q} < −λ < 0, we get∫

(a(x)vq1+ + b(x)vq2− )uλε,+ϕR dx ≤ λ

∫
|Du+|pu−λ−1ε,+ ϕR dx+

∫
(|Du+|p−1|DϕR|u−λε,+ dx, (3.3)

∫
(c(x)up1+ + d(x)up2− )vλε,+ϕR dx ≤ λ

∫
|Dv+|qvλ−1ε,+ ϕR dx +

∫
(|Dv+|q−1|DϕR|v−λε,+ dx. (3.4)

Applying the Young inequality to the first terms in the right-hand sides of the obtained
relations yields∫

(a(x)vq1+ + b(x)vq2− )uλε,+ϕR dx+
λ

2

∫
|Du+|pu−λ−1ε,+ ϕR dx ≤ cλ

∫
|DϕR|p

ϕp−1R

u−λ+p−1ε,+ dx,

∫
(c(x)up1+ + d(x)up2− )v−λε,+ϕR dx+

|λ|
2

∫
|Dv+|qv−λ−1ε,+ ϕR dx ≤ dλ

∫
|DϕR|q

ϕq−1R

v−λ+q−1ε,+ dx,
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and after passing to the limit as ε→ 0+ to∫
(a(x)vq1+ + b(x)vq2− )uλ+ϕR dx+

λ

2

∫
|Du+|pu−λ−1+ ϕR dx ≤ cλ

∫
|DϕR|p

ϕp−1R

u−λ+p−1+ dx, (3.5)

∫
(c(x)up1+ + d(x)up2− )v−λ+ ϕR dx+

λ

2

∫
|Dv+|qv−λ−1+ ϕR dx ≤ dλ

∫
|DϕR|q

ϕq−1R

v−λ+q−1+ dx, (3.6)

where the constants cλ and dλ are positive and depend only on p, q, and λ.
Similarly, substituting ϕ1(x) = uλε,−(x)ϕR(x) into the first inequality (3.2) and ϕ2(x) =

v−λε,−(x)ϕR(x) into the second one so that ε > 0 and max{1− p, 1− q} < −λ < 0, we get∫
(a(x)vq1+ + b(x)vq2− )uλ−ϕR dx+

λ

2

∫
|Du−|puλ−1− ϕR dx ≤ eλ

∫
|DϕR|p

ϕp−1R

uλ+p−1− dx, (3.7)

∫
(c(x)up1+ + d(x)up2− )vλ−ϕR dx+

|λ|
2

∫
|Dv+|qvλ−1− ϕR dx ≤ fλ

∫
|DϕR|q

ϕq−1R

vλ+q−1− dx, (3.8)

where the constants eλ and fλ are positive and depend only on p, q, and λ.
Further, using the test function ϕ = ϕR in (3.2), similarly to the previous argument, we

obtain the relations∫
(a(x)vq1+ + b(x)vq2− )ϕR dx ≤

∫
|Du|p−1|DϕR| dx =∫

|Du+|p−1|DϕR| dx+

∫
|Du−|p−1|DϕR| dx,

(3.9)

∫
(c(x)up1+ + d(x)up2− )ϕR dx ≤

∫
|Dv|q−1|DϕR| dx =∫

|Dv+|q−1|DϕR| dx+

∫
|Dv−|q−1|DϕR| dx.

(3.10)

Apply the Hölder inequality to each integral in the right-hand side of the obtained relations.
Taking into account (3.5)–(3.8), we get∫

|Du+|p−1|DϕR| dx ≤

≤
(∫
|Du+|puλ−1+ ϕR dx

) p−1
p

×
(∫

|DϕR|p

ϕp−1R

u
(1−λ)(p−1)
+ dx

) 1
p

≤

≤ gλ

(∫
|DϕR|p

ϕp−1R

u−λ+p−1+ dx

) p−1
p

×
(∫

|DϕR|p

ϕp−1R

u
(1−λ)(p−1)
+ dx

) 1
p

(3.11)

and similar relations for the integrals∫
|Du−|p−1|DϕR| dx,

∫
|Dv+|q−1|DϕR| dx,

∫
|Dv−|q−1|DϕR| dx.
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Applying the Hölder inequality with the exponent r > 1 to the first integral in the
right-hand side of (3.11), we obtain(∫

|DϕR|p

ϕp−1R

u−λ+p−1+ dx

) p−1
p

≤
(∫

c(x)u
(λ+p−1)r
+ ϕR dx

) p−1
pr

(∫
c−

r′
r (x)
|DϕR|pr

′

ϕpr
′−1

R

dx

) p−1
pr′

,

(3.12)

where
1

r
+

1

r′
= 1.

