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Abstract

The stability of positronium negative ion embedded in non-ideal classical plasmas
has been investigated theoretically within the framework of Rayleigh-Ritz variational
method by computing its ground state energy quite accurately. A pseudopotential,
derived from a solution of Bogolyubovs hierarchy equations, has been used to describe
interactions among the charged particles in plasma. A large basis set is utilized to
compute accurately various quantities, such as binding energy, cusp values, annihilation
rate, associated with the ground state of the ion. A detailed study has been made on
the effects of non-ideality of plasma on those quantities. In particular, special emphasis
is given to determine the ranges of plasma screening parameters within which the ion
remains stable.
Keywords: positronium negative ion, stability, annihilation rate, non-ideal plasma,
pseudopotential.

1 Introduction

An electron (e−) and its anti-particle (positron, e+), interacting with Coulomb potential
(CP) can form bound states. The resulting bound states is called positronium atom (Ps).
This atom resembles hydrogen atom, except the reduced mass is half of the hydrogen atom,
which leads to the doubling of first Bohr radius and halving the energy levels of Ps than of
the hydrogen atom. Another e− can be attached weakly to the ground state of Ps to form
what is known as positronium negative ion (Ps−). This ion exists only in the ground state
(1S) which is stable against disassociation into an e− and Ps, but unstable against e++e−

annihilation. As the ion consists of three leptons (e−, e−, e+) of equal mass, it provides
an ideal platform for testing quantum three-body problems. The stability of Ps− was first
discussed by Wheeler [1] by proposing its formation through the interaction of a photon with
atomic electrons. Subsequently Mills [2] observed this ion by using a beam foil method of
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production. Since its observation, the ion has been drawing the attention of both theorists
and experimentalists due to its applicability in various branches of physics, such as solid
state physics, astrophysics, plasma physics including modern communication devices [3].
A number of theoretical investigations has been performed so far to study various aspects
of Ps−. Particular mention may be made of the works attempting to calculate accurately
the ground state energy [[4]-[12]], annihilation rate [[11]-[14]], resonance states [[15]-[19]],
photodetachment cross section [[20]-[23]], polarizability [[24]-[26]] etc. At the same time,
several experiments were also performed to study the properties of Ps− [[27]-[34]]. These
have been well documented in the review article of Nagashima [35].

It is well known that an atom or an ion behaves differently, when it is embedded in finite
density plasma at a given temperature. The plasma screening alters the interaction potentials
of the constituent charged particles of the embedded atom. As a result, stability and other
structural properties, such as energy levels, line shapes, ionization potential, transitions, line
merging etc of the embedded atom may suffer considerable changes in contrast to a free atom
[[36]-[38]]. Studies of those changes are important for interpreting data for astrophysical, laser
induced and ultra-cold plasmas [[39]-[43]].

Screened potential in plasma depends on the state of plasma, and in few cases it can be
approximated in closed forms. The ratio of mean inter-particle interaction and the mean
kinetic energy of the thermal motion, called the coupling parameter γ, serves to characterise
the state of plasma. If γ = 0, plasma is called ideal plasma (in strict sense). For such plasmas,
the average distance between particles is large enough so that their mean interaction can
be neglected. With the increase in plasma density, average distance between particles starts
diminishing, leading γ to increase gradually. When γ ̸= 0, plasma is called non-ideal plasma
[44]. Thus γ serves as a measure of the non-ideality of plasma. So, γ is also called non-ideal
plasma parameter. When γ ≪ 1 (weak limit of non-ideality), the plasma is called weakly
coupled plasma. For a weakly coupled plasma, the screened interaction can be represented
by the Debye-Huckel potential (DHP) of the form [45]:

VDH(r) =
e−r/rD

r
, (1)

where rD is called the Debye length. In terms of density ne and temperature Te, it is given
by rD = (KBTe/4πe

