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Abstract. We prove the existence and uniqueness of global strong solution to the free bound-
ary problem in one dimensional compressible Navier-Stokes system for the viscous and heat
conducting ideal polytropic gas flow, when the viscosity and heat conductivity depend on
temperature in power law of Chapman-Enskog and the data is in the neighborhood of some
background solution at initial time. We also study the large time behavior of the solution and
obtain its decay property.

1. Introduction

In this paper, we consider the free boundary value problem of one dimension compressible
heat-conducting Navier-Stokes equations as follows:

ρτ + (ρu)y = 0, (1.1)

(ρu)τ + (ρu2 + p)y = (µuy)y, (1.2)

(ρ(e+
1

2
u2))τ + (ρu(e+

1

2
u2) + pu)y = (µuuy)y + (κθy)y, (1.3)

for τ > 0 and a1(τ) < y < a2(τ), with the boundary condition

ey(τ, d) = 0, (µuy − p)(τ, d) = 0, τ ≥ 0, d = a1(τ), a2(τ). (1.4)

Here the unknown functions ρ, u and θ represent the density, the fluid velocity and the
temperature, respectively. e is the internal energy, and p is the pressure. µ and κ are the
viscosity coefficient and the heat conductivity coefficient. In this paper, we focus on ideal
polytropic gas and the constitution relation reads

p(ρ, θ) = Rρθ, e = cvθ, cv =
R

γ − 1
, (1.5)

where the specific gas constant R and the heat capacity cv are positive constants, and γ > 1 is
the adiabatic constant.

The free boundaries y = a1(τ) and y = a2(τ) are the interfaces separating the gas from the
vacuum, which are described by{

dai(τ)
dτ = u(ai(τ), τ) τ > 0,

ai(0) = ai,
(1.6)

where ai are some constants and i = 1, 2.
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To get the fixed boundary valued problem, we will rewrite the problems (1.1)–(1.4) by using
Lagrangian mass coordinates. This means, set

x =

∫ y

a1(τ)
ρ(τ, z)dz, t = τ, (1.7)

and then the free boundaries y = a1(τ) and y = a2(τ) become x = 0 and x =
∫ a2(τ)
a1(τ) ρ(z, τ)dz =∫ a2

a1
ρ0(y)dy by the conservation of mass. Without loss of generality, we assume

∫ a2
a1
ρ0(z)dz = 1

and R = 1. Let v = 1
ρ be the specific volume, then p = θ

v . Hence, the problem (1.1)–(1.4) is

transformed into the system: 
vt − ux = 0, (1.8)

ut + (
θ

v
)x = (

µux
v

)x, (1.9)

θt
γ − 1

+
θ

v
ux = (

κθx
v

)x +
µu2

x

v
, (1.10)

for (t, x) ∈ (0,∞)× (0, 1), with the boundary condition

θx(t, d) = 0, (µux − θ)(t, d) = 0, t ≥ 0; d = 0, 1. (1.11)

And we impose the following initial conditions

(v, u, θ)(0, x) = (v0, u0, θ0)(x), for x ∈ [0, 1]. (1.12)

In a view of physics, when one derives the full compressible Navier-Stokes equations from
the Boltzmann equation by using the Chapman-Enskog expansion, viscosity µ and heat con-
ductivity κ are functions of temperature. According to [1], the following relations hold:

µ = µ̄θb, κ = κ̄θb, b ∈ (
1

2
,∞), (1.13)

where µ̄ and κ̄ are two positive constants, and such relations lead to possible degeneracy and
strong nonlinearity in viscosity and heat diffusion.

Many known mathematical results mainly focus on the case when viscosity µ and heat
conductivity κ are positive constants. For examples, in the one space dimension case, for large
initial data away from vacuum, Kazhikhov et al. [8, 9] obtained global smooth solutions by
employing the representation for specific volume v, and recently, Jing Li and Zhilei Liang [10]
showed the large-time behavior of solutions with large data. There are also many results for
the case when viscosity µ depends on density and heat conductivity κ depends on density
and temperature, both of which are non-degenerate, and we refer readers to [5, 17, 20] and
the references therein. For isentropic flow, the dependence on the temperature in (1.13) is
translated into the dependence of viscosity on the density,

µ(ρ) = Aρa, A > 0, a > 0. (1.14)

It is shown by Liu, Xin and Yang in [13] that, at least locally in time, the Navier-Stokes
equations for one-dimensional isentropic viscous gas with a jump to the vacuum initially and
with condition (1.14), has a physically relevant solution. We also refer readers to [6, 18,22, 23]
for some global existence results of isentropic case.

