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Abstract
In this paper, we study the coupled nonlinear Schrödinger equation with variable coefficients (VCNLS) by means

of modified Sine-Gordon equation method, the subsistence of some novel bright-dark solitons and dark-dark solitons
are obtained. Moreover, some figures are simulated by computer to show the solutions are soliton solutions and how
the evolution of soliton is determined by different values of variable group velocity dispersion terms, which can be
used to simulate various phenomena.
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1. Introduction

It is well familiar that various types of physical phenomena in nature can be expressed in terms of nonlinear partial
differential equations (NPDEs). The solutions of these equations have crucial impact in physical, mathematics and
engineering fields. In particular, the analysis of solitary wave solutions participates as very significant role in the
study of some physical models. One of the most significant NPDEs is the nonlinear Schrödinger (NLS) equation, it
can describe the nonlinear dynamics of surface gravity waves in oceans and is an approximation of the fully nonlinear
equations, it contains the two basic ingredients of surface wave dynamics: nonlinearity and dispersion (in an oceano-
graphic context). Besides, the equation can be used to describe many different physical systems, such as nonlinear
optics, Bose-Einstein condensates(BECs), plasma waves and so on.

In this paper, we will consider the following coupled nonlinear Schrödinger equation with variable coefficients
(VCNLS):

iψ1t + a(t)ψ1xx +
(
b2(t) |ψ1|

2 + b2(t) |ψ2|
2
)
ψ1 + v(t)ψ1 = 0,

iψ2t + a(t)ψ2xx +
(
b1(t) |ψ1|

2 + b2(t) |ψ2|
2
)
ψ2 + v(t)ψ2 = 0.

(1)

which can be applied to describe the interaction among the modes in nonlinear optics and some other branches
of nonlinear science such as BECs and so on [1, 2, 3, 4, 5, 6]. Where ψ1 and ψ2 are complex envelopes of the
propagating beam of the two modes, and x, t are the spatial coordinate and retarded time respectively. The coefficients
a(t) represent the group velocity dispersion, b1(t), b2(t) mean nonlinear interactions and v(t) means external potential
[7].

When a(t) = 1/2, b1(t) = b2(t) = e, v(t) = 0, then System VCNLS reduces to the classical coupled Schrödinger
Systems (CNLS):

iq1T + 1
2 q1XX + e

(
|q1|

2 + |q2|
2
)

q1 = 0,
iq2T + 1

2 q2XX + e
(
|q1|

2 + |q2|
2
)

q2 = 0.
(2)
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which has been solved to get soliton solutions on trivial background through Hirota bilinear method in [8, 9], Darboux
transformation in [10, 11]. The CNLS with variable coefficients attracts much attention for the past few decades.
Biswas has done lots of work on solitons in the birefringent fibers or with Hamiltonian perturbations [12, 13, 14]. The
variation of the coefficients would make the solitons travel in different external potentials. For the scalar Schrödinger
system, there are plenty of results on solitons and well-posedness results, which can be referred to [2, 4, 15, 16].

In what follows, based on the modified Sine-Gordon equation method [17], we derive some bright-dark solitons
and dark-dark solitons for VCNLS and obtain the following results: (i) Choosing different values for variable group
velocity dispersion term, we obtained the bell-shaped, parabolic, cubic and periodic solitons, respectively. (ii) In-
teraction between the two solutions is investigated and obtained each soliton shape keeps invariant after interaction.
Remarkably, nonlinear wave equations with variable coefficients are viewed as generalizations of evolution equations
with constant coefficients. Therefore, considering the system (1) will give richer knowledge on dynamics in nonlinear
media described by the system (2).

2. The method

Let us consider a form of a nonlinear partial differential equation

Hk

(
x, t,

∂ψk

∂x
,
∂ψk

∂t
,
∂2ψk

∂x2 , . . . , a(t), b1(t), b2(t), v(t)
)

= 0 (3)

where a(t), bk(t) and v(t) are arbitrary functions in t and k = 1, 2. In the following, we offer the main steps of this
method:

Step 1: Use the following assumptions:

ψ1(x, t) = U1(ζ)exp(i(αx − θ(t)),
ψ2(x, t) = U2(ζ)exp(i(αx − θ(t)).