2ne)
1/2, where KB and e respectively denote the Boltzmann constant,

electronic charge. rµ (= 1/rD) is often called plasma screening parameter. On the other side,
for non-ideal classical plasmas (NICP) with no degeneration quantum effects, the screened
interaction can be described by a pseudopotential which is obtained from a sequential solution
of the chain of Bogolyubov equations [46] by taking into account the collective events and
the screening effects of plasma. That pseudopotential or effective potential is of the form (in
a.u.) [46]:

V (r) =
[10 + γ(e−

√
γr/rD − 1)(1− e−2r/rD)]

10[1 + c(γ)]

e−r/rD

r
, (2)

where c(γ) is known as the correction function. In terms of rD, γ is given by γ = e2/(rDKbTe).
The correction function c(γ) is given for a number of values of γ in the range 0 ≤ γ ≤ 4.5 [46].
It should be mentioned that the above pseudopotential appropriately represents the particle
interaction of a NICP for 0 ≤ γ ≤ 4.0. It reduces to the DHP in the form of equation (1) in
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the weak limit of non-ideality (γ ≪ 1). In a number of investigations such a pseudopotential
has been used to describe the screening of NICPs [[46]-[56]]. In this context it is worthy to
mention that it is possible to obtain pseudopotentials which include the quantum mechanical
effects in non-ideal plasmas [[57]-[61]].

In this paper our objective is to study various properties of Ps− embedded in NICPs, such as
bound states, annihilation rate, cusps etc. In particular, emphasis will given on the stability
of the ion. We work within the framework of Rayleigh-Ritz variational method which is the
most powerful and effective method for studying three-body problems of bound states. We
consider the density and temperature of the plasma in the ranges 2.7 × [1023 − 1026] m−3

and [1 − 10] × 104 K respectively so that γ ∈ [0, 4.0] approximately. Our endeavour will
be to make a detailed study on the changes of various properties of Ps− due to change in
the non-ideality of the underlying plasma. Such a study is of fundamental interest in the
context of astrophysics, since existence of positrons in several astrophysical environments
has been conclusively proved [[62]-[64]]. It should be mentioned here that some studies on
the properties of Ps− in weakly coupled plasma environments have been reported in the
literature [[65]-[69]], but, to the best of our knowledge, effects of non-ideal plasmas on Ps−

have not been reported so far.

2 Theory and calculations

Let r⃗1, and r⃗2 be the coordinates of two electrons relative to the positron and and r⃗12 = r⃗1−r⃗2.
With such choice of coordinates, the intrinsic part of the non-relativistic Hamiltonian of Ps−

implanted in NICP which is described by the pseudopotential in the form of equation (2) is
given by (in reduced atomic units)

HPs− = −1

2
∇2

1−
1

2
∇2

2−
1

2
∇1 ·∇2−CV (r1; γ)

e−r1/rD

r1
−CV (r2; γ)

e−r2/rD

r2
+CV (r12; γ)

e−r12/rD

r12
,

(3)
where CV (r; γ) = [10 + γ(e−

√
γr/rD − 1)(1 − e−2r/rD)]/[10{1 + c(γ)}]. For a given value

of γ ∈ [0, 4.0], c(γ) is computed by fitting a cubic polynomial with four values of γ in
succession from the Table I of Ref. [46]. Note that here we use same screening parameters
to represent the screened positron-electron and electron-electron interactions. In this regard
it is important to state that screening in any form is a feature in plasma. Thus, the results
in this paper, of course based on the validity of the pseudopotential model, show general
qualitative features. These have to be refined when there exists testimonies that the model
is not a fair approximation to the interaction potential.

We solve the Schrodinger equation HPs−Ψ(r1, r2, r12) = EPs−Ψ(r1, r2, r12), (EPs− < 0) with
in the framework of Rayleigh-Ritz variational method to determine the ground state energy
EPs− and corresponding wave functions Ψ(r1, r2, r12) of Ps

−. That requires the minimization
of the Rayleigh quotient:

EPs− [Ψ] =
< Ψ|HPs− |Ψ >

< Ψ|Ψ >
(4)
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by means of trial wave function Ψ. In this work, we choose Ψ as:

Ψ(r1, r2, r12) =
N∑
j=1

Cj|ψj(r1, r2, r12;A, lj,mj, nj) >

=
N∑
j=1

Cljmjnj
(1 + P12)e

−A(r1+r2)r
lj
1 r

mj

2 r
nj

12 , (5)

where C ′
js (or C

′
ljmjnj

s, lj,mj, nj are non-negative integers) are linear expansion coefficients,
A is a non-linear variational parameter and P12 is an electron exchange operator such that
P12f(r1, r2) = f(r2, r1) for an arbitrary function f. The summation in the wave function (5)
is disintegrated to expand Ψ by considering the sum ωj = lj+mj+nj.We set ωj = 0, 1, 2, · · ·
so that ω0 corresponds to N = 1, ω1 corresponds to N = 3, ω2 corresponds to N = 7, and
so on. Putting equation (5) in equation (4) we obtain

EPs− [Ψ] =

∑N
i=0

∑N
j=0C

∗
i CjH

Ps−
ij∑N

i=0

∑N
j=0C

∗
i CjSPs−

ij

, (6)

where

HPs−

ij = < ψi(r1, r2, r12;A, li,mi, ni)|HPs−|ψi(r1, r2, r12;A, lj,mj, nj) > and

SPs−

ij = < ψi(r1, r2, r12;A, li,mi, ni)|ψi(r1, r2, r12;A, lj,mj, nj) > (7)

are respectively the Hamiltonian matrix elements and overlap matrix elements. Carrying
out a little algebra, it can shown that solving equation (6) for EPs− leads to calculating the
least eigen value of the matrix S̃−1H̃, where H̃ = [HPs−

ij ] and S̃ = [SPs−
ij ]. The least eigen

value and corresponding eigen function have been computed by employing Q-R algorithm
on the transformed matrix in the Hessenberg form [70]. In order to determine the bound
state energies and corresponding wave functions, we follow the method as described in our
previous paper [56].

The optimized ground state wave function Ψ is used to compute various quantities associ-
ated with the ground state of Ps−, such as various geometrical expectations, cusp values,
annihilation rate etc. The cusp quantities can be obtained from the following equations [11]:

vi =

⟨
Ψ
∣∣∣δ(r⃗i) ∂

∂ri

∣∣∣Ψ⟩
< Ψ|δ(r⃗i)|Ψ >

, i = 1, 2, (electron− positron cusp) (8)

v12 =

⟨
Ψ
∣∣∣δ(r⃗12) ∂

∂r12

∣∣∣Ψ⟩
< Ψ|δ(r⃗12)|Ψ >

, (electron− electron cusp), (9)

where δ denote the Dirac-delta function. The positron in Ps− can annihilate one of the
electrons as a result of which energy (photon) is released. The number of photons could
be one, two, three or more. Various photon annihilation rates can be calculated from the
knowledge of the delta functions concerned [11]. However, total annihilation rate Γ is given
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by the sum of the two-photon and three-photon annihilation rates. It is calculated by the
following formula [11]:

Γ = 2πα4a−1
0

[
1− α(204− 19π2)

12π

]
< Ψ|δ(r⃗1)|Ψ >

= 100.61745997357 < Ψ|δ(r⃗1)|Ψ > (in ns−1), (10)

where c is the speed of light in vacuum, α is the fine structure constant and a0 is the first
Bohr’s radius. The reciprocal of Γ gives us the lifetime τ of Ps−, that is τ = 1/Γ.

3 Results and discussion

First we examine the convergence of the scheme that we have employed here with respect
to the increase in the number of terms in the wave function (5). The ground state energies
for various values of rD and γ obtained by increasing number of terms in (5) are held up in
Table 1. From this table we observe that convergent results, correct up to eight places of
decimal, can be obtained by using 1078 (ω21) number of terms in the wave function (5). Some
results related to the ground state of energy of Ps− in vacuum as well as in weakly coupled
plasma environments are available in the literature. In Table 2 we put up a comparison of
our present results with some of the reliable corresponding results available in the literature.
The comparison shows an excellent agreement for free-atomic case as well as for the case of
weakly coupled plasmas.

