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Abstract

In this paper, we introduce the system of general equilibrium problem (SGEP) and
new subgradient extragradient by using the concept of the set of solution of the
modified variational inequality problem introduced by3. Then, we establish and
prove weak and strong convergence theorem of the new subgradient extragradient
algorithm for finding the set of the solutions of the SGEP under some suitable con-
ditions of 𝛼𝑛 and 𝛽𝑛 with 𝛼𝑛 + 𝛽𝑛 ≤ 1. Moreover, we apply our main theorem to
prove weak and strong convergence theorems for finding solutions of the generalized
equilibrium problem, the system of equilibrium problem, the variational inequality
problem and the general system of variational inequality problem. In the last section,
we give three numerical examples to support our main result.
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1 INTRODUCTION

Throughout this article, let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖. Let 𝐶 be a nonempty closed
convex subset of 𝐻 .

The equilibrium problem is to find a point 𝑥 ∈ 𝐶

𝐹 (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶,

where 𝐹 ∶ 𝐶 ×𝐶 → ℝ is bifunction. The set of all solutions of the equilibrium problem is denoted by 𝐸𝑃 (𝐹 ). Many problems
in physic, optimization and economic are seeking some elements of 𝐸𝑃 (𝐹 ), see more detail in1,8. Over decades ago, there are
many researches modified the equilibrium problems, see for instance3,9.

For solving the equilibrium problems for a bifunction 𝐹 ∶ 𝐶×𝐶 → ℝ, let us assume that 𝐹 satisfies the following conditions:
(𝐴1) 𝐹 (𝑥, 𝑥) = 0, ∀𝑥 ∈ 𝐶 ,
(𝐴2) 𝐹 𝑖𝑠 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑒, i.𝑒., 𝐹 (𝑥, 𝑦) + 𝐹 (𝑦, 𝑥) ≤ 0, ∀𝑥, 𝑦 ∈ 𝐶 ,
(𝐴3) ∀𝑥, 𝑦, 𝑧 ∈ 𝐶 ,

lim
𝑡→0+

𝐹 (𝑡𝑧 + (1 − 𝑡)𝑥, 𝑦) ≤ 𝐹 (𝑥, 𝑦),
(𝐴4) ∀𝑥 ∈ 𝐶, 𝑦 → 𝐹 (𝑥, 𝑦) is convex and lower semicontinuous.

Blum and Oettli8 have proved the following lemma, which as a tool to solve equilibrium problems.

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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Lemma 1. (See8) Let 𝐶 be a nonempty closed convex subset of 𝐻 , and let 𝐹 be a bifunction of 𝐶 × 𝐶 into ℝ satisfying
(A1)-(A4). Let 𝑟 > 0 and 𝑥 ∈ 𝐻. Then, there exists 𝑧 ∈ 𝐶 such that

𝐹 (𝑧, 𝑦) + 1
𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑥 ∈ 𝐶.

Inspired and motivated by the concept of the 𝐸𝑃 (𝐹 ), we introduce the system of general equilibrium problem (SGEP), which
is to find (𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐶 , such that{

𝐹 (𝑥∗, 𝑦) + 1
𝑟
⟨𝑦 − 𝑥∗, 𝑥∗ − 𝑦∗ + 𝜆𝐴𝑦∗⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑄(𝑦∗, 𝑥) + 1
𝑟
⟨𝑥 − 𝑦∗, 𝑦∗ − 𝑥∗ + 𝛽𝐵𝑥∗⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(1)

where 𝐹 ,𝑄 ∶ 𝐶 ×𝐶 → ℝ are a bifunction and 𝐴,𝐵 ∶ 𝐶 → 𝐻 are mappings, 𝜆, 𝛽, 𝑟 > 0 are three constants. In particular, if we
put 𝐹 ≡ 𝑄 ≡ 0 and 𝐴 ≡ 𝐵, then the problem (1) reduces to finding (𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐶 such that{⟨𝜆𝐴𝑦∗ + 𝑥∗ − 𝑦∗, 𝑥 − 𝑥∗⟩ ≥ 0, ∀𝑥 ∈ 𝐶,⟨𝛽𝐴𝑥∗ + 𝑦∗ − 𝑥∗, 𝑥 − 𝑦∗⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(2)

which is introduced by Verma10, in 1999, and is called the new system of variational inequalities problem. Further, if we add
up the requirement that 𝑥∗ = 𝑦∗, then the problem (2) reduces to finding a point 𝑥∗ ∈ 𝐶 such that⟨𝐴(𝑥∗), 𝑥 − 𝑥∗⟩ ≥ 0, ∀𝑥 ∈ 𝐶, (3)

which is introduced by Lions and Stampacchia11, in 1964, and is called the variational inequality problem (VIP). The set of all
solutions of the variational inequality problem is denoted by 𝑉 𝐼(𝐶,𝐴). Numerous problems in physic, game theory, finance,
optimization and mechanics reduce to find an element of (3), see more detail in11,12,13,14.

In 2013, Kangtunyakarn3 modified the set of variational inequality as follows:

𝑉 𝐼(𝐶, 𝑎𝐴 + (1 − 𝑎)𝐵) = {𝑥 ∈ 𝐶 ∶ ⟨𝑦 − 𝑥, (𝑎𝐴 + (1 − 𝑎)𝐵)𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶, 𝑎 ∈ (0, 1)}, (4)

where 𝐴,𝐵 ∶ 𝐶 → 𝐻 be two mappings. In particular, if we put 𝐴 ≡ 𝐵, then the problem (3) is a special case of the problem (4)
and he proved a strong convergence theorem for finding a common element of the set of fixed point problems of infinite family
of strictly pseudo contractive mappings and the set of equilibrium problem and two set of variational inequality problems, which
is related to (4) under suitable condition, see more detail in3.

In 1953, Mann15 introduced Mann iteration and is defined as follows:{
𝑥0 ∈ 𝐻 arbitrary chosen,
𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑇𝑥𝑛, ∀𝑛 ≥ 0,

(5)

where 𝐶 is a nonempty closed convex subset of a normed space, 𝑇 ∶ 𝐶 → 𝐶 is a mapping and the sequence {𝛼𝑛} is in the
interval (0, 1). If 𝑇 is nonexpansive mapping (i.e., ‖𝑇𝑥 − 𝑇 𝑦‖ ≤ ‖𝑥 − 𝑦‖,∀𝑥, 𝑦 ∈ 𝐶) and some suitable condition of 𝛼𝑛 then
{𝑥𝑛} from algorithm (5) as only weakly converge to the set of fixed points of 𝑇 (i.e., 𝐹 (𝑇 ) = {𝑥 ∈ 𝐻 ∶ 𝑇𝑥 = 𝑥}). Thus,
many mathematicians have been trying to modify Mann’s iteration (5) and creat new iterative method to obtain their strong
convergence theorem, see more detail in16,17,18.

In 2000, Moudafi16 introduced the viscosity approximation method for nonexpansive mapping 𝑆 to prove {𝑥𝑛} converges
strongly to 𝑧 = 𝑃𝐹 (𝑆)𝑓 (𝑧) and the sequence {𝑥𝑛} generated by{

𝑥1 ∈ 𝐶 arbitrary chosen,
𝑥𝑛+1 =

1
1+𝜖𝑛

𝑆𝑥𝑛 +
𝜖𝑛

1+𝜖𝑛
𝑓 (𝑥𝑛), ∀𝑛 ∈ ℕ,

(6)

where {𝜖𝑛} ⊂ (0, 1) satisfies certain conditions, 𝑆 ∶ 𝐶 → 𝐶 is a nonexpansive mapping and 𝑓 ∶ 𝐶 → 𝐶 is a contraction (i.e.,
there exists 𝛼 ∈ (0, 1) such that ‖𝑓 (𝑥) − 𝑓 (𝑦)‖ ≤ 𝛼‖𝑥 − 𝑦‖,∀𝑥, 𝑦 ∈ 𝐶). Moreover, the viscosity approximation method for
nonexpansive mapping 𝑆 has been studied and developed in many reserchs, see previous studies in20,19. Notice that the sum of
coefficients 1

1+𝜖𝑛
and 𝜖𝑛

1+𝜖𝑛
in (6) is equal 1.

In 2017, Kanzow and Shehu21 proved the strong convergence for a modified inexact Krasnoselskii-Mann iteration, which the
sum of coefficients 𝛼𝑛, 𝛽𝑛 and 𝛿𝑛 in (7) less than or equal 1 as follows:

𝑥𝑛+1 = 𝛿𝑛𝑢 + 𝛼𝑛𝑥𝑛 + 𝛽𝑛𝑇𝑥𝑛 + 𝑟𝑛, ∀𝑛 ≥ 1, (7)
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where 𝑥1 ∈ 𝐻 , 𝑢 ∈ 𝐶 denotes a fixed vector, 𝑟𝑛 represents the residual, and the nonnegative real numbers 𝛼𝑛, 𝛽𝑛, 𝛿𝑛 are chosen
such that 𝛼𝑛+𝛽𝑛+𝛿𝑛 ≤ 1, 𝑛 ≥ 1, and 𝑇 ∶ 𝐻 → 𝐶 is a nonexpansive mapping. Then the sequence {𝑥𝑛} generated by (7) strongly
converges to a point in 𝐹 (𝑇 ), which is the nearest point projection of 𝑢 onto 𝐹 (𝑇 ). Observe that this theorem more general than
modified Halpern’s iterative scheme.

In 1976, Korpelevich22 proposed an algorithm for solving the VIP in Euclidean space, this method is called the Extragradient
Method (see also23). In each iteration of her algorithm, in order to get the next iterate 𝑥𝑘+1, two orthogonal projections onto
𝐶 are calculated, according to the following iterative step. Let {𝑥𝑘} and {𝑦𝑘} be the sequences generated by the following
extragradient algorithm: {

𝑦𝑘 = 𝑃𝐶 (𝑥𝑘 − 𝜏𝑓 (𝑥𝑘)),
𝑥𝑘+1 = 𝑃𝐶 (𝑥𝑘 − 𝜏𝑓 (𝑦𝑘)),

where 𝜏 is some positive number and 𝑃𝐶 denotes the Euclidean least distance projection onto 𝐶 .
In 2011, Censor et al.24 modified Korpelevich’s method22 by replacing the second projection onto the closed and convex

subset 𝐶 of Hilbert space with the one onto the subgradient half-space (𝑇𝑘). This method is called the subgradient extragradient
method. For the variational inequality, the subgradient extragradient is of the form⎧⎪⎪⎨⎪⎪⎩

𝑥0 ∈ 𝐻,
𝑦𝑘 = 𝑃𝐶 (𝑥𝑘 − 𝜏𝑓 (𝑥𝑘)),
𝑇𝑘 ∶= {𝑤 ∈ 𝐻|⟨(𝑥𝑘 − 𝜏𝑓 (𝑥𝑘)) − 𝑦𝑘, 𝑤 − 𝑦𝑘⟩ ≤ 0},
𝑥𝑘+1 = 𝑃𝑇𝑘(𝑥𝑘 − 𝜏𝑓 (𝑦𝑘)),

(8)

where 𝑓 ∶ 𝐻 → 𝐻 is Lipschitz continuous on 𝐶 with constant 𝐿 > 0 (i.e., ‖𝑓 (𝑥) − 𝑓 (𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖,∀𝑥, 𝑦 ∈ 𝐶) and
𝜏 ∈ (0, 1

𝐿
). Censor et al.24 proved that the {𝑥𝑛} generated by (8) converges weakly to a solution of the variational inequality and

used Lemma 2 for proof the strong convergence theorem of this iteration.