Choosing the exponent r so that

(λ+ p− 1)r = p1, (3.13)

from (3.11) and (3.12) we have∫
|Du+|p−1|DϕR| dx ≤ gλ

(∫
c(x)up1+ ϕR dx

) p−1
pr

×

×

(∫
c−

r′
r (x)
|DϕR|pr

′

ϕpr
′−1

R

dx

) p−1
pr′ (∫ |DϕR|p

ϕp−1R

u
(1−λ)(p−1)
+ dx

) 1
p

.

(3.14)

Applying the Hölder inequality with the exponent y > 1 to the last integral in the right-hand
side of (3.14), we have∫

|DϕR|p

ϕp−1R

u
(1−λ)(p−1)
+ dx ≤

(∫
c(x)u

(1−λ)(p−1)y
+ ϕR dx

) 1
y

(∫
c−

y′
y (x)

|DϕR|py
′

ϕpy
′−1

R

dx

) 1
y′

,

(3.15)

where
1

y
+

1

y′
= 1.

Choosing y in (3.15) according to (3.19) so that

(1− λ)(p− 1)y = p1, (3.16)

and taking into account (3.14), we arrive at the estimate∫
|Du+|p−1|DϕR| dx ≤ gλ

(∫
c(x)up1+ ϕR dx

) p−1
pr

(∫
c−

r′
r (x)
|DϕR|pr

′

ϕpr
′−1

R

dx

) p−1
pr′

×

×
(∫

c(x)up1+ ϕR dx

) 1
py

(∫
c−

y′
y (x)

|DϕR|py
′

ϕpy
′−1

R

dx

) 1
py′

,

which implies∫
|Du+|p−1|DϕR| dx ≤ gλ

(∫
(c(x)up1+ + d(x)up2− )ϕR dx

) p−1
pr

+ 1
py

×

×

(∫
c−

r′
r (x)
|DϕR|pr

′

ϕpr
′−1

R

dx

) p−1
pr′
(∫

c−
y′
y (x)

|DϕR|py
′

ϕpy
′−1

R

dx

) 1
py′

,

(3.17)
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where the exponents r and y are chosen according to (3.13), (3.16). Substituting these
expressions for the exponents, due to the choice of ϕR and conditions on c(x) and d(x) we
get ∫

|Du+|p−1|DϕR| dx ≤

≤ gλ

(∫
(c(x)up1+ + d(x)up2− )ϕR dx

) p−1
q1

×R
γ(1−p)−p+n(q1−p+1)

q1 .

(3.18)

We obtain similar estimates for∫
|Du−|p−1|DϕR| dx,

∫
|Dv+|q−1|DϕR| dx,

∫
|Dv−|q−1|DϕR| dx.

Combining these estimates with (3.9) and (3.10) and introducing the notation

A = A(R) =

∫
(a(x)vq1+ + b(x)vq2− )ϕR dx, B = B(R) =

∫
(c(x)up1+ + d(x)up2− )ϕR dx,

we obtain the estimates
A ≤ Cλ

(
B

p−1
q1 R

γ(1−p)−p+n(q1−p+1)
q1 +B

p−1
q2 R

δ(1−p)−p+n(q1−p+1)
q1

)
,

B ≤ Dλ

(
A

q−1
p1 R

α(1−q)−q+n(p1−q+1)
p1 + A

q−1
p2 R

β(1−q)−q+n(p2−q+1)
p2

)
,

(3.19)

where the constants Cλ and Dλ are positive and depend only on the parameters of the
inequalities under consideration and on λ. Therefore in each inequality (3.19) at least one
summand in the right-hand side is greater or equal to a half of the left-hand side. Hence we
get

A(R) ≤ EλR
n− min

i=1,...,4
ai
, B(R) ≤ FλR

n− min
i=1,...,4

bi
,

where the constants Eλ and Fλ are positive and depend only on the parameters of the
inequalities under consideration and on λ.