However, there is few result for the non-isentropic case with relation (1.13). To our knowl-
edge, for the Cauchy problem of one-dimensional compressible Navier-Stokes equations for the
viscous and heat conducting ideal polytropic gas flow with degenerate temperature dependent
transport coefficients, Liu and Yang et al. in [14] obtained the global non-vacuum classical
solutions with smallness assumption that γ is close to 1, which is the first result with large
data for the case with relation (1.13). Later, under assumption

µ = µ̃h(v)θα, κ = κ̃h(v)θα, (1.15)
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where µ̃, κ̃ are positive constants and h(v) is some non-degenerate smooth function, Wang
and Zhao in [21] obtained global non-vacuum classical solutions with smallness assumptions
for | α |. For the initial-boundary value problem, Jenssen and Karper in [4] proved the global
existence of a weak solution under the assumption

µ = µ̄, κ = κ̄θb, b ∈ [0,
3

2
), (1.16)

where µ̄ and κ̄ are positive constant. We also refer readers to [16], in which Pan and Zhang
proved the existence of global strong solutions for the initial-boundary value problem under
assumptions

µ = µ̄, κ = κ̄θb, b ∈ [0,∞), (1.17)

where µ̄ and κ̄ are positive constants. Huang and Shi in [3] improved Pan and Zhang’s result [16]
on the regularity conditions of initial data. For the case with presence of vacuum, even in one
dimension, the global well-posedness theory for the full compressible Navier-Stokes equations
with degenerate temperature dependent transport coefficient is still an open problem. As a
view of physics, it is reasonable to consider the free boundary problem. Recently, some progress
in this direction have been obtained when considering some simplified relations. Li and Guo
in [11] established the global existence of strong and classical solutions to free boundary problem
under assumptions

µ = µ̄, κ = κ̄θb, b ∈ (0,∞), (1.18)

where µ̄ and κ̄ are positive constant. When considering the fluid is in the low Mach number
regime, Li, Ma and Qu in [12] established the global existence and uniqueness of strong solutions
for the free boundary problem under assumptions

µ = µ̄(1 + ρβ), κ = κ̄θq, β ∈ [0,∞), q ∈ (0,∞), (1.19)

where µ̄ and κ̄ are positive constants. We mention that for the free boundary problem based on
physics consideration, although some results (such as [4, 11, 12, 16]) have been obtained under
some simplified relations, it is still far away from a theory for (1.1)–(1.4) under condition (1.13).

As for the free boundary problem with constant viscosity and heat conductivity, Okada in [15]
studied the asymptotic behavior of the solutions in the neighborhood of a given background
solution of the free boundary value problem of one dimensional model system associated with
compressible viscous and heat-conducting fluid, and he obtained the decay property of those
solutions under smallness conditions of the initial data and γ − 1.

In this paper, inspired by [15], we will define some special solution to (1.8)–(1.11) as a
background solution and show the global existence and uniqueness of strong solution in the
neighborhood of such background solution under the following assumption

µ = µ̄θb, κ = κ̄θa, a, b ∈ (
1

2
,∞), (1.20)

where µ̄ and κ̄ are positive constants, and the case with physical relation (1.13) is included.

Before we state the main theorem, we introduce some simplified notations as follows. Let
I , [0, 1] be the domain of space. For p ≥ 1, Lp = Lp(I) denotes the Lp space with norm
| · |Lp . For p ≥ 1 and p ≥ 1, W k,p = W k,p(I) denotes the Sobolev space with norm | · |Wk,p ,

and particularly, Hk = W k,2(I). Moreover, for f ∈ L∞(0, t;H1), | f |0,T, supt∈[0,T ] | f(t) |L∞ .
And without loss of generality, we assume that µ̄ = κ̄ = 1 throughout this paper.

Set

(V (t), U(x), θ̄) = (
θ̄

θ̄b
t+ v1,

θ̄

θ̄b
x+ u1, θ̄), (1.21)
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for some constants θ̄ > 0, v1 > 0 and u1. Then it is easy to verify that (V (t), U(x), θ̄) is a
solution to (1.8)–(1.11). We consider the solution in the neighborhood of (V (t), U(x), θ̄), and
we are also concerned with its decay property. Now, we shall state the main result as follows.