Lemma 2. (See25) Let 𝐻 be a real Hilbert space and let 𝐷 be a nonempty, closed and convex subset of 𝐻 . Let the sequence
{𝑥𝑘}∞𝑘=0 ⊂ 𝐻 be Fej�́�r-monotone with respect to 𝐷, i.e., for every 𝑢 ∈ 𝐷,‖𝑥𝑘+1 − 𝑢‖ ≤ ‖𝑥𝑘 − 𝑢‖, ∀𝑘 ≥ 0.

Then {𝑃𝐷(𝑥𝑘)}∞𝑘=0 converges strongly to some 𝑧 ∈ 𝐷.

Remark 1. Set 𝑇𝑘 generated by the set of solution of VIP.

Inspired and motivated by problem (4), Censor et al.24 and Kanzow and Shehu21, we now present the new subgradient
extragradient algorithm and the new iterative method for prove weak and strong convergence theorem of {𝑥𝑛} generated by the
following algorithm:

Algorithm 1.1. Given 𝑥1 ∈ 𝐶 , let the sequence {𝑥𝑛} and {𝑦𝑛} be define by⎧⎪⎨⎪⎩
𝑦𝑛 = 𝑃𝐶 (𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))𝑥𝑛,
𝑄𝑛 = {𝑧 ∈ 𝐻 ∶ ⟨(𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))𝑥𝑛 − 𝑦𝑛, 𝑦𝑛 − 𝑧⟩ ≥ 0},
𝑥𝑛+1 = 𝛼𝑛𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) + 𝛽𝑛𝜑(𝑥𝑛),
(9)

where 𝐴,𝐵,𝐴, 𝐵 ∶ 𝐶 → 𝐻 are 𝑎, 𝑏, �̄�, 𝛽-inverse strongly monotone, respectively, 𝑄,𝐹 ∶ 𝐶 × 𝐶 → ℝ are a bifunction
satisfying A1)-A4), the sequences {𝛼𝑛}, {𝛽𝑛} are in [0, 1] with 𝛼𝑛 + 𝛽𝑛 ≤ 1, for all 𝑛 ≥ 1, 𝜂 = min{𝑎, 𝑏}, 𝜆, 𝛽 ∈ (0, 2𝜂),
𝛾 ≤ �̄� = min{�̄�, 𝛽} and 𝑎 ∈ (0, 1). Define the mapping 𝜑 ∶ 𝐶 → 𝐶 by 𝜑(𝑥) = 𝑇 𝐹

𝑟 (𝐼 − 𝜆𝐴)𝑇𝑄
𝑟 (𝐼 − 𝛽𝐵)𝑥, where 𝑟, 𝛽, 𝜆 > 0,

for all 𝑥 ∈ 𝐶 , and 𝑇 𝐹
𝑟 , 𝑇𝑄

𝑟 define as same in Lemma 4 that is 𝑇 𝐹
𝑟 (𝑥) = {𝑧 ∈ 𝐶 ∶ 𝐹 (𝑧, 𝑦) + 1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0,∀𝑦 ∈ 𝐶} and

𝑇𝑄
𝑟 (𝑥) = {𝑧 ∈ 𝐶 ∶ 𝑄(𝑧, 𝑦) + 1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0,∀𝑦 ∈ 𝐶}.

Moreover, we give a lemma that is more comprehensive than Lemma 225, which important tool for proof the strong conver-
gence theorem of iteration {𝑥𝑛} generated by (9) show the next section.

The paper is therefore organized as follows: We first recall some basic definitions and we give a lemma, which is an important
tool for proof weak and strong convergence of our main theorem in Sect. 2. We prove weak and strong convergence theorem of
the new subgradient extragradient algorithm for finding the set of the solutions of the SGEP under some suitable conditions of
𝛼𝑛 and 𝛽𝑛 with 𝛼𝑛 + 𝛽𝑛 ≤ 1 in Sect. 3. An application, we apply our main theorem to prove weak and strong convergence theo-
rems for finding solutions of the generalized equilibrium problem, the system of equilibrium problem, the variational inequality
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problem and the general system of variational inequality problem in Sect. 4. We give three numerical examples to support our
main result in the last section.

2 PRELIMINARIES

We write 𝑥𝑘 ⇀ 𝑥 to indicate that the sequence {𝑥𝑘}∞𝑘=0 converges weakly to 𝑥 and 𝑥𝑘 → 𝑥 to indicate that the sequence
{𝑥𝑘}∞𝑘=0 converges strongly to 𝑥. For each point 𝑥 ∈ 𝐻 , there exists a unique nearest point in 𝐶 , denoted by 𝑃𝐶 (𝑥). That is,‖𝑥 − 𝑃𝐶 (𝑥)‖ ≤ ‖𝑥 − 𝑦‖, ∀𝑦 ∈ 𝐶.

The mapping 𝑃𝐶 ∶ 𝐻 → 𝐶 is called the metric projection of 𝐻 onto 𝐶 . It is well known that 𝑃𝐶 is a nonexpansive mapping of
𝐻 onto 𝐶 , i.e., ‖𝑃𝐶 (𝑥) − 𝑃𝐶 (𝑦)‖ ≤ ‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝐻.
The metric projection 𝑃𝐶 is characterized5 by the following two properties:

𝑃𝐶 (𝑥) ∈ 𝐶

and ⟨𝑥 − 𝑃𝐶 (𝑥), 𝑃𝐶 (𝑥) − 𝑦⟩ ≥ 0, ∀𝑥 ∈ 𝐻, 𝑦 ∈ 𝐶. (10)
and if 𝐶 is a hyperplane, then (10) becomes an equality. It follows that‖𝑥 − 𝑦‖2 ≥ ‖𝑥 − 𝑃𝐶 (𝑥)‖2 + ‖𝑦 − 𝑃𝐶 (𝑥)‖2, ∀𝑥 ∈ 𝐻, 𝑦 ∈ 𝐶.

Lemma 3. (See4) For a given 𝑧 ∈ 𝐻 and 𝑢 ∈ 𝐶 ,

𝑢 = 𝑃𝐶𝑧 ⇔ ⟨𝑢 − 𝑧, 𝑣 − 𝑢⟩ ≥ 0, ∀𝑣 ∈ 𝐶.

Furthermore, 𝑃𝐶 is a firmly nonexpansive mapping of 𝐻 onto 𝐶 .

Lemma 4. (See1) Assume that 𝐹 ∶ 𝐶 × 𝐶 → ℝ satisfies (A1)-(A4). For 𝑟 > 0 and 𝑥 ∈ 𝐻 , define a mapping 𝑇𝑟 ∶ 𝐻 → 𝐶as
follows:

𝑇𝑧(𝑥) = {𝑧 ∈ 𝐶 ∶ 𝐹 (𝑧, 𝑦) + 1
𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶},

for all 𝑧 ∈ 𝐻 . Then, the following hold:
(1) 𝑇𝑟 is single-valued,
(2) 𝑇𝑟 is firmly nonexpansive i.e.,‖𝑇𝑟(𝑥) − 𝑇𝑟(𝑦)‖2 ≤ ⟨𝑇𝑟(𝑥) − 𝑇𝑟(𝑦), 𝑥 − 𝑦⟩, ∀𝑥, 𝑦 ∈ 𝐻,

(3) 𝐹 (𝑇𝑟) = 𝐸𝑃 (𝐹 ),
(4) 𝐸𝑃 (𝐹 ) is closed and convex.

Lemma 5. (See21) Let 𝑋 be a real inner product space. Then:
(a) ‖𝑥 + 𝑦‖2 ≤ ‖𝑥‖2 + 2⟨𝑦, 𝑥 + 𝑦⟩, ∀𝑥, 𝑦 ∈ 𝑋.
(b) ‖𝑡𝑥 + 𝑠𝑦‖2 = 𝑡(𝑡 + 𝑠)‖𝑥‖2 + 𝑠(𝑡 + 𝑠)‖𝑦‖2 − 𝑠𝑡‖𝑥 − 𝑦‖2, ∀𝑥, 𝑦 ∈ 𝑋, ∀𝑠, 𝑡 ∈ ℝ.

Lemma 6. Let 𝐶 be a nonempty closed convex subset of a real Hilbert spaces and let 𝐹 ,𝑄 ∶ 𝐶 × 𝐶 → ℝ be a bifunction
satisfying (A1)-(A4). Let 𝑟 > 0, then the following equivalent.

(i) (𝑥∗, 𝑦∗) is a solution of (1),

(ii) 𝑥∗ is a fixed point of a mapping 𝜑 ∶ 𝐶 → 𝐶 defined by 𝜑(𝑥) = 𝑇 𝐹
𝑟 (𝐼 − 𝜆𝐴)𝑇𝑄

𝑟 (𝐼 − 𝛽𝐵)𝑥 for all 𝛽, 𝜆 > 0 and 𝑥 ∈ 𝐶 ,
where 𝑦∗ = 𝑇𝑄

𝑟 (𝐼 − 𝛽𝐵)𝑥∗.

Proof. Let the following conditions hold. (i)⇒(ii) Let (𝑥∗, 𝑦∗) be a solution of (1). For every 𝑥, 𝑦 ∈ 𝐶 , we obtain

𝐹 (𝑥∗, 𝑦) + 1
𝑟
⟨𝑦 − 𝑥∗, 𝑥∗ − 𝑦∗ + 𝜆𝐴𝑦∗⟩ ≥ 0,

𝑄(𝑦∗, 𝑥) + 1
𝑟
⟨𝑥 − 𝑦∗, 𝑦∗ − 𝑥∗ + 𝛽𝐵𝑥∗⟩ ≥ 0.
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From Lemma 4, we have
𝑇 𝐹
𝑟 (𝐼 − 𝜆𝐴)𝑦∗ = 𝑥∗, (11)

and
𝑇𝑄
𝑟 (𝐼 − 𝛽𝐵)𝑥∗ = 𝑦∗. (12)

From (11) and (12), we have 𝑥∗ = 𝑇 𝐹
𝑟 (𝐼 − 𝜆𝐴)𝑇𝑄

𝑟 (𝐼 − 𝛽𝐵)𝑥∗ = 𝜑(𝑥∗).
Hence 𝑥∗ ∈ 𝐹 (𝜑), where 𝑦∗ = 𝑇𝑄

𝑟 (𝐼 − 𝛽𝐵)𝑥∗.
(ii)⇒(i) Let 𝑥∗ ∈ 𝐹 (𝜑) and 𝑦∗ = 𝑇𝑄

𝑟 (𝐼 − 𝛽𝐵)𝑥∗, we get

𝑥∗ = 𝑇 𝐹
𝑟 (𝐼 − 𝜆𝐴)𝑇𝑄

𝑟 (𝐼 − 𝛽𝐵)𝑥∗ = 𝑇 𝐹
𝑟 (𝐼 − 𝜆𝐴)𝑦∗. (13)

From (13) and 𝑦∗ = 𝑇𝑄
𝑟 (𝐼 − 𝛽𝐵)𝑥∗, we have

𝐹 (𝑥∗, 𝑦) + 1
𝑟
⟨𝑦 − 𝑥∗, 𝑥∗ − 𝑦∗ + 𝜆𝐴𝑦∗⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑄(𝑦∗, 𝑥) + 1
𝑟
⟨𝑥 − 𝑦∗, 𝑦∗ − 𝑥∗ + 𝛽𝐵𝑥∗⟩ ≥ 0, ∀𝑥 ∈ 𝐶.