Having done these, we now move to study the effects of non-ideality of plasma on the prop-
erties of Ps−. We study the effects of non-ideality of plasma on a number of quantities
pertaining to the ground state of Ps−. These include the ground state energies of Ps− and
Ps, various geometrical expectation values, cusps and total annihilation rate. Values of those
quantities for a number of densities and temperatures lying in the ranges 2.7× [1023 − 1026]
m−3 and [1 − 10] × 104 K respectively are presented in Tables 3 - 6. From these tables we
note that for a given temperature, EPs− increases with increasing density. This indicates
that interaction potentials get weaker with increasing density at a given temperature. As
a result, average distances among positron and electrons increase (as evident from Tables
3 - 6), leading to decrease in the total annihilation rate or increased lifetime of Ps−. Ex-
actly opposite thing takes place, when temperature increases but density remains the same.
However, we observe that Ps− remains stable in the above-stated ranges of temperature and
density with lifetime ranging from 0.48034336 ns to 2.97346772 ns.

The goodness of the optimized wave function Ψ can be estimated by studying its properties.
For example, by definition, expectation values of the delta functions are measures of local
behaviour of the wave function. For the unscreened case, our computed values are in excellent
agreement with results of Refs. [5, 11]. Here, we find that they are being gradually reduced
with increasing non-ideality. The cusp quantities serve as a measure of accuracy of wave
function near the points of coalescence. For a system having two charged particles with
charges q1 and q2, it is given by v12 = µq1q2, where µ is the reduced mass of the system [14].
So, for the unscreened case, positron-electron cusp should be -0.5 a.u. and electron-electron
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cusp should be 0.5 a.u. What we have computed are exactly same for the unscreened case.
However, with the increase in non-ideality cusp values decrease, but they stay very near
to their respective values for the unscreened case. Another important quantity is the ratio
of the average potential energy to the average kinetic energy, which according to the virial
theorem, must be -2 for the unscreened case. What we find here is exactly same for the
unscreened case. However, it decreases slowly with increasing non-ideality.

We now focus our attention to study the effect of non-ideality on the stability of Ps−.
In Figure 1, ground state energy of Ps− as a function of non-ideal parameter is plotted for
various Debye lengths. We note that for a given Debye length, EPs− increases with increasing
γ. This means that increase in the non-ideality gradually leads the ion towards instability.
We have tried to compute quite exactly the critical values of rD and γ (the respective values
of rD and γ beyond which Ps− does not exist) giving the range of stability of Ps−. These
are shown in Table 7. We find that for weakly coupled plasmas (γ = 0), critical value of
rD is 1.700420 ao which is better than previously reported values [65, 66]. Moreover, if the
Debye length is relaxed to increase, critical value of non-ideal parameter increases such that
when rD = 0.33a0, γ = 2.996616. In Figure 2 we put up a graphical presentation of electron
affinity Psea of Ps. As expected, we find that, for a given Debye length, it decreases with
increasing γ.

4 Conclusions

In conclusion, we have made an inclusive study on the properties of Ps− embedded in NICP.
It has been found that increase in non-ideality as well as the plasma screening effect leads
the ion towards instability. However, the ion remains stable for the density and temperature
lying the ranges 2.7 × [1023 − 1026] m−3 and [1 − 10] × 104 K respectively with lifetime
varying from 0.48034336 ns to 2.97346772 ns. We show up the values of non-ideal plasma
parameter and Debye length beyond which ion does not exist. We hope that our results will
be useful in interpreting various astrophysical data relating to positron and in developing
our understanding regarding kinetic properties of non-ideal plasmas.
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Table 1: Convergence of the ground state energy of Ps−.