Theorem 1.1. Let (V (t), U(x), θ̄) be given as in (1.21) and assume that the condition (1.20)
holds and that the initial data (v0, u0, θ0)(x) satisfies

(v0, u0, θ0)(x) ∈ H1 ×H2 ×H2, (1.22)

(θb0u0,x − θ0)(d) = 0, θ0,x(d) = 0, for d = 0, 1, (1.23)∫
I
u0(x)dx =

∫
I
U(x)dx, (1.24)

and

∫
I
(θ0(x) +

1

2
u0(x)2)dx =

∫
I
(θ̄ +

1

2
U(x)2)dx. (1.25)

There exists a positive constant θ∗ only depending on a, b, γ and u1, such that if θ̄ > θ∗, then
the following statement holds. There exist positive constants ε1 and α1, both of which are only
depending on a, b, γ, u1 and θ̄, such that if I0 ,| v0/v1 − 1, u0 − U , θ0/θ̄ − 1 |H1≤ ε for
ε ∈ (0, ε1), then there exists a global unique strong solution (v, u, θ) to (1.8)–(1.12), satisfying

v, u, θ ∈ C([0, T ];H1 ×H2 ×H2), θbux − θ, θx ∈ L2(0, T ;H1
0 ∩H2), ∀T > 0. (1.26)

Moreover, for α ∈ [0, α1], we have

V (t)α | v(t)

V (t)
− 1, u(t)− U, θ(t)

θ̄
− 1 |2H1≤ vα1 I2

0 for t ∈ [0,∞), (1.27)

and | v(t)

V (t)
− 1, u(t)− U, θ(t)

θ̄
− 1 |L∞= O(t−

α
2 ) as t→∞. (1.28)

Remark 1.1. In the frame of Lagrangian mass coordinates, the condition (1.24) and (1.25)
imply that the initial momentum and energy are equal to the momentum and energy of the back-
ground solution (V (t), U(x), θ̄), respectively. And by classical embedding theorem, the condition
(1.22) and (1.23) imply that the initial data is compatible with the boundary condition. More
precisely, if (v0, u0, θ0) are smooth functions on I, they satisfy the boundary condition (1.11).
Similarly, (1.26) implies that the solution (v, u, θ) is compatible with the boundary condition
(1.11).

Remark 1.2. In fact, we will choose ε1 suitably small to ensure that the θ0(x) has positive
lower bound and there is no vacuum at initial time, and then (1.27) implies that vacuum will
never be developed in our case.

Remark 1.3. We remark that our method in this paper also can be applied to the cases that
equations (1.8)–(1.10) with the following two different free boundary conditions:

u(t, 0) = 0, (µux − θ)(t, 1) = 0, θx(t, d) = 0, t ≥ 0, d = 0, 1, (1.29)

or

u(t, 0) = 0, (µux − θ)(t, 1) = 0, θ(t, 0) = θ̄, θx(t, 1) = 0, t ≥ 0, (1.30)

where θ̄ is some positive constant. For the free boundary problem with small data in both above
cases, in a similar way, we can obtain global existence and uniqueness results under some
analogous assumptions on the background solution as in Theorem 1.1.

The remaining of this paper is organized as follows. In Section 2, we present some useful
lemmas and show the local existence of solutions to (1.8)–(1.12). In Section 3, we will use
energy methods to derive a priori H1-estimate and then prove the main theorem.
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2. Preliminary

In this section, we shall state the following lemmas, which are useful to get the necessary
energy estimates.

Lemma 2.1. (Poincaré’s inequality). If f ∈ H1(I), the following inequality is satisfied.

| f |2L2≤ 2 | fx |2L2 +2 |
∫
I
fdx |2 . (2.1)

Lemma 2.2. (Sobolev’s inequality). Let f ∈ H1(I). Then f ∈ C0(I) and we can obtain the
following estimate

| f |2L∞≤ 2 | f |L2 | fx |L2 + | f |2L2 . (2.2)

Moreover, when there is some x0 ∈ I such that f(x0) = 0, we can establish

| f |2L∞≤ 2 | f |L2 | fx |L2 . (2.3)

As for the details of the above two lemmas, we refer readers to [2].

The existence and uniqueness of local in time solution to (1.8)–(1.11) can be obtained by
a standard Banach fixed point argument, c.f. [7, 19]. Thus, we state the following lemma for
local solution and omit the detailed proof for it.