Then (𝑥∗, 𝑦∗) is a solution of (1).

Lemma 7. Let {𝑎𝑛}∞𝑛=0, {𝑏𝑛}
∞
𝑛=0 be sequences of nonnegative numbers satisfying

𝑎𝑛+1 ≤ 𝑎𝑛 + 𝑏𝑛, f𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 0.

(i) If
∞∑
𝑛=0

𝑏𝑛 < ∞, then lim
𝑛→∞

𝑎𝑛 exists.

(ii) If
∞∑
𝑛=0

𝑏𝑛 < ∞ and {𝑎𝑛}∞𝑛=0 has a subsequence converging to zero, then

lim
𝑛→∞

𝑎𝑛 = 0.

Lemma 8. (See3) Let 𝐶 be a nonempty closed convex subset of a real Hilbert space 𝐻 and let 𝐴,𝐵 ∶ 𝐶 → 𝐻 be 𝛼 and
𝛽-inverse strongly monotone mappings, respectively, with 𝛼, 𝛽 > 0 and 𝑉 𝐼(𝐶,𝐴)

⋂
𝑉 𝐼(𝐶,𝐵) ≠ ∅. Then

𝑉 𝐼(𝐶, 𝑎𝐴 + (1 − 𝑎)𝐵) = 𝑉 𝐼(𝐶,𝐴)
⋂

𝑉 𝐼(𝐶,𝐵), ∀𝑎 ∈ (0, 1).

Furthermore if 0 < 𝛾 < min{2𝛼, 2𝛽}, we have 𝐼 − 𝛾(𝑎𝐴 + (1 − 𝑎)𝐵) is a nonexpansive mapping.

Remark 2. It is well known that (𝑎𝐴 + (1 − 𝑎)𝐵) is 𝜂-inverse strongly monotone, where 𝜂 = min{𝛼, 𝛽}.

Lemma 9. Let 𝐶 be a nonempty closed convex subset of a real Hilbert spaces 𝐻 and let 𝐴,𝐵 ∶ 𝐶 → 𝐻 be �̄�, 𝛽-inverse strongly
monotone, respectively. Let 𝑥∗ ∈ 𝑉 𝐼(𝐶,𝐴) ∩ 𝑉 𝐼(𝐶,𝐵), 𝛾 ≤ �̄� = 𝑚𝑖𝑛{�̄�, 𝛽} and �̄� ∈ (0, 1), we have‖𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑥∗‖2 ≤‖𝑥𝑛 − 𝑥∗‖2 − (1 −
𝛾
�̄�
)‖𝑥𝑛 − 𝑦𝑛‖2 − (1 −

𝛾
�̄�
)‖𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑦𝑛‖2,
where sequence {𝑥𝑛} and {𝑦𝑛} generated by Algorithm 1.1.

Proof. Let 𝑥∗ ∈ 𝑉 𝐼(𝐶,𝐴) ∩ 𝑉 𝐼(𝐶,𝐵).
By property of 𝑃𝐶 , we have‖𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑥∗‖2 ≤‖𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛 − 𝑥∗‖2
− ‖𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)‖2
=‖𝑥𝑛 − 𝑥∗‖2 − 2𝛾⟨𝑥𝑛 − 𝑥∗, (�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛⟩ + 𝛾2‖(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛‖2
−
(‖𝑥𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)‖2 + 𝛾2‖(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛‖2
− 2𝛾⟨𝑥𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛), (�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛⟩)
=‖𝑥𝑛 − 𝑥∗‖2 − ‖𝑥𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)‖2
− 2𝛾⟨𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑥∗, (�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛⟩. (14)
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From monotonicity of (�̄�𝐴 + (1 − �̄�)𝐵), we have

0 ≤⟨(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛 − (�̄�𝐴 + (1 − �̄�)𝐵)𝑥∗, 𝑦𝑛 − 𝑥∗⟩
=⟨(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛, 𝑦𝑛 − 𝑥∗⟩ − ⟨(�̄�𝐴 + (1 − �̄�)𝐵)𝑥∗, 𝑦𝑛 − 𝑥∗⟩
≤⟨(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛, 𝑦𝑛 − 𝑥∗⟩
=⟨(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛, 𝑦𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)⟩ + ⟨(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛, 𝑃𝑄𝑛
(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑥∗⟩.

It implies that⟨(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛, 𝑥∗ − 𝑃𝑄𝑛
(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)⟩ ≤ ⟨(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛, 𝑦𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)⟩. (15)

From (14) and (15), we get‖𝑃𝑄𝑛
(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑥∗‖2 ≤‖𝑥𝑛 − 𝑥∗‖2 − ‖𝑥𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)‖2
− 2𝛾⟨𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑥∗, (�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛⟩
≤‖𝑥𝑛 − 𝑥∗‖2 − ‖𝑥𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)‖2
+ 2𝛾⟨(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛, 𝑦𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)⟩
=‖𝑥𝑛 − 𝑥∗‖2 − ‖𝑥𝑛 − 𝑦𝑛‖2 − ‖𝑦𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)‖2
− 2⟨𝑥𝑛 − 𝑦𝑛, 𝑦𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)⟩
+ 2𝛾⟨(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛, 𝑦𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)⟩
=‖𝑥𝑛 − 𝑥∗‖2 − ‖𝑥𝑛 − 𝑦𝑛‖2 − ‖𝑦𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)‖2
+ 2⟨𝑦𝑛 − 𝑥𝑛 + 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛, 𝑦𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)⟩
=‖𝑥𝑛 − 𝑥∗‖2 − ‖𝑥𝑛 − 𝑦𝑛‖2 − ‖𝑦𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)‖2
+ 2⟨𝑥𝑛 − 𝑦𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛, 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑦𝑛⟩
=‖𝑥𝑛 − 𝑥∗‖2 − ‖𝑥𝑛 − 𝑦𝑛‖2 − ‖𝑦𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)‖2
+ 2⟨(𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))𝑥𝑛 − 𝑦𝑛, 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑦𝑛⟩
+ 2⟨𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛, 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑦𝑛⟩
≤‖𝑥𝑛 − 𝑥∗‖2 − ‖𝑥𝑛 − 𝑦𝑛‖2 − ‖𝑦𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)‖2
+ 2⟨𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛, 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑦𝑛⟩
≤‖𝑥𝑛 − 𝑥∗‖2 − ‖𝑥𝑛 − 𝑦𝑛‖2 − ‖𝑦𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)‖2
+ 2𝛾‖(�̄�𝐴 + (1 − �̄�)𝐵)𝑥𝑛 − (�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛‖‖𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑦𝑛‖
≤‖𝑥𝑛 − 𝑥∗‖2 − ‖𝑥𝑛 − 𝑦𝑛‖2 − ‖𝑦𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)‖2
+ 2(

𝛾
�̄�
)‖𝑥𝑛 − 𝑦𝑛‖‖𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑦𝑛‖
≤‖𝑥𝑛 − 𝑥∗‖2 − ‖𝑥𝑛 − 𝑦𝑛‖2 − ‖𝑦𝑛 − 𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛)‖2
+

𝛾
�̄�
(‖𝑥𝑛 − 𝑦𝑛‖2 + ‖𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑦𝑛‖2)
=‖𝑥𝑛 − 𝑥∗‖2 − (1 −

𝛾
�̄�
)‖𝑥𝑛 − 𝑦𝑛‖2 − (1 −

𝛾
�̄�
)‖𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑦𝑛‖2.
Lemma 10. (See4) Let 𝐻 be a Hilbert space, let 𝐶 be a nonempty closed convex subset of 𝐻 and let A be a mapping of 𝐶 into
𝐻 . Let 𝑢 ∈ 𝐶 . Then for 𝜆 > 0,

𝑢 = 𝑃𝐶 (𝐼 − 𝜆𝐴)𝑢 ⇔ 𝑢 ∈ 𝑉 𝐼(𝐶,𝐴),
where 𝑃𝐶 is the metric projection of 𝐻 onto 𝐶 .

Now, we present the following Lemma 11 for proving strong convergence theorem.
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Lemma 11. Let 𝐻 be a real Hilbert space and let 𝑆 be a nonempty closed convex subset of 𝐻 . Let {𝑥𝑛} be a sequence in 𝐻 .
Suppose that, for all 𝑢 ∈ 𝑆, ‖𝑥𝑛+1 − 𝑢‖ ≤ ‖𝑥𝑛 − 𝑢‖ + 𝑏𝑛,

for every 𝑛 = 0, 1, 2, ... and
∞∑
𝑛=1

𝑏𝑛 < ∞. Then {𝑃𝑆𝑥𝑛} converges strongly to some 𝑧 ∈ 𝑆.

Proof. Let 𝜖 > 0. From Lemma 7, then lim
𝑛→∞

‖𝑥𝑛 − 𝑢‖ exists and we have that {‖𝑥𝑛 − 𝑢‖} is bounded, for all 𝑢 ∈ 𝑆.
Put 𝑢𝑛 = 𝑃𝑆𝑥𝑛. We get

‖𝑢𝑛+1 − 𝑢𝑛‖2 =2‖𝑥𝑛+1 − 𝑢𝑛+1‖2 + 2‖𝑥𝑛+1 − 𝑢𝑛‖2 − 4‖𝑥𝑛+1 − 1
2
(𝑢𝑛+1 + 𝑢𝑛)‖2

≤2‖𝑥𝑛+1 − 𝑢𝑛+1‖2 + 2‖𝑥𝑛+1 − 𝑢𝑛‖2 − 4‖𝑥𝑛+1 − 𝑢𝑛+1‖2
=2‖𝑥𝑛+1 − 𝑢𝑛‖2 − 2‖𝑥𝑛+1 − 𝑢𝑛+1‖2
≤2‖𝑥𝑛 − 𝑢𝑛‖2 − 2‖𝑥𝑛+1 − 𝑢𝑛+1‖2 + 2𝑏𝑛. (16)

It implies that ‖𝑥𝑛+1 − 𝑢𝑛+1‖2 ≤ ‖𝑥𝑛 − 𝑢𝑛‖2 + 𝑏𝑛.
From Lemma 7, then {‖𝑥𝑛 − 𝑢𝑛‖} there exists.
By (16), we have lim

𝑛→∞
‖𝑢𝑛+1 − 𝑢𝑛‖ = 0, then there exist 𝑁 ∈ ℕ, such that ‖𝑢𝑛+1 − 𝑢𝑛‖ ≤ 𝜖

2𝑛
, for all 𝑛 ≥ 𝑁 .