(4)

where U1(ζ) and U1(ζ) are the new dependant functions, ζ = µ(x − λ(t)) is the new independent variable, λ(t) is an
arbitrary function of t and µ and α are the frequency and the width of the soliton respectively.

Step 2: Collect the coeffients of U1(ζ)and U1(ζ) and their derivatives,and then assume the imaginary part is equal
to zero.

Step 3: Take the coefficient of the largest linear term as the normalization coefficient.
Step 4: The derivatives and powers of U1(ζ) and U1(ζ) are equal to the term multiplied by a constant, so the

arbitrary functions will be determined, and the Eq.(3) is transformed into the following nonlinear ordinary differential
system.

Qi
(
Ui(ζ),U′i (ζ),U′′i (ζ), . . .

)
= 0 (5)

Step 5: Use the solutions of the Sine-Gordon equation [18, 19]by assuming that

U1(ξ) =

n∑
i=1

cosi−1(w(ξ)) ×
[
Bi sin(w(ξ)) + Ai cos(w(ξ))

]
+ A0,

U2(ξ) =

m∑
j=1

cos j−1(w(ξ)) ×
[
E j sin(w(ξ)) + D j cos(w(ξ))

]
+ D0.

(6)

where Ai, Bi, Di, Ei, A0 and D0 are arbitrary constants and n and m are determined by balancing the most dispersive
term and the greatest nonlinear term in Eq.(5), and

w′(ξ) = sin(w(ξ)) (7)

and

sin(w(ξ)) = sech(ξ) or cos(w(ξ)) = tanh(ξ) (8)
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Step 6: Equating the coefficients of sini(w(ξ)) and cosi(w(ξ)) to zero and an algebraic system for the constant Ai,
Bi, Di, Ei, A0 and D0 are obtained, by solving them with a Maple program and back-substituting into Eqs.(6) and
Eqs.(4) via Eqs.(8), novel soliton solutions are obtained for the system of Eq.(3).

Advantages of the method: The Sine-Gordon equation method has limitations and is suitable for some constant
coefficient systems, but modified Sine-Gordon equation method is applicable to systems with variable coefficients
containing imaginary parts. As a result, some spanking new solutions might be originated via this method and this
method can use computational software like Maple or Mathematica to reduce the amount of computation.

3. Exact solutions for VCNLS

By substituting the assumptions in Eqs.(4) into Eqs.(1), we obtain

a(t)µ2U′′1 (ξ) + iµ
(
2αa(t) − λ′

)
U′1(ξ) +

(
θ′ − α2a(t)

)
U1(ξ) +

(
b1(t)U2

1(ξ) + b2(t)U2
2(ξ)

)
U1(ξ) + v(t)U1(ξ) = 0,

a(t)µ2U′′2 (ξ) + iµ
(
2αa(t) − λ′

)
U′2(ξ) +

(
θ′ − α2a(t)

)
U2(ξ) +

(
b1(t)U2

1(ξ) + b2(t)U2
2(ξ)

)
U2(ξ) + v(t)U2(ξ) = 0.

(9)

to make Eqs.(9) real, the terms U′1(ξ) and U′2(ξ) must be eliminated, so according to Step 2, we get λ(t) = 2α
∫

a(t)dt+
λ0, and then follow Step 3, that is, take the coefficients of U′′1 (ξ) and U′′2 (ξ) as the normalized coefficients, and we get

θ(t) =

∫ (
µ2c1 + α2

)
a(t)dt + θ0 (10)

λ(t) = 2α
∫

a(t)dt + λ0 (11)

b1(t) = c2µ
2a(t) (12)

b2(t) = c3µ
2a(t) (13)

v(t) = c4µ
2a(t) (14)

where c1, c2, c3 and c4 are constants and λ0 and θ0 is an integration constant. Therefore,

ξ = µ

(
x − 2α

∫
a(t)dt

)
(15)

And, Eqs.(9) can be simplified as follows

U′′1 (ξ) + c1U1(ξ) +
(
c2U2

1(ξ) + c3U2
2(ξ)

)
U1(ξ) + c4U1(ξ) = 0,

U′′2 (ξ) + c1U2(ξ) +
(
c2U2

1(ξ) + c3U2
2(ξ)

)
U2(ξ) + c4U2(ξ) = 0.