Lemma 2.3. Suppose that (1.20) holds, and if the initial data (v0, u0, θ0) satisfies (1.22),(1.23)
and

inf
x∈I

v0(x) > 0, inf
x∈I

θ0(x) > 0, (2.4)

then there exists a positive constant T1 only depending on | (v0, u0, θ0) |H1, infx∈I v0(x) and
infx∈I θ0(x), such that there exists a unique local strong solution (v, u, θ) to (1.8)–(1.12) on
[0, T1]× I, satisfying

(v, u, θ) ∈ C([0, T1];H1 ×H2 ×H2),

θux − θb ∈ L2(0, T1;H1
0 ), θx ∈ L2(0, T1;H1

0 ),

C−1 ≤ v(t, x) ≤ C, C−1 ≤ θ(t, x) ≤ C,

| (v, u, θ)(t, ·) |2H1 +

∫ t

0
| (v, u, θ)(s, ·) |2H1 + | (uxx, θxx)(·, s) |2L2 ds ≤ C,

(2.5)

for any (t, x) ∈ [0, T1] × I, where C > 0 is some constant only depending on | (v0, u0, θ0) |H1,
infx∈I v0(x), infx∈I θ0(x) and T1.

3. A Priori Estimate and Global Existence

In order to prove our main theorem, we will rewrite our problem as follows. Set

q(t, x) =
v(t, x)

V (t)
− 1, r(t, x) = u(t, x)− U(x), h(t, x) =

θ(t, x)

θ̄
− 1. (3.1)
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By using the changes of variables in (3.1), the problem (1.8)–(1.12) is reduced to the following
system: 

qt +
θ̄

θ̄b
q

V
− rx
V

= 0, (3.2)

rt −
1

V
[
θ̄b(h+ 1)brx

1 + q
]x +

1

V
[
θ̄h

1 + q
]x −

θ̄

V
[
(h+ 1)b − 1

1 + q
]x = 0, (3.3)

θ̄ht
γ − 1

− 1

V
[
θ̄a+1(h+ 1)ahx

1 + q
]x +

θ̄2h

θ̄bV (1 + q)

=
θ̄(h+ 1)br2

x

V (1 + q)
+
θ̄[2(h+ 1)b − 1]rx

V (1 + q)
− θ̄hrx
V (1 + q)

+
θ̄2[(h+ 1)b − 1]

θ̄bV (1 + q)
, (3.4)

for (t, x) ∈ (0,∞)× (0, 1), with boundary condition{(
θ̄b(h+ 1)brx − θ̄h+ θ̄[(h+ 1)b − 1]

)
(t, d) = 0,

hx(t, d) = 0, for t ≥ 0, d = 0, 1,
(3.5)

and initial condition

(q, r, h)(0, x) = (q0, r0, h0)(x), for x ∈ I, (3.6)

where q0 = v0/v1 − 1, r0 = u0 − U , h0 = θ0/θ̄ − 1.

3.1. A Priori Estimate.
To prove theorem 1.1, it suffices to derive the following priori estimate.

Proposition 3.1. Let any T > 0 be fixed. Assume that the same conditions as in Theorem 1.1
hold. Let (q, r, h) ∈ C([0, T ];H1) with (rxx, hxx) ∈ L2(0, T ;L2) be the unique strong solution to
(3.2)–(3.6) on [0, T ]× I. There exists a positive constant θ∗ only depending on a, b, γ and u1,
such that if θ̄ ≥ θ∗, then there exist positive constants M ≤ 1

2 and α1, both of which are only

depending on a, b, γ, u1 and θ̄, but independent of T , such that if I0 ≤M ≤ 1
2 and if

| q, r, h |0,T≤M ≤
1

2
, (3.7)

then

V α(t) | (q, r, h)(t) |2H1≤ vα1 I2
0 , (3.8)∫ t

0
| (rxx, hxx)(s) |2L2 ds ≤ I2

0 , (3.9)

for any α ∈ [0, α1] and t ∈ [0, T ].