Thus, for every 𝑝 ∈ ℕ, we have

‖𝑢𝑛+𝑝 − 𝑢𝑛‖ ≤ 𝑛+𝑝−1∑
𝑘=𝑛

‖𝑢𝑘+1 − 𝑢𝑘‖ ≤ 𝜖
𝑛+𝑝−1∑
𝑘=𝑛

1
2𝑘

≤ 𝜖( 1
2𝑛−1

) < 𝜖. (17)

From (17), we have that {𝑢𝑛} is a cauchy sequence. Hence, {𝑢𝑛} converges strongly to some 𝑧 ∈ 𝑆.

3 MAIN RESULTS

In this section, we prove weak and strong convergence of the new subgradient extragradient algorithm for finding the set of
the solutions of the SGEP.

Theorem 1. Let 𝐶 be a nonempty closed convex subset of a real Hilbert spaces 𝐻 and let 𝐴,𝐵,𝐴, 𝐵 ∶ 𝐶 → 𝐻 be 𝑎, 𝑏, �̄�, 𝛽-
inverse strongly monotone, respectively. Let 𝑄,𝐹 ∶ 𝐶 × 𝐶 → ℝ be a bifunction satisfying A1)-A4). Define the mapping
𝜑 ∶ 𝐶 → 𝐶 by 𝜑(𝑥) = 𝑇 𝐹

𝑟 (𝐼 − 𝜆𝐴)𝑇𝑄
𝑟 (𝐼 − 𝛽𝐵)𝑥, where 𝑟, 𝛽, 𝜆 > 0 and for all 𝑥 ∈ 𝐶 , 𝑇 𝐹

𝑟 , 𝑇𝑄
𝑟 define as same in Lemma 4 that

is 𝑇 𝐹
𝑟 (𝑥) = {𝑧 ∈ 𝐶 ∶ 𝐹 (𝑧, 𝑦) + 1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0,∀𝑦 ∈ 𝐶} and 𝑇𝑄

𝑟 (𝑥) = {𝑧 ∈ 𝐶 ∶ 𝑄(𝑧, 𝑦) + 1
𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0,∀𝑦 ∈ 𝐶}.

Assume that 𝜉 = 𝑉 𝐼(𝐶,𝐴) ∩ 𝑉 𝐼(𝐶,𝐵) ∩ 𝐹 (𝜑) ≠ ∅. For given 𝑥1 ∈ 𝐶 and let the sequence {𝑥𝑛} and {𝑦𝑛} be generated by⎧⎪⎨⎪⎩
𝑦𝑛 = 𝑃𝐶 (𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))𝑥𝑛,
𝑄𝑛 = {𝑧 ∈ 𝐻 ∶ ⟨(𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))𝑥𝑛 − 𝑦𝑛, 𝑦𝑛 − 𝑧⟩ ≥ 0},
𝑥𝑛+1 = 𝛼𝑛𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) + 𝛽𝑛𝜑(𝑥𝑛),
(18)

where sequence {𝛼𝑛}, {𝛽𝑛} ⊂ [0, 1] with 𝛼𝑛 + 𝛽𝑛 ≤ 1, for all 𝑛 ∈ ℕ and 𝜂 = min{𝑎, 𝑏}, 𝜆, 𝛽 ∈ (0, 2𝜂), 𝛾 ≤ �̄� = 𝑚𝑖𝑛{�̄�, 𝛽},
�̄� ∈ (0, 1) satisfying the following conditions hold:

(i) 0 < 𝑐 ≤ 𝛽𝑛 ≤ 𝑑 < 1 for all 𝑛 ∈ ℕ,

(ii)
∞∑
𝑛=1

(1 − 𝛼𝑛 − 𝛽𝑛) < ∞.

Then, the sequence {𝑥𝑛}∞𝑛=0 converges weakly to 𝑧 ∈ 𝜉 and furthermore,

𝑧 = lim
𝑛→∞

𝑃𝜉(𝑥𝑛).
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Proof. First, we show that 𝜑 is a nonexpansive mapping for every 𝜆, 𝛽 ∈ (0, 2𝜂), where 𝜂 = min{𝑎, 𝑏}. Let 𝑥, 𝑦 ∈ 𝐶 . Since 𝐴
is 𝑎-inverse strongly monotone, we have‖(𝐼 − 𝜆𝐴)𝑥 − (𝐼 − 𝜆𝐴)𝑦‖2 =‖𝑥 − 𝑦 − 𝜆(𝐴𝑥 − 𝐴𝑦)‖2

=‖𝑥 − 𝑦‖2 − 2𝜆⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ + 𝜆2‖𝐴𝑥 − 𝐴𝑦‖2
≤‖𝑥 − 𝑦‖2 − 2𝜆𝑎‖𝐴𝑥 − 𝐴𝑦‖2 + 𝜆2‖𝐴𝑥 − 𝐴𝑦‖2
=‖𝑥 − 𝑦‖2 − 𝜆(2𝑎 − 𝜆)‖𝐴𝑥 − 𝐴𝑦‖2
≤‖𝑥 − 𝑦‖2 − 𝜆(2𝜂 − 𝜆)‖𝐴𝑥 − 𝐴𝑦‖2
≤‖𝑥 − 𝑦‖2. (19)

Thus (𝐼 − 𝜆𝐴) is a nonexpansive mapping. By using the same method as (19), we have (𝐼 − 𝛽𝐵) is a nonexpansive mapping.
Hence, 𝑇 𝐹

𝑟 (𝐼−𝜆𝐴) and 𝑇𝑄
𝑟 (𝐼−𝛽𝐵) are nonexpansive mappings. It is easy to see that the mapping 𝜑 is a nonexpansive mapping.

Let 𝑥∗ ∈ 𝑉 𝐼(𝐶,𝐴) ∩ 𝑉 𝐼(𝐶,𝐵) ∩ 𝐹 (𝜑) and 𝛾 ≤ �̄� = 𝑚𝑖𝑛{�̄�, 𝛽}. We divide the proof of this result into 3 steps.
Step 1. Show that {𝑥𝑛}∞𝑛=0 is bounded.
From the definition of 𝑥𝑛, Lemma 5 and Lemma 9, we have‖𝑥𝑛+1 − 𝑥∗‖2 =‖𝛼𝑛𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) + 𝛽𝑛𝜑(𝑥𝑛) − 𝑥∗‖2
=‖𝛼𝑛(𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑥∗) + 𝛽𝑛(𝜑(𝑥𝑛) − 𝑥∗) − (1 − 𝛼𝑛 − 𝛽𝑛)𝑥∗‖2
≤‖𝛼𝑛(𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑥∗) + 𝛽𝑛(𝜑(𝑥𝑛) − 𝑥∗)‖2 − 2(1 − 𝛼𝑛 − 𝛽𝑛)⟨𝑥∗, 𝑥𝑛+1 − 𝑥∗⟩
≤‖𝛼𝑛(𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑥∗) + 𝛽𝑛(𝜑(𝑥𝑛) − 𝑥∗)‖2 + 2(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑥∗‖‖𝑥𝑛+1 − 𝑥∗‖
=𝛼𝑛(𝛼𝑛 + 𝛽𝑛)‖𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑥∗‖2 + 𝛽𝑛(𝛼𝑛 + 𝛽𝑛)‖𝜑(𝑥𝑛) − 𝑥∗‖2
− 𝛼𝑛𝛽𝑛‖𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝜑(𝑥𝑛)‖2 + 2(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑥∗‖‖𝑥𝑛+1 − 𝑥∗‖
≤𝛼𝑛(𝛼𝑛 + 𝛽𝑛)‖𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑥∗‖2 + 𝛽𝑛(𝛼𝑛 + 𝛽𝑛)‖𝑥𝑛 − 𝑥∗‖2
+ 2(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑥∗‖‖𝑥𝑛+1 − 𝑥∗‖

≤𝛼𝑛(𝛼𝑛 + 𝛽𝑛)
(‖𝑥𝑛 − 𝑥∗‖2 − (1 −

𝛾
�̄�
)‖𝑥𝑛 − 𝑦𝑛‖2 − (1 −

𝛾
�̄�
)‖𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) − 𝑦𝑛‖2)
+ 𝛽𝑛(𝛼𝑛 + 𝛽𝑛)‖𝑥𝑛 − 𝑥∗‖2 + 2(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑥∗‖‖𝑥𝑛+1 − 𝑥∗‖

≤𝛼𝑛(𝛼𝑛 + 𝛽𝑛)‖𝑥𝑛 − 𝑥∗‖2 + 𝛽𝑛(𝛼𝑛 + 𝛽𝑛)‖𝑥𝑛 − 𝑥∗‖2 + 2(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑥∗‖‖𝑥𝑛+1 − 𝑥∗‖
=(𝛼𝑛 + 𝛽𝑛)2‖𝑥𝑛 − 𝑥∗‖2 + 2(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑥∗‖‖𝑥𝑛+1 − 𝑥∗‖
≤(𝛼𝑛 + 𝛽𝑛)2‖𝑥𝑛 − 𝑥∗‖2 + (1 − 𝛼𝑛 − 𝛽𝑛)‖𝑥∗‖2 + (1 − 𝛼𝑛 − 𝛽𝑛)‖𝑥𝑛+1 − 𝑥∗‖2,

which implies that ‖𝑥𝑛+1 − 𝑥∗‖2 ≤ ‖𝑥𝑛 − 𝑥∗‖2 + 1 − 𝛼𝑛 − 𝛽𝑛
𝛼𝑛 + 𝛽𝑛

‖𝑥∗‖2, (20)

there exists 𝑀 > 0, such that ‖𝑥𝑛+1 − 𝑥∗‖2 ≤ ‖𝑥𝑛 − 𝑥∗‖2 + (1 − 𝛼𝑛 − 𝛽𝑛)𝑀‖𝑥∗‖2. (21)
By (21) and Lemma 7, then lim

𝑛→∞
‖𝑥𝑛 − 𝑥∗‖, ∀𝑥∗ ∈ 𝜉 exists. So, we have the sequence {𝑥𝑛}∞𝑛=0 is bounded.

Step 2. Show that lim
𝑛→∞

‖𝜑(𝑥𝑛) − 𝑥𝑛‖ = 0.