−EPs− (a.u.)
rµ (a−1

0 ) γ N = 715(ω18) N = 825(ω19) N = 946(ω20) N = 1078(ω21)
0.00 0.0 0.2620050700 0.2620050701 0.2620050702 0.2620050702
0.10 0.1 0.1575887532 0.1575887533 0.1575887534 0.1575887534
0.15 0.5 0.0829082162 0.0829082164 0.0829082164 0.0829082164
0.25 0.7 0.0292130242 0.0292130246 0.0292130249 0.0292130250
0.25 1.1 0.0188974629 0.0188974634 0.0188974637 0.0188974639

Table 2: Comparison of the ground state energy and annihilation rate of Ps− and ground
state energy of Ps.

rµ (a−1
0 ) γ −EPs− (a.u.) −EPs(a.u.) Γ(ns−1)

0.00 0.0 0.2620050702 0.2500000000 2.0928027667
0.2620050702a 2.086121720a

0.262005068b 0.250000000b

0.2620050702c 0.250000000c 2.086121817c

0.05 0.0 0.2149738357 0.2035290153 2.0718671824
0.214973833b 0.203529015b

0.2149738358c 0.203529015c

0.10 0.0 0.1736181599 0.1634042557 2.0104151518
0.173618156b 0.163340426b

0.1736181600c 0.163340426c 2.003997348c

0.25 0.0 0.0798460755 0.0740585109 1.6204762788
0.079845972b 0.074058510b

0.0798460757c 0.074058510c

a Results of Frolov [11], b Results of Saha et al [65], c Results of Kar and Ho [66, 67]
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Table 3: Ground state energy, cusps, various expectation values, annihilation rate etc of Ps−

embedded in NICP for various plasma temperatures and densities.

ne = 2.7× 1023 m−3

T(in K) 104 2× 104 5× 104 8× 104 105

γ 0.12582166 0.04448467 0.01125383 0.00556058 0.00397883
rD (in a0) 250.97041160 354.92575984 561.18690068 709.85151968 793.63812597

A1 0.23417808 0.24970264 0.25768250 0.25932792 0.25983485
A2 0.22327927 0.23813720 0.24579531 0.24738180 0.2478721211
A3 0.32383632 0.33356595 0.33815852 0.33899199 0.33922621
A4 0.14830968 0.15276645 0.15487021 0.15525204 0.15535935
A5 5.76082218 5.59267717 5.51666138 5.50308305 5.49927845
A6 8.97079960 8.70900424 8.59065438 8.56951558 8.56359287
A7 106.64581179 100.50921972 97.79447122 97.31339562 97.17879993
A8 0.01794389 0.01960974 0.02043056 0.02058191 0.02062458
A9 0.00014801 0.00016175 0.00016853 0.00016978 0.00017013
A10 0.47648968 0.49079485 0.49754622 0.49877081 0.49911468
A11 0.47593807 0.49021867 0.49697898 0.49819839 0.49854099
A12 1.98419977 1.98912058 1.99319505 1.99462851 1.99519718
A13 1.81125662 1.97940700 2.06226070 2.07753823 2.08184466

A1 ≡ −EPs− (in a.u.), A2 ≡ −EPs (in a.u.), A3 ≡< 1/r1 > (a0
−1), A4 ≡< 1/r12 > (a0

−1),
A5 ≡< r1 > (a0), A6 ≡< r12 > (a0), A7 ≡< r1

2 + r2
2 > (a0

2), A8 ≡< δ(r⃗i > (a.u.),
A9 ≡< δ(r⃗12) > (a.u.), A10 ≡ −vi(a0−1), A11 ≡ v12(a0

−1), A12 ≡ − < P.E. > / < K.E. >,
A13 ≡ Γ (in ns−1)
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Table 4: Same as Table 3.
ne = 2.7× 1024 m−3

T(in K) 104 2× 104 5× 104 8× 104 105

γ 0.39788302 0.14067289 0.03558774 0.01758411 0.01258217
rD (in a0) 79.36381260 112.23738014 177.46287992 224.47476027 250.97041160