To prove the above proposition, We begin with some elementary observation. From the
hypothesis (3.7), we could easily obtain that

| q(t, x) |≤ 1

2
, | r(t, x) |≤ 1

2
, | h(t, x) |≤ 1

2
,

1

2
≤ h(t, x) + 1 ≤ 2,

1

2
≤ q(t, x) + 1 ≤ 2 for ∀ (t, x) ∈ [0, T ]× I. (3.10)

Then, as in [15], we will deduce two important inequalities based on the conservation of
momentum and energy. Integrating the momentum equation (1.9) over [0, t]× I, and using the
condition (1.24), we have ∫

I
u(t, x)dx =

∫
I
u0(x)dx =

∫
I
U(x)dx. (3.11)
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And (3.11) yields that ∫
I
r(t, x)dx =

∫
I
r0(x)dx = 0. (3.12)

Thus, by using Poincaré’s inequality (2.1), we deduce from (3.12) that

| r(t) |2L2≤| rx(t) |2L2 . (3.13)

Integrating the energy equation (1.10) over [0, t]× I, and using the condition (1.25), we have∫
I

θ̄h(t, x)

γ − 1
+

1

2
r(t, x)2 + (

θ̄

θ̄b
x+ u1)r(t, x)dx = 0. (3.14)

Thus, by using Hölder inequality and (3.10), it follows from (3.14) that

|
∫
I
h(t, x)dx |2 =| γ − 1

θ̄

∫
I

1

2
r(t, x)2 + (

θ̄

θ̄b
x+ u1)r(t, x)dx |2

≤ (γ − 1)2

2θ̄2
| r(t) |2L2 +2

∫
I
| θ̄
θ̄b
x+ u1 |2 dx | r(t) |2L2

≤ (
4θ̄2

4θ̄2b
+ 4u2

1 +
1

2
) | r(t) |2L2 . (3.15)

Using Poincaré’s inequality (2.1) again, we deduce from (3.15) and (3.13) that

| h(t) |2L2 ≤ 2 |
∫
I
h(t, x)dx |2 +2 | hx(t) |2L2

≤ 2 | hx(t) |2L2 +(γ − 1)2[
(8u2

1 + 1)

θ̄2
+

4

3θ̄2b
] | rx(t) |2L2 . (3.16)

Now, we are going to employ energy method to prove Proposition 3.1 with the help of (3.13),
(3.16). And in what follows, we denote by C a general constant only depending on a, b, γ, u1

and θ̄, which may be different between line to line.

Proof of Proposition 3.1. First, for t ∈ [0, T ], multiplying (3.3) and (3.4) by θ̄bV αr and
θ̄bV αh, respectively, summing them up, integrating over I, and using the boundary condition
(3.5), we have

{
∫
I

1

2
θ̄bV αr2 +

1

2(γ − 1)
V αh2dx}t + V α−1

∫
I

θ̄2h2

1 + q
dx

+ V α−1

∫
I

θ̄2b(h+ 1)br2
x

1 + q
dx+ V α−1

∫
I

θ̄a+b+1(h+ 1)ah2
x

1 + q
dx

≤αθ̄V
α−1

2

∫
I
r2dx+

αθ̄2V α−1

2(γ − 1)

∫
I
h2dx+ V α−1

∫
I

θ̄b+1[(h+ 1)b − 1]rx
1 + q

dx

+ V α−1

∫
I

θ̄b+1[2(h+ 1)b]hrx
1 + q

dx+ V α−1

∫
I

θ̄b+1(h+ 1)bhr2
x

1 + q
dx

− V α−1

∫
I

θ̄b+1h2rx
1 + q

dx+ V α−1

∫
I

θ̄2[(h+ 1)b − 1]h

1 + q
dx

≡
7∑
i=1

Ii. (3.17)
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Among the terms on the right hand side of (3.17), due to the hypothesis (3.7), we use (3.13),
(3.16) and Schwarz’s inequality to get the estimations on I1, I2, I5, I6 and I7 as follows,

I1 =
αθ̄V α−1

2

∫
I
r2dx ≤ αCV α−1

∫
I
r2
xdx, (3.18)

I2 =
αθ̄2V α−1

2(γ − 1)

∫
I
h2dx ≤ αCV α−1(

∫
I
r2
xdx+

∫
I
h2
xdx), (3.19)

I5 = V α−1

∫
I

θ̄b+1(h+ 1)bhr2
x

1 + q
dx ≤MCV α−1

∫
I
r2
xdx, (3.20)