Let 𝑊𝑛 = 𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛.
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From the definition of 𝑥𝑛, Lemma 5 and Lemma 9, we have‖𝑥𝑛+1−𝑥∗‖2
=‖𝛼𝑛(𝑃𝑄𝑛

𝑊𝑛 − 𝑥∗) + 𝛽𝑛(𝜑(𝑥𝑛) − 𝑥∗) − (1 − 𝛼𝑛 − 𝛽𝑛)𝑥∗‖2
≤‖𝛼𝑛(𝑃𝑄𝑛

𝑊𝑛 − 𝑥∗) + 𝛽𝑛(𝜑(𝑥𝑛) − 𝑥∗)‖2 − 2(1 − 𝛼𝑛 − 𝛽𝑛)⟨𝑥∗, 𝑥𝑛+1 − 𝑥∗⟩
≤‖𝛼𝑛(𝑃𝑄𝑛

𝑊𝑛 − 𝑥∗) + 𝛽𝑛(𝜑(𝑥𝑛) − 𝑥∗)‖2 + 2(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑥∗‖‖𝑥𝑛+1 − 𝑥∗‖
≤𝛼𝑛(𝛼𝑛 + 𝛽𝑛)‖𝑃𝑄𝑛

𝑊𝑛 − 𝑥∗‖2 + 𝛽𝑛(𝛼𝑛 + 𝛽𝑛)‖𝑥𝑛 − 𝑥∗‖2 − 𝛼𝑛𝛽𝑛‖𝑃𝑄𝑛
𝑊𝑛 − 𝜑(𝑥𝑛)‖2 + 2(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑥∗‖‖𝑥𝑛+1 − 𝑥∗‖

≤𝛼𝑛(𝛼𝑛 + 𝛽𝑛)
(‖𝑥𝑛 − 𝑥∗‖2 − (1 −

𝛾
�̄�
)‖𝑥𝑛 − 𝑦𝑛‖2 − (1 −

𝛾
�̄�
)‖𝑃𝑄𝑛

𝑊𝑛 − 𝑦𝑛‖2) + 𝛽𝑛(𝛼𝑛 + 𝛽𝑛)‖𝑥𝑛 − 𝑥∗‖2
− 𝛼𝑛𝛽𝑛‖𝑃𝑄𝑛

𝑊𝑛 − 𝜑(𝑥𝑛)‖2 + 2(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑥∗‖‖𝑥𝑛+1 − 𝑥∗‖
=(𝛼𝑛 + 𝛽𝑛)2‖𝑥𝑛 − 𝑥∗‖2 − 𝛼𝑛(𝛼𝑛 + 𝛽𝑛)(1 −

𝛾
�̄�
)
(‖𝑥𝑛 − 𝑦𝑛‖2 + ‖𝑃𝑄𝑛

𝑊𝑛 − 𝑦𝑛‖2)
− 𝛼𝑛𝛽𝑛‖𝑃𝑄𝑛

𝑊𝑛 − 𝜑(𝑥𝑛)‖2 + 2(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑥∗‖‖𝑥𝑛+1 − 𝑥∗‖,
which yields that

𝛼𝑛(𝛼𝑛 + 𝛽𝑛)(1 −
𝛾
�̄�
)
(‖𝑥𝑛 − 𝑦𝑛‖2 + ‖𝑃𝑄𝑛

𝑊𝑛 − 𝑦𝑛‖2) + 𝛼𝑛𝛽𝑛‖𝑃𝑄𝑛
𝑊𝑛 − 𝜑(𝑥𝑛)‖2

≤ ‖𝑥𝑛 − 𝑥∗‖2 − ‖𝑥𝑛+1 − 𝑥∗‖2 + 2(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑥∗‖‖𝑥𝑛+1 − 𝑥∗‖. (22)

From (22), lim
𝑛→∞

(‖𝑥𝑛 − 𝑥∗‖2 − ‖𝑥𝑛+1 − 𝑥∗‖2) = 0 and condition (ii), we have

lim
𝑛→∞

‖𝑥𝑛 − 𝑦𝑛‖ = lim
𝑛→∞

‖𝑃𝑄𝑛
𝑊𝑛 − 𝑦𝑛‖ = lim

𝑛→∞
‖𝑃𝑄𝑛

𝑊𝑛 − 𝜑(𝑥𝑛)‖ = 0. (23)

Since, ‖𝑥𝑛 − 𝜑(𝑥𝑛)‖ ≤ ‖𝑥𝑛 − 𝑦𝑛‖ + ‖𝑦𝑛 − 𝑃𝑄𝑛
𝑊𝑛‖ + ‖𝑃𝑄𝑛

𝑊𝑛 − 𝜑(𝑥𝑛)‖,
and (23), we get

lim
𝑛→∞

‖𝜑(𝑥𝑛) − 𝑥𝑛‖ = 0. (24)

Step 3. Show that {𝑥𝑛}∞𝑛=0 converges weakly to 𝑧 ∈ 𝜉 and 𝑧 = lim
𝑛→∞

𝑃𝜉(𝑥𝑛).
Therefore it has at least one weak accumulation point. If �̄� is a weak limit point of some subsequence {𝑥𝑛𝑘}

∞
𝑘=0 of {𝑥𝑛}∞𝑛=0, then

𝑥𝑛𝑘 ⇀ �̄� as 𝑘 → ∞.
Assume that �̄� ≠ 𝜑(�̄�). By nonexpansiveness of 𝜑, (24) and Opial’s property, we have

lim inf
𝑘→∞

‖𝑥𝑛𝑘 − �̄�‖ < lim inf
𝑘→∞

‖𝑥𝑛𝑘 − 𝜑(�̄�)‖
≤ lim inf

𝑘→∞
(‖𝑥𝑛𝑘 − 𝜑(𝑥𝑛𝑘)‖ + ‖𝜑(𝑥𝑛𝑘) − 𝜑(�̄�)‖)

≤ lim inf
𝑘→∞

(‖𝑥𝑛𝑘 − 𝜑(𝑥𝑛𝑘)‖ + ‖𝑥𝑛𝑘 − �̄�‖)
≤ lim inf

𝑘→∞
‖𝑥𝑛𝑘 − �̄�‖.

This is a contradiction, then we have
�̄� ∈ 𝐹 (𝜑). (25)

Assume that �̄� ≠ 𝑃𝐶 (𝐼 − 𝛾(�̄�𝐴+ (1− �̄�)𝐵))�̄�. By nonexpansiveness of 𝑃𝐶 (𝐼 − 𝛾(�̄�𝐴+ (1− �̄�)𝐵)), (23) and Opial’s property,
we have

lim inf
𝑘→∞

‖𝑥𝑛𝑘 − �̄�‖ < lim inf
𝑘→∞

‖𝑥𝑛𝑘 − 𝑃𝐶 (𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))�̄�‖
≤ lim inf

𝑘→∞
(‖𝑥𝑛𝑘 − 𝑃𝐶 (𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))𝑥𝑛𝑘‖

+ ‖𝑃𝐶 (𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))𝑥𝑛𝑘 − 𝑃𝐶 (𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))�̄�‖)
≤ lim inf

𝑘→∞
(‖𝑥𝑛𝑘 − 𝑃𝐶 (𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))𝑥𝑛𝑘‖ + ‖𝑥𝑛𝑘 − �̄�‖)

≤ lim inf
𝑘→∞

‖𝑥𝑛𝑘 − �̄�‖.
This is a contradiction, then we have

�̄� ∈ 𝐹 (𝑃𝐶 (𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))). (26)
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By (26), Lemma 8 and Lemma 10, we get
�̄� ∈ 𝑉 𝐼(𝐶,𝐴) ∩ 𝑉 𝐼(𝐶,𝐵). (27)

From (25) and (27), we have
�̄� ∈ 𝜉.

In order to show that the entire sequence {𝑥𝑛} weakly converges to �̄�, assume 𝑥𝑛𝑘 ⇀ �̄�′ as 𝑘 → ∞, with �̄�′ ≠ �̄� and
�̄�′ ∈ 𝑉 𝐼(𝐶,𝐴) ∩ 𝑉 𝐼(𝐶,𝐵) ∩ 𝐹 (𝜑).
By the Opial condition, we have

lim
𝑛→∞

‖𝑥𝑛 − �̄�‖ = lim inf
𝑘→∞

‖𝑥𝑛𝑘 − �̄�‖
< lim inf

𝑘→∞
‖𝑥𝑛𝑘 − �̄�′‖

= lim
𝑛→∞

‖𝑥𝑛 − �̄�′‖
= lim inf

𝑘→∞
‖𝑥𝑛𝑘 − �̄�′‖

< lim inf
𝑘→∞

‖𝑥𝑛𝑘 − �̄�‖
= lim

𝑛→∞
‖𝑥𝑛 − �̄�‖,

and this is a contradiction, thus �̄�′ = �̄�. This implies that the sequence {𝑥𝑛}∞𝑛=0 converges weakly to the same point �̄� ∈ 𝜉.
Finally, if we take

𝑢𝑛 = 𝑃𝜉𝑥𝑛, (28)
then by (21) and Lemma 11, we see that {𝑃𝜉𝑥𝑛}∞𝑛=0 converges strongly to some 𝑧 ∈ 𝜉. From (28) and Lemma 3, we get⟨𝑥𝑛 − 𝑢𝑛, 𝑢𝑛 − �̄�⟩ ≥ 0, ∀�̄� ∈ 𝜉.

Take 𝑛 → ∞, we also have ⟨�̄� − 𝑧, 𝑧 − �̄�⟩ ≥ 0,
and hence 𝑧 = �̄�. Therefore 𝑢𝑛 converges strongly to �̄� ∈ 𝜉, this completes the proof.

The following Corollary 1 is a special case of Theorem 1 if we put 𝐴 ≡ 𝐵 in Theorem 1.

Corollary 1. Let 𝐶 be a nonempty closed convex subset of a real Hilbert spaces 𝐻 and let 𝐴,𝐵,𝐴 ∶ 𝐶 → 𝐻 be 𝑎, 𝑏, �̄�-inverse
strongly monotone, respectively. Let 𝑄,𝐹 ∶ 𝐶 × 𝐶 → ℝ be a bifunction satisfying A1)-A4). Define the mapping 𝜑 ∶ 𝐶 → 𝐶
by 𝜑(𝑥) = 𝑇 𝐹

𝑟 (𝐼 − 𝜆𝐴)𝑇𝑄
𝑟 (𝐼 − 𝛽𝐵)𝑥, where 𝑟, 𝛽, 𝜆 > 0 and for all 𝑥 ∈ 𝐶 , 𝑇 𝐹

𝑟 , 𝑇𝑄
𝑟 define as same in Lemma 4 that is

𝑇 𝐹
𝑟 (𝑥) = {𝑧 ∈ 𝐶 ∶ 𝐹 (𝑧, 𝑦) + 1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0,∀𝑦 ∈ 𝐶} and 𝑇𝑄

𝑟 (𝑥) = {𝑧 ∈ 𝐶 ∶ 𝑄(𝑧, 𝑦) + 1
𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0,∀𝑦 ∈ 𝐶}.