Taking R→ +∞, we come to a contradiction, which proves the theorem.

4 Parabolic problems

Let u0 ∈ C(IRn). We will use the notation u0,+ = max{u0, 0}, u0,− = −min{u0, 0}, u+ =
max{u, 0}, u− = −min{u, 0}. Consider the Cauchy problem{

∂u
∂t
− div(|Du|p−2Du) ≥ a(x, t)uq1+ + b(x, t)uq2− ((x, t) ∈ IRn × IR+),

u(x, 0) = u0(x) (x ∈ IRn),
(4.1)

where a(x, t) ≥ c1(1 + |x|)−β1 , b(x, t) ≥ c2(1 + |x|)−β2 with some constants c1, c2 > 0,
β1, β2 ∈ IR for all x ∈ IRn.
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We define its weak solutions as follows.

Definition 4.1. A nonnegative function u ∈ C1(IRn × IR+) is called a weak (local)
solution of problem (4.1) if it satisfies the integral inequality

t1∫
t0

∫
IRn

(a(x)uq1+ + b(x)uq2− )ψ dx dt−
∫
IRn

(u(x, t1)ψ(x, t1)− u(x, t0)ψ(x, t0)) dx ≤

≤
t1∫
t0

∫
IRn

(
− u∂ψ

∂t
+ |Du|p−2(Du,Dψ)

)
dx dt

(4.2)

for some t∗ > 0, for all t0, t1 such that 0 ≤ t0 < t1 ≤ t∗, and for any nonnegative function
ψ ∈ C1((IRn) × [t0, t1]) such that for all t ∈ [t0, t1] there holds ψ(·, t) ∈ C1

0(IRn), and there
exists a λ0 > 0 such that u+ ∈ Lq1−λloc (IRn × IR+), u− ∈ Lq2+λloc (IRn × IR+) |Du|pu±λ−1 ∈
L1
loc(IR

n × IR+) for λ ∈ [0, λ0], and lim
t→0+

u(x, t) = u0(x) for all x ∈ IRn. The supremum of all

possible values τ = t1 − t0 is alled the life time of solution u. If it is infinite, the solution is
called global.

Remark 4.1. If u is sufficiently regular, inequality (4.2) can be obtained from (4.1) by
integration by parts.

Sufficient conditions for the nonexistence of nontrivial weak solutions of the Cauchy
problem (4.1) in this sense can be formulated as follows.

Theorem 4.1. Let p > 1, min(q1, q2) > p− 1,

2(p− βi) < θ(qi − p+ 1) (i = 1, 2) (4.3)

and

n+
p− βi

qi − p+ 1
≤ 0 (i = 1, 2), (4.4)

and the initial function u0 is nonnegative.
Then problem (4.1) has no global weak solutions u in IRn × IR+ apart from the identical

zero a.e.

Proof. Suppose hat a solution u of problem (4.1) does exist and consider its weak
formulation (4.2) with test functions uγ+(x, t)ϕR(x)Tτ (t), where ϕR = ψκ

R, κ > max
i=1,2

pqi
qi−p+1

.

In order to obtain a priori estimates of solutions to (4.1), we use a family of functions of
spatial variables ψR ∈ C1

0(IRn; [0, 1]), with a parameter R > 0 such that

ψR(x) =

{
1 (|x| ≤ R),
0 (|x| ≥ 2R)

(4.5)

and there exists a constant c > 0 such that

|DψR(x)| ≤ cR−1 (x ∈ IRn), (4.6)

10



and a family of time-dependent functions Tτ ∈ C1([0, τ ]; [0, 1]) with a parameter τ > 0 such
that

Tτ (t) =

{
1 (0 ≤ t ≤ τ/2),
0 (3τ/4 ≤ t ≤ τ)

(4.7)

and, moreover,
3τ/4∫
τ/2

|T ′τ |r
′

|Tτ |r′−1
dt ≤ cτ 1−r

′
(4.8)

with some constant c > 0 and r =
q + γ

q − 1
, where γ < 0 and |γ| is sufficiently small.