A1 0.18764304 0.22724271 0.24874440 0.25366209 0.25521355
A2 0.17859010 0.21646887 0.23710311 0.24184334 0.24334340
A3 0.29559703 0.32217178 0.33473158 0.33723554 0.33795559
A4 0.13536248 0.14754116 0.15329803 0.15444594 0.15477608
A5 6.31355446 5.79145589 5.57349962 5.53196574 5.52012995
A6 9.83065698 9.01818888 8.67903051 8.61440949 8.59599705
A7 128.13985372 107.79894063 99.82635950 98.34144322 97.92022064
A8 0.01365515 0.01767278 0.01981769 0.02026489 0.02039470
A9 0.00011255 0.00014573 0.00016345 0.00016715 0.00016822
A10 0.43512480 0.47412223 0.49253941 0.49620894 0.49726351
A11 0.43460047 0.47358090 0.49195573 0.49564771 0.49669753
A12 1.94644020 1.96492208 1.97846587 1.98305219 1.98485610
A13 1.37835119 1.78389089 2.00039718 2.04553887 2.05864069

Table 5: Same as Table 3.
ne = 2.7× 1025 m−3

T(in K) 104 2× 104 5× 104 8× 104 105

γ 1.25821658 0.44484674 0.11253831 0.05560584 0.03978830
rD (in a0) 25.09704116 35.49257598 56.11869007 70.98515197 79.36381260

A1 0.10312101 0.16880681 0.22344603 0.23674935 0.24120125
A2 0.09748625 0.16019035 0.21252518 0.22533402 0.22963275
A3 0.23806847 0.29025619 0.32505057 0.33196039 0.33405987
A4 0.10884309 0.13284896 0.14883596 0.15201267 0.15297815
A5 7.88171635 6.44051378 5.74324058 5.62210926 5.58626948
A6 12.25954919 10.02500853 8.94209626 8.75400929 8.69837250
A7 200.76256282 133.56140974 106.06667939 101.61198894 100.31177090
A8 0.00719036 0.01296298 0.01816635 0.01934092 0.01970736
A9 0.00005870 0.00010649 0.00014964 0.00015941 0.00016246
A10 0.35231587 0.42809855 0.47865905 0.48867205 0.49171034
A11 0.35188932 0.42760737 0.47809846 0.48810588 0.49113057
A12 1.80105938 1.88278127 1.93198053 1.94683498 1.95256780
A13 0.72579502 1.30848319 1.83371144 1.95227271 1.98926064
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Table 6: Same as Table 3.
ne = 2.7× 1026 m−3

T(in K) 104 2× 104 5× 104 8× 104 105

γ 3.97883017 1.40672890 0.35587739 0.17584111 0.12582166
rD (in a0) 7.93638126 11.22373801 17.74628799 22.44747603 25.09704116

A1 0.02380007 0.06939273 0.15838598 0.1907901601 0.20184767
A2 0.02202632 0.06504784 0.14967022 0.1806869658 0.19131224
A3 0.17058560 0.22515446 0.29752923 0.31684978 0.32249013
A4 0.07389565 0.10182122 0.13591050 0.14490393 0.14753115
A5 12.22360486 8.54967842 6.31776907 5.91350211 5.80463682
A6 19.01632039 13.27796847 9.82650798 9.20161262 9.03346686
A7 519.20362516 241.34680543 129.17095480 112.83638261 108.62567052
A8 0.00333176 0.00637107 0.01409410 0.01692908 0.01782105
A9 0.00001958 0.00004883 0.00011438 0.00013836 0.00014595
A10 0.29779221 0.34449591 0.44191307 0.46870899 0.47648953
A11 0.29682532 0.34399033 0.44136527 0.46815740 0.47594160
A12 1.34483369 1.59814699 1.78730691 1.83686978 1.85484686
A13 0.33630767 0.64309607 1.42265812 1.70882121 1.79885730

Table 7: Critical value of rµ (in a−1
0 ) and γ and the corresponding lifetime τ (in ns) of Ps−.

rµc 0.30 0.35 0.40 0.45 0.50 0.588090
γc 2.996616 1.856900 1.181457 0.712813 0.428837 0.0
τ 85.41102671 71.74867101 58.74212989 48.25867106 39.78714990 12.63984545
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Figure 1: Ground state energy of Ps− as a function of γ for different values of rµ (in a−1
0 ).
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Figure 2: Electron affinity of Ps as a function of γ for different values of rµ (in a−1
0 ).
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