Assume that 𝜉 = 𝑉 𝐼(𝐶,𝐴) ∩ 𝑉 𝐼(𝐶,𝐵) ∩ 𝐹 (𝜑) ≠ ∅. For given 𝑥1 ∈ 𝐶 and let the sequence {𝑥𝑛} and {𝑦𝑛} be generated by⎧⎪⎨⎪⎩
𝑦𝑛 = 𝑃𝐶 (𝑥𝑛 − 𝛾𝐴(𝑥𝑛)),
𝑄𝑛 = {𝑧 ∈ 𝐻 ∶ ⟨𝑥𝑛 − 𝛾𝐴(𝑥𝑛) − 𝑦𝑛, 𝑦𝑛 − 𝑧⟩ ≥ 0},
𝑥𝑛+1 = 𝛼𝑛𝑃𝑄𝑛

(𝑥𝑛 − 𝛾𝐴(𝑦𝑛)) + 𝛽𝑛𝜑(𝑥𝑛),
(29)

where sequence {𝛼𝑛}, {𝛽𝑛} ⊂ [0, 1] with 𝛼𝑛 + 𝛽𝑛 ≤ 1, for all 𝑛 ∈ ℕ and 𝜂 = min{𝑎, 𝑏}, 𝜆, 𝛽 ∈ (0, 2𝜂), 𝛾 ∈ (0, 2�̄�) satisfying the
following conditions hold:

(i) 0 < 𝑐 ≤ 𝛽𝑛 ≤ 𝑑 < 1 for all 𝑛 ∈ ℕ,

(ii)
∞∑
𝑛=1

(1 − 𝛼𝑛 − 𝛽𝑛) < ∞.

Then, the sequence {𝑥𝑛}∞𝑛=0 converges weakly to 𝑧 ∈ 𝜉 and furthermore,

𝑧 = lim
𝑛→∞

𝑃𝜉(𝑥𝑛).

Proof. Putting 𝐴 ≡ 𝐵 in Theorem 1, then we obtain the desired conclusion.
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4 APPLICATION

4.1 The generalized equilibrium and the system of equilibrium problems.
In this section, we obtain the following weak and strong convergence theorems for finding solutions of the generalized

equilibrium and the system of equilibrium problems.
Put 𝐴 ≡ 𝐵 ≡ 0, in (1), the SGEP is reduced to find (𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐶 such that{

𝐹 (𝑥∗, 𝑦) + 1
𝑟
⟨𝑦 − 𝑥∗, 𝑥∗ − 𝑦∗⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑄(𝑦∗, 𝑥) + 1
𝑟
⟨𝑥 − 𝑦∗, 𝑦∗ − 𝑥∗⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(30)

(30) is called the system of equilibrium problem.
If 𝐴 ≡ 𝐵, 𝐹 ≡ 𝑄, 𝑟 = 1, 𝑥∗ = 𝑦∗ and 𝜆 = 𝛽 = 1, in (1), then the SGEP reduced to find 𝑥∗ ∈ 𝐶 such that

𝐹 (𝑥∗, 𝑦) + ⟨𝐴𝑥∗, 𝑦 − 𝑥∗⟩ ≥ 0, ∀𝑦 ∈ 𝐶, (31)

where 𝐴 ∶ 𝐶 → 𝐻 is mapping, the problem (31) is called the generalized equilibrium problem. The set of solutions of
(31) is denoted by 𝐸𝑃 (𝐹 ,𝐴). The problem (30) and (31) covers various disciplines such as optimization problems, variational
inequalities and the Nash equilibrium problem in noncooperative games, see literature in1,6.

Theorem 2. Let 𝐶 be a nonempty closed convex subset of a real Hilbert spaces 𝐻 and let 𝐴,𝐵 ∶ 𝐶 → 𝐻 be �̄�, 𝛽-inverse
strongly monotone, respectively. Let 𝑄,𝐹 ∶ 𝐶 × 𝐶 → ℝ be a bifunction satisfying A1)-A4). Define the mapping �̄� ∶ 𝐶 → 𝐶
by �̄�(𝑥) = 𝑇 𝐹

𝑟 (𝑇𝑄
𝑟 𝑥), where 𝑟 > 0 and for all 𝑥 ∈ 𝐶 , 𝑇 𝐹

𝑟 , 𝑇𝑄
𝑟 define as same in Lemma 4 that is 𝑇 𝐹

𝑟 (𝑥) = {𝑧 ∈ 𝐶 ∶
𝐹 (𝑧, 𝑦) + 1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0,∀𝑦 ∈ 𝐶} and 𝑇𝑄

𝑟 (𝑥) = {𝑧 ∈ 𝐶 ∶ 𝑄(𝑧, 𝑦) + 1
𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0,∀𝑦 ∈ 𝐶}. Assume that

𝜉 = 𝑉 𝐼(𝐶,𝐴) ∩ 𝑉 𝐼(𝐶,𝐵) ∩ 𝐹 (�̄�) ≠ ∅. For given 𝑥1 ∈ 𝐶 and let the sequence {𝑥𝑛} and {𝑦𝑛} be generated by⎧⎪⎨⎪⎩
𝑦𝑛 = 𝑃𝐶 (𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))𝑥𝑛,
𝑄𝑛 = {𝑧 ∈ 𝐻 ∶ ⟨(𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))𝑥𝑛 − 𝑦𝑛, 𝑦𝑛 − 𝑧⟩ ≥ 0},
𝑥𝑛+1 = 𝛼𝑛𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) + 𝛽𝑛�̄�(𝑥𝑛),
(32)

where sequence {𝛼𝑛}, {𝛽𝑛} ⊂ [0, 1] with 𝛼𝑛 + 𝛽𝑛 ≤ 1, for all 𝑛 ∈ ℕ, �̄� ∈ (0, 1) and 𝛾 ≤ �̄� = 𝑚𝑖𝑛{�̄�, 𝛽} satisfying the following
conditions hold:

(i) 0 < 𝑐 ≤ 𝛽𝑛 ≤ 𝑑 < 1 for all 𝑛 ∈ ℕ,

(ii)
∞∑
𝑛=1

(1 − 𝛼𝑛 − 𝛽𝑛) < ∞.

Then, the sequence {𝑥𝑛}∞𝑛=0 converges weakly to 𝑧 ∈ 𝜉 and furthermore,

𝑧 = lim
𝑛→∞

𝑃𝜉(𝑥𝑛).

Proof. If we put 𝐴 ≡ 𝐵 ≡ 0, in Theorem 1. The conclusion of Theorem 2 can be obtained from Theorem 1.

Theorem 3. Let 𝐶 be a nonempty closed convex subset of a real Hilbert spaces 𝐻 and let 𝐴,𝐴,𝐵 ∶ 𝐶 → 𝐻 be 𝑎, �̄�, 𝛽-inverse
strongly monotone, respectively. Let 𝐹 ∶ 𝐶 × 𝐶 → ℝ be a bifunction satisfying A1)-A4). Assume that 𝜉 = 𝑉 𝐼(𝐶,𝐴) ∩
𝑉 𝐼(𝐶,𝐵) ∩ 𝐸𝑃 (𝐹 ,𝐴) ≠ ∅. For given 𝑥1 ∈ 𝐶 and let the sequence {𝑥𝑛}, {𝑢𝑛} and {𝑦𝑛} be generated by⎧⎪⎪⎨⎪⎪⎩

𝐹 (𝑢𝑛, 𝑦) + ⟨𝐴𝑢, 𝑦 − 𝑢𝑛⟩ + 1
𝑟
⟨𝑦 − 𝑢𝑛, 𝑢𝑛 − 𝑥𝑛⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑦𝑛 = 𝑃𝐶 (𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))𝑥𝑛,
𝑄𝑛 = {𝑧 ∈ 𝐻 ∶ ⟨(𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))𝑥𝑛 − 𝑦𝑛, 𝑦𝑛 − 𝑧⟩ ≥ 0},
𝑥𝑛+1 = 𝛼𝑛𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) + 𝛽𝑛𝑢𝑛,

(33)

where sequence {𝛼𝑛}, {𝛽𝑛} ⊂ [0, 1] with 𝛼𝑛 + 𝛽𝑛 ≤ 1, for all 𝑛 ∈ ℕ, 𝑟 > 0, �̄� ∈ (0, 1) and 𝛾 ≤ �̄� = 𝑚𝑖𝑛{�̄�, 𝛽} satisfying the
following conditions hold:

(i) 0 < 𝑐 ≤ 𝛽𝑛 ≤ 𝑑 < 1 for all 𝑛 ∈ ℕ,
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(ii)
∞∑
𝑛=1

(1 − 𝛼𝑛 − 𝛽𝑛) < ∞.

Then, the sequence {𝑥𝑛}∞𝑛=0 converges weakly to 𝑧 ∈ 𝜉 and furthermore,

𝑧 = lim
𝑛→∞

𝑃𝜉(𝑥𝑛).

Proof. If we put 𝐴 ≡ 𝐵, 𝐹 ≡ 𝑄 and 𝜆 = 𝛽, in Theorem 1, then we obtain the desired conclusion.

4.2 The variational inequality and the general system of variational inequality problems
In this section, we obtain the following weak and strong convergence theorems for finding solutions of the variational inequal-

ity and the general system of variational inequality problems.
In 2008, Ceng et al.7 introduced the general system of variational inequalities problem (GSVIP), which is to find (𝑥∗, 𝑦∗) ∈

𝐶 × 𝐶 such that ⟨𝜆𝐴𝑦∗ + 𝑥∗ − 𝑦∗, 𝑥 − 𝑥∗⟩ ≥ 0, ∀𝑥 ∈ 𝐶,⟨𝜇𝐵𝑥∗ + 𝑦∗ − 𝑥∗, 𝑥 − 𝑦∗⟩ ≥ 0, ∀𝑥 ∈ 𝐶, (34)

where 𝐴,𝐵 ∶ 𝐶 → 𝐻 are two mappings and 𝜆, 𝜇 > 0 are two constants. Further, if we put 𝐴 ≡ 𝐵 and 𝑥∗ = 𝑦∗, then the problem
(34) reduces to the variational inequality 𝑉 𝐼(𝐶,𝐴).

Remark 3. Put 𝐹 ≡ 𝑄 ≡ 0 in (1), we have (1) is reduced to GSVIP. So, (34) is a spacial case of SGEP.

Lemma 12. (See7) For given 𝑥∗, 𝑦∗ ∈ 𝐶 , (𝑥∗, 𝑦∗) is a solution of problem (34) if and only if 𝑥∗ is a fixed point of the mapping
𝐺 ∶ 𝐶 → 𝐶 defined by

𝐺(𝑥) = 𝑃𝐶
(
𝑃𝐶 (𝑥 − 𝜇𝐵𝑥) − 𝜆𝐴𝑃𝐶 (𝑥 − 𝜇𝐵𝑥)

)
, ∀𝑥 ∈ 𝐶,

where 𝑦∗ = 𝑃𝐶 (𝑥∗ − 𝜇𝐵𝑥∗).