In this case inequality (4.2) and our assumption on a(x, t) imply

c1

τ∫
0

∫
suppϕR

uq1+γ+ (1 + |x|)−β1ϕRTτ dx dt+

∫
suppϕR

uγ+1
0,+ ϕR dx ≤

≤ γ

τ∫
0

∫
suppϕR

|Du|puγ−1+ ϕRTτ dx dt+

τ∫
0

∫
supp |DϕR|

uγ+|Du|p−2(Du,DϕR)Tτ dx dt−

−
τ∫

0

∫
suppϕR

u+(uγ+ϕRT
′
τ )t dx dt.

(4.9)

Integrating by parts the last term in this inequality twice, for a sufficiently regular u we
get

τ∫
0

∫
suppϕR

u(uγ+ϕRTτ )tdx dt =

=

∫
suppϕR

uγ+1
+ ϕRTτdx

∣∣∣τ
0
−

τ∫
0

∫
suppϕR

∂u

∂t
uγ+ϕRTτdx dt =

=

∫
suppϕR

uγ+1
+ ϕRTτdx

∣∣∣τ
0
− 1

1 + γ

τ∫
0

∫
suppϕR

(uγ+1
+ )tϕRTτdx dt =

=

(
1− 1

1 + γ

) ∫
suppϕR

uγ+1
+ ϕRTτdx

∣∣∣τ
0

+
1

1 + γ

τ∫
0

∫
suppϕR

uγ+1
+ ϕR(Tτ )tdx dt =

=

(
1

1 + γ
− 1

) ∫
suppϕR

uγ+1
0,+ ϕRdx+

1

1 + γ

τ∫
0

∫
suppϕR

uγ+1
+ ϕR(Tτ )tdx dt.

For any weak solution u of problem (4.1) this inequality can be obtained by approximation
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with regular functions and a standard passage to the limit. Hence, (4.9) can be rewritten as

c1

τ∫
0

∫
suppϕR

uqi+γ+ (1 + |x|)−β1ϕRTτ dx dt+
1

γ + 1

∫
suppϕR

uγ+1
0,+ ϕR dx ≤

≤ γ

τ∫
0

∫
suppϕR

|Du|puγ−1+ ϕRTτ dx dt+

τ∫
0

∫
supp |DϕR|

uγ+|Du|p−2(Du,DϕR)Tτ dx dt−

− 1

γ + 1

τ∫
0

∫
suppϕR

uγ+1
+ ϕRT

′
τ dx dt.

(4.10)

Further we apply the Young inequality with appropriate parameters to the second and
third terms in the right-hand side:

τ∫
0

∫
supp |DϕR|

uγ+|Du|p−2(Du,DϕR)Tτ dx dt ≤
τ∫

0

∫
supp |DϕR|

uγ+|Du|p−1|DϕR|Tτ dx dt ≤

≤ |γ|
4

τ∫
0

∫
suppϕR

|Du|puγ−1+ ϕRTτ dx dt+ c

τ∫
0

∫
supp |DϕR|

up+γ−1+ |DϕR|pϕ1−p
R Tτ dx dt,

(4.11)

− 1

γ + 1

τ∫
0

∫
suppϕR

uγ+1
+ ϕRT

′
τ dx dt ≤

1

|γ + 1|

τ∫
0

∫
suppϕR

uγ+1
+ ϕR|T ′τ | dx dt ≤

≤ c1
4

τ∫
0

∫
suppϕR

uq1+γ+ (1 + |x|)−β1ϕRTτ dx dt+ c

τ∫
0

|T ′τ |
q1+γ
q1−1T

− γ+1
q1−1

τ dt

∫
suppϕR

(1 + |x|)
β1(γ+1)
q1−1 ϕR dx.