(16)

By balancing the dispersive and nonlinear terms in Eqs.(16) we get m + 2 = 2m + m and n + 2 = 2n + n, i.e. m =

n = 1, so according to Step 5, we assume that

U1(ξ) = B1 sin(w(ξ)) + A1 cos(w(ξ)) + A0,

U2(ξ) = E1 sin(w(ξ)) + D1 cos(w(ξ)) + D0.
(17)

Substituting Eqs.(17) and the necessary derivatives into Eq.(16) using Eqs.(7), applying trigonometric identities
and collecting the coefficients of sin(w(ξ)) and cos(w(ξ)) that are containing independent combinations to zero, and
we obtain the following independent parametric equations:

sin(w(ξ)):

c1B1 + c4B1 + 3c2B1A2
0 + c3B1D2

0 + 2c3E1D0A0 = 0 (18)
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cos(w(ξ)):

c1A1 + c4A1 + 3c2A1A2
0 + c3A1D2

0 + 2c3D1D0A0 + c2A3
1 + c3A1D2

1 = 0 (19)

sin3(w(ξ)):

−B1 + c2B3
1 + c3B1E2

1 = 0 (20)

sin(w(ξ)) cos2(w(ξ)):

B1 + 3c2B1A2
1 + c3B1D2

1 + 2c3A1E1D1 = 0 (21)

sin2(w(ξ)) cos(w(ξ)):

−2A1 + 3c2A1B2
1 + c3A1E2

1 + 2c3E1D1B1 − c2A3
1 − c3A1D2

1 = 0 (22)

sin2(w(ξ)):

3c2A0B2
1 + c3A0E2

1 + 2c3E1D0B1 = 0 (23)

sin(w(ξ)) cos(w(ξ)):

6c2B1A1A0 + 2c3D1D0B1 + 2c3A1E1D0 + 2c3A0E1D1 = 0 (24)

cos2(w(ξ)):

3c2A0A2
1 + 2c3A1D1D0 + c3A0D2

1 = 0 (25)

constants:

c1A0 + c4A0 + c2A3
0 + c3A0D2

0 = 0 (26)

Solving Eqs.(18)-(26), we obtain the following cases and solutions using Eqs.(8).
Case 1: When A0 = B1 = 0, c2 = − 2

A2
1
, c3 = 0, c4 = −c1 + 2, we get the following bright-dark solitons:

ψ1(x, t) = A1 tanh
(
µ

(
x − 2α

∫
a(t)dt

))
exp

(
i
(
αx −

∫ (
µ2c1 + α2

)
a(t)dt + θ0

))
,

ψ2(x, t) =

[
E1 sech

(
µ

(
x − 2α

∫
a(t)dt

))
+ D1 tanh

(
µ

(
x − 2α

∫
a(t)dt

))
+ D0

]
exp

(
i
(
αx −

∫ (
µ2c1 + α2

)
a(t)dt + θ0

))
.

(27)
where A1, D1, E1 and c1 are arbitrary constants.

Case 2: When A0 = B1 = D0 = E1 = 0, c3 = − 2
D2

1
, c4 = −c1, we get the following dark-dark solitons:

ψ1(x, t) = A1 tanh
(
µ

(
x − 2α

∫
a(t)dt

))
exp

(
i
(
αx −

∫ (
µ2c1 + α2

)
a(t)dt + θ0

))
,

ψ2(x, t) = D1 tanh
(
µ

(
x − 2α

∫
a(t)dt

))
exp

(
i
(
αx −

∫ (
µ2c1 + α2

)
a(t)dt + θ0

))
.

(28)

where A1, D1, c1 and c2 are arbitrary constants.
Case 3: When A0 = A1 = D0 = E1 = 0, c2 = − 2

B2
1
, c3 = − 2

D2
1
, c4 = −c1, we get the following bright-dark solitons:

ψ1(x, t) = B1 sech
(
µ

(
x − 2α

∫
a(t)dt

))
exp

(
i
(
αx −

∫ (
µ2c1 + α2

)
a(t)dt + θ0

))
,

ψ2(x, t) = D1 tanh
(
µ

(
x − 2α

∫
a(t)dt

))
exp

(
i
(
αx −

∫ (
µ2c1 + α2

)
a(t)dt + θ0

))
.