By use Theorem 1, we give a theorem involving to find the solution of the GSVIP as follows

Theorem 4. Let 𝐶 be a nonempty closed convex subset of a real Hilbert spaces 𝐻 and let 𝐴,𝐵,𝐴, 𝐵 ∶ 𝐶 → 𝐻 be 𝑎, 𝑏, �̄�, 𝛽-
inverse strongly monotone, respectively. Define the mapping 𝜑′ ∶ 𝐶 → 𝐶 by 𝜑′(𝑥) = 𝑃𝐶 (𝐼 − 𝜆𝐴)𝑃𝐶 (𝐼 − 𝛽𝐵)𝑥 for all 𝛽, 𝜆 > 0,
∀𝑥 ∈ 𝐶 . Assume that 𝜉 = 𝑉 𝐼(𝐶,𝐴)∩𝑉 𝐼(𝐶,𝐵)∩𝐹 (𝜑′) ≠ ∅. For given 𝑥1 ∈ 𝐶 and let the sequence {𝑥𝑛} and {𝑦𝑛} be generated
by ⎧⎪⎨⎪⎩

𝑦𝑛 = 𝑃𝐶 (𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))𝑥𝑛,
𝑄𝑛 = {𝑧 ∈ 𝐻 ∶ ⟨(𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))𝑥𝑛 − 𝑦𝑛, 𝑦𝑛 − 𝑧⟩ ≥ 0},
𝑥𝑛+1 = 𝛼𝑛𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) + 𝛽𝑛𝜑′(𝑥𝑛),
(35)

where sequence {𝛼𝑛}, {𝛽𝑛} ⊂ [0, 1] with 𝛼𝑛 + 𝛽𝑛 ≤ 1, for all 𝑛 ∈ ℕ, �̄� ∈ (0, 1), 𝜂 = min{𝑎, 𝑏}, 𝛾 ≤ �̄� = 𝑚𝑖𝑛{�̄�, 𝛽} and
𝜆, 𝛽 ∈ (0, 2𝜂) satisfying the following conditions hold:

(i) 0 < 𝑐 ≤ 𝛽𝑛 ≤ 𝑑 < 1 for all 𝑛 ∈ ℕ,

(ii)
∞∑
𝑛=1

(1 − 𝛼𝑛 − 𝛽𝑛) < ∞.

Then, the sequence {𝑥𝑛}∞𝑛=0 converges weakly to 𝑧 ∈ 𝜉 and furthermore,

𝑧 = lim
𝑛→∞

𝑃𝜉(𝑥𝑛).

Proof. From Lemma 12 and putting 𝐹 ≡ 𝑄 ≡ 0, in Theorem 1, then we obtain the desired conclusion.

Next, we prove the fixed point problem, which uses our main theorem.

Remark 4. Let 𝑇 ∶ 𝐶 → 𝐶 be nonexpansive mapping with 𝐹 (𝑇 ) ≠ ∅. Then 𝐹 (𝑇 ) = 𝑉 𝐼(𝐶, 𝐼 − 𝑇 ).
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Corollary 2. Let 𝐶 be a nonempty closed convex subset of a real Hilbert spaces 𝐻 and let 𝑇𝑖 ∶ 𝐶 → 𝐶 be a nonexpansive
mappings, for all 𝑖 = 1, 2, 3, 4. Define the mapping 𝜑∗ ∶ 𝐶 → 𝐶 by 𝜑∗(𝑥) = 𝑃𝐶 (𝐼−𝜆(𝐼−𝑇1))𝑃𝐶 (𝐼−𝛽(𝐼−𝑇2))𝑥, where 𝛽, 𝜆 > 0

and for all 𝑥 ∈ 𝐶 . Assume that 𝜉 =
4⋂
𝑖=1

𝐹 (𝑇𝑖) ≠ ∅. For given 𝑥1 ∈ 𝐶 and let the sequence {𝑥𝑛} and {𝑦𝑛} be generated by

⎧⎪⎨⎪⎩
𝑦𝑛 = 𝑃𝐶 (𝐼 − 𝛾(�̄�(𝐼 − 𝑇3) + (1 − �̄�)(𝐼 − 𝑇4)))𝑥𝑛,
𝑄𝑛 = {𝑧 ∈ 𝐻 ∶ ⟨(𝐼 − 𝛾(�̄�(𝐼 − 𝑇3) + (1 − �̄�)(𝐼 − 𝑇4)))𝑥𝑛 − 𝑦𝑛, 𝑦𝑛 − 𝑧⟩ ≥ 0},
𝑥𝑛+1 = 𝛼𝑛𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�(𝐼 − 𝑇3) + (1 − �̄�)(𝐼 − 𝑇4))𝑦𝑛) + 𝛽𝑛𝜑∗(𝑥𝑛),
(36)

where sequence {𝛼𝑛}, {𝛽𝑛} ⊂ [0, 1] with 𝛼𝑛 + 𝛽𝑛 ≤ 1, for all 𝑛 ∈ ℕ, �̄� ∈ (0, 1) and 𝜆, 𝛽, 𝛾 ∈ (0, 1
2
) satisfying the following

conditions hold:

(i) 0 < 𝑐 ≤ 𝛽𝑛 ≤ 𝑑 < 1 for all 𝑛 ∈ ℕ,

(ii)
∞∑
𝑛=1

(1 − 𝛼𝑛 − 𝛽𝑛) < ∞.

Then, the sequence {𝑥𝑛}∞𝑛=0 converges weakly to 𝑧 ∈ 𝜉 and furthermore,

𝑧 = lim
𝑛→∞

𝑃𝜉(𝑥𝑛).

Proof. The conclusion of Corollary 2 can be obtained from Theorem 4 and Remark 4.

Corollary 3. Let 𝐶 be a nonempty closed convex subset of a real Hilbert spaces 𝐻 and let 𝐴,𝐴,𝐵 ∶ 𝐶 → 𝐻 be 𝑎, �̄�, 𝛽-inverse
strongly monotone, respectively. Assume that 𝜉 = 𝑉 𝐼(𝐶,𝐴)∩𝑉 𝐼(𝐶,𝐵)∩𝑉 𝐼(𝐶,𝐴) ≠ ∅. For given 𝑥1 ∈ 𝐶 and let the sequence
{𝑥𝑛} and {𝑦𝑛} be generated by⎧⎪⎨⎪⎩

𝑦𝑛 = 𝑃𝐶 (𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))𝑥𝑛,
𝑄𝑛 = {𝑧 ∈ 𝐻 ∶ ⟨(𝐼 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵))𝑥𝑛 − 𝑦𝑛, 𝑦𝑛 − 𝑧⟩ ≥ 0},
𝑥𝑛+1 = 𝛼𝑛𝑃𝑄𝑛

(𝑥𝑛 − 𝛾(�̄�𝐴 + (1 − �̄�)𝐵)𝑦𝑛) + 𝛽𝑛𝑃𝐶 (𝐼 − 𝜆𝐴)𝑥𝑛,
(37)

where sequence {𝛼𝑛}, {𝛽𝑛} ⊂ [0, 1] with 𝛼𝑛 + 𝛽𝑛 ≤ 1, for all 𝑛 ∈ ℕ, 𝜆 ∈ (0, 2𝑎), �̄� ∈ (0, 1) and 𝛾 ≤ �̄� = 𝑚𝑖𝑛{�̄�, 𝛽} satisfying the
following conditions hold:

(i) 0 < 𝑐 ≤ 𝛽𝑛 ≤ 𝑑 < 1 for all 𝑛 ∈ ℕ,

(ii)
∞∑
𝑛=1

(1 − 𝛼𝑛 − 𝛽𝑛) < ∞.

Then, the sequence {𝑥𝑛}∞𝑛=0 converges weakly to 𝑧 ∈ 𝜉 and furthermore,

𝑧 = lim
𝑛→∞

𝑃𝜉(𝑥𝑛).

Proof. If we put 𝐴 ≡ 𝐵 and 𝜆 = 𝛽, in Theorem 4, then we obtain the desired conclusion.

5 NUMERICAL

In this section, we give the following example to support our main theorem.

Example 1. Let ℝ be the set of real numbers, and let ⟨⋅, ⋅⟩ ∶ ℝ2 × ℝ2 → ℝ be an inner product defined by ⟨x, y⟩ = x ⋅ y =
𝑥1 ⋅ 𝑦1 + 𝑥2 ⋅ 𝑦2, for all x = (𝑥1, 𝑥2) ∈ ℝ2, y = (𝑦1, 𝑦2) ∈ ℝ2 and a usual norm ‖ ⋅ ‖ ∶ ℝ2 → ℝ be defined by ‖x‖ =

√
𝑥21 + 𝑥22

where x = (𝑥1, 𝑥2) ∈ ℝ2. Let 𝐻 = ℝ2, 𝐶 = [−100, 100] × [−100, 100]. Let 𝐴,𝐵,𝐴, 𝐵 be mappings from 𝐶 to ℝ2 defined by
𝐴x = ( 𝑥1

2
, 2𝑥2

3
), 𝐵x = ( 𝑥1

3
, 𝑥2

4
), 𝐴x = ( 𝑥1

3
, 𝑥2

3
) and 𝐵x = ( 𝑥1

4
, 𝑥2

4
), ∀x ∈ 𝐶 . Let the mapping 𝑄,𝐹 ∶ ℝ2 ×ℝ2 → ℝ be defined by

𝐹 (x, y) =
−(𝑥1)2 − (𝑥2)2 + (𝑦1)2 + (𝑦2)2

4
, ∀x = (𝑥1, 𝑥2) ∈ ℝ2, y = (𝑦1, 𝑦2) ∈ ℝ2,
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and
𝑄(x, y) =

−(𝑥1)2 − (𝑥2)2 + (𝑦1)2 + (𝑦2)2

5
, ∀x = (𝑥1, 𝑥2) ∈ ℝ2, y = (𝑦1, 𝑦2) ∈ ℝ2.

Let 𝑟, 𝛽, 𝜆 = 1, the sequence 𝑥∗ = (𝑥∗1, 𝑥
∗
2), 𝑦

∗ = (𝑦∗1, 𝑦
∗
2) and 𝑦 = (𝑦1, 𝑦2)

0 ≤𝐹 (𝑥∗, 𝑦) + ⟨𝑦 − 𝑥∗, 𝑥∗ − (𝐼 − 𝐴)𝑦∗⟩
=
−(𝑥1)2 − (𝑥2)2 + (𝑦1)2 + (𝑦2)2

4
+ ⟨(𝑦1 − 𝑥∗1, 𝑦2 − 𝑥∗2), (

2𝑥∗1 − 𝑦∗1
2

,
3𝑥∗2 − 𝑦∗2

3
)⟩

=
−(𝑥1)2 − (𝑥2)2 + (𝑦1)2 + (𝑦2)2

4
+ (𝑦1 − 𝑥∗1)(

2𝑥∗1 − 𝑦∗1
2

) + (𝑦2 − 𝑥∗2)(
3𝑥∗2 − 𝑦∗2

3
)

=

(
3(𝑦1)2 + (12𝑥∗1 − 6𝑦∗1)𝑦1 − 15(𝑥∗1)

2 + 6𝑥∗1𝑦
∗
1

12

)
+

(
3(𝑦2)2 + (12𝑥∗2 − 4𝑦∗2)𝑦2 − 15(𝑥∗2)

2 + 4𝑥∗2𝑦
∗
2

12

)
=𝐺1(𝑦1) + 𝐺2(𝑦2).