(4.12)
Similarly the second term in the right-hand side of (4.11) can be estimated as

c

τ∫
0

∫
supp |DϕR|

up+γ−1+ |DϕR|pϕ1−p
R Tτ dx dt ≤

≤
τ∫

0

∫
supp |DϕR|

(
c1
4
uq1+γ+ (1 + |x|)−β1ϕR + c|DϕR|

p(q1+γ)
q1−p+1 (1 + |x|)

β1(p+γ−1)
q1−p+1 ϕ

(1−p)(p+γ−1)−(q1+γ)
q1−p+1

R

)
Tτ dx dt,

(4.13)
where due to (4.5)–(4.6) for κ > pq1

q1−p+1
one has

|DϕR(x)|
p(q1+γ)
q1−p+1ϕ

(1−p)(q1+γ+1)−γ
q1−p+1

R (x) = κp|D(ξ 1
R
· ψR)(x)|

p(q1+γ)
q1−p+1 (ξ 1

R
· ψR)

κ− p(q1+γ)
q1−p+1 (x) ≤

≤ c(1 + |x|)−
p(q1+γ)
q1−p+1 (x) (x ∈ suppϕR).

(4.14)
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Combining inequalities (4.10)–(4.14), we get

c1
2

τ∫
0

∫
B2R(0)

uq1+γ+ (1 + |x|)−β1ϕRTτ dx dt+
1

γ + 1

∫
suppϕR

uγ+1
0,+ ϕR dx ≤

≤ c

 τ∫
0

|T ′τ |
q1+γ
q1−1T

− γ+1
q1−1

τ dt

∫
suppϕR

(1 + |x|)
β1(γ+1)
q1−1 ϕR dx+

τ∫
0

dt

∫
suppϕR

(1 + |x|)
−p(q1+γ)+β1(γ+p−1)

q1−p+1 dx

 .

(4.15)
Here we take into account that γ < 0. Since u0 is nonnegative, we have

c1
4

τ∫
0

∫
B2R(0)

uq1+γ+ (1 + |x|)−β1ϕRTτ dx dt ≤

≤ c

 3τ/4∫
τ/2

|T ′τ |
q1+γ
q1−1T

− γ+1
q1−1

τ dt

∫
B2R(0)

(1 + |x|)
β1(γ+1)
q1−1 ϕR dx+

+

τ∫
0

dt

∫
B2R(0)

(1 + |x|)
−p(q1+γ)+β1(γ+p−1)

q1−p+1 dx

 .

This implies

τ∫
0

∫
B2R(0)

uq1+γ+ (1 + |x|)−β1ϕRTτ dx dt ≤ c3R
n

(
τR−lγ + τ

− γ+1
q1−1

+ R
−β1(γ+1)

q1−1

)
, (4.16)

where c3 > 0 and

lγ =
β1(γ + p− 1)− p(q1 + γ)

q1 − p+ 1
. (4.17)

It is easy to see that the right-hand side of (4.16) attains its minimum at

τ∗ =

(
γ + 1

q1 − 1
R

lγ−β1(γ+1)

q1−1

) q1−1
q1+γ

= c4R
(β1(p−2)−p(q1−1))(γ+1)

q1−p+1 , (4.18)

where c4 = c4(q1, p, γ) → c(q1, p, 0) > 0 as γ → 0−. Substituting (4.18) into (4.16) and
taking R→∞, by condition (4.21), if |γ| is sufficiently small, we get u+ ≡ 0 a.e. Similarly,
using test functions of the form u−γ− (x, t)ϕR(x)Tτ (t), we get u− ≡ 0 a.e. This completes the
proof.

Under additional assumptions on the behavior of the initial function one can obtain
sufficient conditions for nonexistence not only of global solutions of problem (4.1) bu for
local ones as well. Namely, there holds
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Theorem 4.2. Let p > 1, min(q1, q2) > p− 1, and

βi(pi − 2)− p(qi − 1) > 0 (i = 1, 2). (4.19)

Suppose that the initial function u0 ∈ C(IRn) satisfies the inequality

|u0(x)| ≥ c0(1 + |x|)µ (x ∈ IRn) (4.20)

with some constants c0 > 0 and µ ∈ IR, so that

βi > µ(qi − p+ 1) + p (i = 1, 2). (4.21)

Then problem (4.1) has no positive functions u in (IRn) × [0, T ] for any arbitrary small
T > 0.

Proof. We combine (4.15) with (4.20) and choose τ = τ ∗ from (4.18). Due to (4.19) and
(4.21), this leads to a contradiction as R→∞, which proves the theorem.
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