(29)
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where B1, D1, and c1 are arbitrary constants.
Case 4: When A0 = B1 = D0 = D1 = 0, c2 = − c4+c1

A2
1
, c3 = − c4+c1−2

E2
1

, we get the following dark-bright solitons:

ψ1(x, t) = A1 tanh
(
µ

(
x − 2α

∫
a(t)dt

))
exp

(
i
(
αx −

∫ (
µ2c1 + α2

)
a(t)dt + θ0

))
,

ψ2(x, t) =

[
E1 sech

(
µ

(
x − 2α

∫
a(t)dt

))
+ D0

]
exp

(
i
(
αx −

∫ (
µ2c1 + α2

)
a(t)dt + θ0

))
.

(30)

where A1, E1, c1 and c4 are arbitrary constants.

4. Simulation and physical explanation

In this segment, we will illustrate the figure and designate the acquired solutions to the VCNLS equations. The
solutions (27)-(30) come in terms of hyperbolic function. Next, we study the evolution behavior of the dark-bright
soliton solutions given by Eqs.(27), the bright-dark soliton solutions given by Eqs.(29), and interaction of the two
solutions given by Eqs.(29), illustrated in the following figures.

(a) a(t)=1 (b) a(t)=t (c) a(t) = t2 (d) a(t)=sin(t)

(e) a(t)=1 (f) a(t)=t (g) a(t) = t2 (h) a(t)=sin(t)

Figure 1: Evolution of dark-bright soliton solutions of Eqs.(27), plotted for different values of a(t).

In fig.1, we shows the soliton solutions evolution of Eqs.(27) with different variable coefficients 1, t, t2, sin(t).
Fig.1 (a) and (e) depict the result with a(t) = 1, which shows a dark bell-shaped soliton and a singular soliton. When
a(t) = t, we obtain a parabolic cubic soliton, as shown in (b) and ( f ). When a(t) = t2, we obtain a cubic soliton,as
shown in (c) and (g). Periodical-oscillating soliton is obtained when we choose a(t) = sin(t) as depicted in (d) and (h).

In fig.2, we shows the soliton solution evolutionis of Eqs.(29) with different variable coefficients 1, t, t2, sin(t).
Fig.2 (a) and (e) depict the result with a(t) = 1, which shows a bright bell-shaped solition and a dark bell-shaped
soliton. When a(t) = t, we obtain a parabolic cubic soliton, as shown in (b) and ( f ). When a(t) = t2, we obtain a cubic
soliton, as shown in (c) and (g). Periodical-oscillating soliton is obtained when we choose a(t) = sin(t) as depicted in
(d) and (h).
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(a) a(t)=1 (b) a(t)=t (c) a(t) = t2 (d) a(t)=sin(t)

(e) a(t)=1 (f) a(t)=t (g) a(t) = t2 (h) a(t)=sin(t)

Figure 2: Evolution of bright-dark soliton solution of Eqs.(29), plotted for different values of a(t).

(a) a(t)=1 (b) a(t)=t (c) a(t) = t2 (d) a(t)=sin(t)

Figure 3: Evolution and interaction of Eqs.(29)with the same parameters as Fig.2
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In fig.3, we can obtain the similar results. Fig.3 demonstrates that each soliton shape keeps invariant after in-
teraction, which denotes that the interaction is elasticwe. We can see that the solitons show a periodic property but
the solitons are not symmetrical in the t direction, and have the bell-shaped, parabolic, cubic or periodical-oscillating
shapes.

5. Conclusion

In this paper, Eqs.(1), the coupled nonlinear Schrödinger equation with variable coefficients, has been investigated.
Via modified Sine-Gordon equation method,some dark-bright soliton solutions and dark-dark soliton soiutions have
been obtained. Then, we have discussed the effects of a(t), which is the group velocity dispersion. For bright–dark
Soliton Solutions (27) and (29), we have chosen a(t) as the constant, linear, quadratic and trigonometric functions,
respectively, and the bell-shaped, parabolic, cubic and quasi-parabolic solitons have been obtained correspondingly, as
shown in figs.1 and 2. We also investigated the evolution and interaction between the two solutions, and obtained that
each solution shape keeps invariant after interaction and a periodic property in the t direction, as presented in fig.3. It
is revealed that the method provides an authoritative mathematical instrument for solving nonlinear wave equations in
mathematical physics and engineering problems.
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