Let 𝐺1(𝑦1) =

(
3(𝑦1)2+(12𝑥∗1−6𝑦

∗
1)𝑦1−15(𝑥

∗
1)

2+6𝑥∗1𝑦
∗
1

12

)
and 𝐺2(𝑦2) =

(
3(𝑦2)2+(12𝑥∗2−4𝑦

∗
2)𝑦2−15(𝑥

∗
2)

2+4𝑥∗2𝑦
∗
2

12

)
. 𝐺1(𝑦1) and 𝐺2(𝑦2) are quadratic

functions with coefficients 𝑎1 = 1
4
, 𝑏1 = 𝑥∗1 −

𝑦∗1
2

, and 𝑐1 = −5(𝑥∗1)
2

4
+ 𝑥∗1𝑦

∗
1

2
of 𝐺1(𝑦1) and coefficients 𝑎2 = 1

4
, 𝑏2 = 𝑥∗2 −

𝑦∗2
3

, and

𝑐2 =
−5(𝑥∗2)

2

4
+ 𝑥∗2𝑦

∗
2

3
of 𝐺2(𝑦2), respectively. Determine the discriminant Δ1 of 𝐺1 as follows:

Δ1 =𝑏21 − 4𝑎1𝑐1

=(𝑥∗1 −
𝑦∗1
2
)2 − 4

(1
4

)(−5(𝑥∗1)2
4

+
𝑥∗1𝑦

∗
1

2

)
=(

3𝑥∗1 − 𝑦∗1
2

)2.

We know that 𝐺1(𝑦1) ≥ 0, for all 𝑧 ∈ ℝ. If it has most one solution in ℝ, then Δ1 ≤ 0. So, we obtain 𝑥∗1 =
𝑦∗1
3

. Next, we determine
the discriminant Δ2 of 𝐺2 by using the same method as above, we obtain 𝑥∗2 =

2𝑦∗2
9

. That is 𝑇 𝐹
𝑟 (𝐼 −𝜆𝐴)𝑦∗ = ( 𝑦

∗
1

3
, 2𝑦

∗
2

9
). After that,

we find the solution of 𝑦∗ = (𝑦∗1, 𝑦
∗
2) in this inequality 0 ≤ 𝑄(𝑦∗, 𝑧) + ⟨𝑧 − 𝑦∗, 𝑦∗ − (𝐼 − 𝐵)𝑥∗⟩. By using the same method as

𝑇 𝐹
𝑟 (𝐼 − 𝜆𝐴)𝑦∗, we obtain 𝑇𝑄

𝑟 (𝐼 − 𝛽𝐵)𝑥∗ = ( 10𝑥
∗
1

21
, 15𝑥

∗
2

28
). That is 𝜑(𝑥) = 𝑇 𝐹

𝑟 (𝐼 − 𝜆𝐴)𝑇𝑄
𝑟 (𝐼 − 𝛽𝐵)𝑥 = 𝑇 𝐹

𝑟 (𝐼 − 𝜆𝐴)( 10𝑥1
21

, 15𝑥2
28

) =
( 10𝑥1

63
, 5𝑥2

42
).

Let 𝑥1 = (𝑥11, 𝑥
2
1) and 𝑦1 = (𝑦11, 𝑦

2
1) ∈ ℝ2. The sequences {𝑥𝑛} and {𝑦𝑛} are generated by (18), where 𝜂, �̄�, 𝛾 = 1, �̄� = 1

2
,

𝛼𝑛 =
1
𝑛
− 1

𝑛2
and 𝛽𝑛 = 1− 1

𝑛
, for all 𝑛 ∈ ℕ. From the definition of 𝐴,𝐵,𝐴, 𝐵 and 𝜑, we have 𝑉 𝐼(𝐶,𝐴)∩𝑉 𝐼(𝐶,𝐵)∩𝐹 (𝜑) = (0, 0).

From Theorem 1, we can conclude that the sequence {𝑥𝑛} and {𝑦𝑛} converges strongly to (0, 0). For each 𝑛 ∈ ℕ, we can rewrite
(18) as follows:

𝑦𝑛 =𝑃𝐶 (𝐼 − (1
2
(𝐴) + 1

2
(𝐵)))𝑥𝑛,

𝑄𝑛 ={𝑧 ∈ 𝐻 ∶ ⟨(𝐼 − (1
2
(𝐴) + 1

2
(𝐵)))𝑥𝑛 − 𝑦𝑛, 𝑦𝑛 − 𝑧⟩ ≥ 0},

𝑥𝑛+1 =(
1
𝑛
− 1

𝑛2
)𝑃𝑄𝑛

(𝑥𝑛 − (1
2
(𝐴) + 1

2
(𝐵))𝑦𝑛) + (1 − 1

𝑛
)𝜑(𝑥𝑛),

where 𝑃𝐶 (𝑥1, 𝑥2) = (max{min{𝑥1, 100},−100},max{min{𝑥2, 100},−100}).
The table 1 shows the values of {𝑥𝑛} and {𝑦𝑛} with 𝑥1 = (−10, 10) and 𝑛 = 𝑁 = 20.
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TABLE 1 The values of {𝑥𝑛} and {𝑦𝑛} with 𝑥1 = (−10, 10) and 𝑛 = 𝑁 = 20

n 𝑥𝑛 = (𝑥1𝑛, 𝑥
2
𝑛 ) 𝑦𝑛 = (𝑦1𝑛, 𝑦

2
𝑛 )

1 (-10.0000,10.0000) (-7.0833,7.0833)
2 (0.0000,0.0000) (0.0000,0.0000)
3 (0.0000,0.0000) (0.0000,0.0000)
⋮ ⋮ ⋮
10 (0.0000,0.0000) (0.0000,0.0000)
⋮ ⋮ ⋮
18 (0.0000,0.0000) (0.0000,0.0000)
19 (0.0000,0.0000) (0.0000,0.0000)
20 (0.0000,0.0000) (0.0000,0.0000)

FIGURE 1 The convergence of {𝑥𝑛} and {𝑦𝑛} with 𝑥1 = (−10, 10) and 𝑛 = 𝑁 = 20

Remark 5. If we choose 𝐴 ≡ 𝐵 in Example 1, we can rewrite (29) as follows:

𝑦𝑛 =𝑃𝐶 (𝑥𝑛 − 𝐴(𝑥𝑛)),

𝑄𝑛 ={𝑧 ∈ 𝐻 ∶ ⟨𝑥𝑛 − 𝐴(𝑥𝑛) − 𝑦𝑛, 𝑦𝑛 − 𝑧⟩ ≥ 0},

𝑥𝑛+1 =(
1
𝑛
− 1

𝑛2
)𝑃𝑄𝑛

(𝑥𝑛 − 𝐴(𝑦𝑛)) + (1 − 1
𝑛
)𝜑(𝑥𝑛),

where 𝑃𝐶 (𝑥1, 𝑥2) = (max{min{𝑥1, 100},−100},max{min{𝑥2, 100},−100}). From Corollary 1, we can conclude that the
sequence {𝑥𝑛} and {𝑦𝑛} converges strongly to (0, 0).

The table 2 shows the values of {𝑥𝑛} and {𝑦𝑛} with 𝑥1 = (−10, 10) and 𝑛 = 𝑁 = 20.

TABLE 2 The values of {𝑥𝑛} and {𝑦𝑛} with 𝑥1 = (−10, 10) and 𝑛 = 𝑁 = 20

n 𝑥𝑛 = (𝑥1𝑛, 𝑥
2
𝑛 ) 𝑦𝑛 = (𝑦1𝑛, 𝑦

2
𝑛 )

1 (-10.0000,10.0000) (-6.6667,6.6667)
2 (0.0000,0.0000) (0.0000,0.0000)
3 (0.0000,0.0000) (0.0000,0.0000)
⋮ ⋮ ⋮
10 (0.0000,0.0000) (0.0000,0.0000)
⋮ ⋮ ⋮
18 (0.0000,0.0000) (0.0000,0.0000)
19 (0.0000,0.0000) (0.0000,0.0000)
20 (0.0000,0.0000) (0.0000,0.0000)
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FIGURE 2 The convergence of {𝑥𝑛} and {𝑦𝑛} with 𝑥1 = (−10, 10) and 𝑛 = 𝑁 = 20

Example 2. In this example, we use the same mappings in Example 1. Let the sequence {𝑥𝑛} and {𝑦𝑛} be generated by (18),
where 𝛼𝑛 =

1
𝑛2

and 𝛽𝑛 = 1− 1
𝑛2

for all 𝑛 ∈ ℕ. From the definition of 𝐴,𝐵,𝐴, 𝐵 and 𝜑, we have 𝑉 𝐼(𝐶,𝐴) ∩ 𝑉 𝐼(𝐶,𝐵) ∩ 𝐹 (𝜑) =
(0, 0). We can conclude that the sequence {𝑥𝑛} and {𝑦𝑛} converges strongly to (0, 0). For each 𝑛 ∈ ℕ, we can rewrite (18) as
follows:

𝑦𝑛 =𝑃𝐶 (𝐼 − (1
2
(𝐴) + 1

2
(𝐵)))𝑥𝑛,

𝑄𝑛 ={𝑧 ∈ 𝐻 ∶ ⟨(𝐼 − (1
2
(𝐴) + 1

2
(𝐵)))𝑥𝑛 − 𝑦𝑛, 𝑦𝑛 − 𝑧⟩ ≥ 0},

𝑥𝑛+1 =(
1
𝑛2

)𝑃𝑄𝑛
(𝑥𝑛 − (1

2
(𝐴) + 1

2
(𝐵))𝑦𝑛) + (1 − 1

𝑛2
)𝜑(𝑥𝑛),

where 𝑃𝐶 (𝑥1, 𝑥2) = (max{min{𝑥1, 100},−100},max{min{𝑥2, 100},−100}).
The table 3 shows the values of {𝑥𝑛} and {𝑦𝑛} with 𝑥1 = (−10, 10) and 𝑛 = 𝑁 = 20.

TABLE 3 The values of {𝑥𝑛} and {𝑦𝑛} with 𝑥1 = (−10, 10) and 𝑛 = 𝑁 = 20

n 𝑥𝑛 = (𝑥1𝑛, 𝑥
2
𝑛 ) 𝑦𝑛 = (𝑦1𝑛, 𝑦

2
𝑛 )

1 (-10.0000,10.0000) (-7.0833,7.0833)
2 (-7.9340,7.9340) (-5.6199,5.6199)
3 (-2.5182,2.2821) (-1.7838,1.6165)
⋮ ⋮ ⋮
10 (0.0000,0.0000) (0.0000,0.0000)
⋮ ⋮ ⋮
18 (0.0000,0.0000) (0.0000,0.0000)
19 (0.0000,0.0000) (0.0000,0.0000)
20 (0.0000,0.0000) (0.0000,0.0000)

FIGURE 3 The convergence of {𝑥𝑛} and {𝑦𝑛} with 𝑥1 = (−10, 10) and 𝑛 = 𝑁 = 20
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Conclusion
1. Theorem 1 guarantees the convergence of {𝑥𝑛} and {𝑦𝑛} in Example 1.
2. Corollary 1 guarantees the convergence of {𝑥𝑛} and {𝑦𝑛} in Remark 5.
3. The convergence of {𝑥𝑛} and {𝑦𝑛} in an Example 1 is faster than the convergence of {𝑥𝑛} and {𝑦𝑛} in Example 2.
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