I6 = −V α−1

∫
I

θ̄b+1h2rx
1 + q

dx ≤MCV α−1(

∫
I
r2
xdx+

∫
I
h2
xdx), (3.21)

and I7 = V α−1

∫
I

θ̄2[(h+ 1)b − 1]h

1 + q
dx ≤ 2|b−1|+1bθ̄2V α−1

∫
I
h2dx

≤ 2|b−1|+2bθ̄2V α−1 | hx |2L2 +2|b−1|+1b(γ − 1)2[(8u2
1 + 1) +

4θ̄2

3θ̄2b
]V α−1

∫
I
r2
xdx, (3.22)

where we we have already used the following inequality

| (h+ 1)b − 1 |≤|
∫ h+1

1
bsb−1ds |≤ 2|b−1|b | h | . (3.23)

In addition, due to (3.7), we use (3.13), (3.16) and Young’s inequality to estimate I3 and I4 as
follows,

I3 =V α−1

∫
I

θ̄b+1[(h+ 1)b − 1]rx
1 + q

dx ≤ (
1

2
)b+3V α−1θ̄2b

∫
I
r2
xdx+ 22|b−1|+b+3b2V α−1θ̄2

∫
I
h2dx

≤(
1

2
)b+3V α−1θ̄2b

∫
I
r2
xdx+ 22|b−1|+b+4b2V α−1θ̄2

∫
I
h2
xdx

+ 22|b−1|+b+3b2(γ − 1)2[(8u2
1 + 1) +

4θ̄2

3θ̄2b
]V α−1

∫
I
r2
xdx, (3.24)

and I4 = V α−1

∫
I

θ̄b+1[2(h+ 1)b]hrx
1 + q

dx ≤ (
1

2
)b+3V α−1θ̄2b

∫
I
r2
xdx+ 23b+3θ̄2V α−1

∫
I
h2dx

≤ (
1

2
)b+3V α−1θ̄2b

∫
I
r2
xdx+ 23b+4θ̄2V α−1

∫
I
h2
xdx

+ 23b+3(γ − 1)2[(8u2
1 + 1) +

4θ̄2

3θ̄2b
]V α−1

∫
I
r2
xdx. (3.25)

Substituting (3.18)–(3.22) and (3.24)–(3.25) into (3.17) and using (3.10), we obtain

{
∫
I

1

2
θ̄bV αr2 +

1

2(γ − 1)
V αh2dx}t +

1

2
θ̄2V α−1

∫
I
h2dx+ η1V

α−1

∫
I
r2
xdx+ η2V

α−1

∫
I
h2
xdx

≤(α+M)CV α−1(

∫
I
r2
xdx+

∫
I
h2
xdx), (3.26)

where η1 = η1(θ̄, b, γ, u1) , (1
2)b+2θ̄2b−(23b+3+2|b−1|+1b+22|b−1|+b+3b2)(γ−1)2[(8u2

1+1)+ 4θ̄2

3θ̄2b
],

and η2 = η2(θ̄, a, b) , (1
2)a+1θ̄a+b+1 − (23b+4 + 2|b−1|+2b+ 22|b−1|+b+4b2)θ̄2.

We observe that the condition (1.20) yields 2b > 2− 2b and a+ b+ 1 > 2. Hence, for fixed
u1, there exists a positive constant θ∗ only depending on a, b, γ and u1, such that if θ̄ ≥ θ∗,
then η1 > 0 and η2 > 0. Thus, there exist positive constants α1 ≤ 1

2 and m1 only depending
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on a, b, γ, u1 and θ̄, such that for α ∈ [0, α1] and M ≤ m1, we have

{
∫
I
θ̄bV αr2 +

1

(γ − 1)
V αh2dx}t + V α−1

∫
I
h2dx+ V α−1

∫
I
r2
xdx+ V α−1

∫
I
h2
xdx ≤ 0. (3.27)

Multiplying (3.2) by V αq, integrating over I, applying Schwarz’s inequality, we have

{
∫
I
V αq2dx}t + (1− α)θ̄1−bV α−1

∫
I
q2dx ≤ V α−1θ̄b−1

∫
I
r2
xdx. (3.28)

Next, we will estimate the higher-order norm of (q, r, h). Differentiating (3.2) with respect
to x, multiplying the resulting equation by V αqx, integrating over I, and applying Schwarz’s
inequality, we have for any t ∈ [0, T ],

{
∫
I
V αq2

xdx}t + (1− α)θ̄1−bV α−1

∫
I
q2
xdx ≤ V α−1θ̄b−1 | rxx |2L2 . (3.29)

From the equation (3.3), we obtain the following equation,

θ̄bV −1(h+ 1)brxx =(1 + q)rt − bθ̄V −1(h+ 1)b−1hxrx + θ̄V −1hx − bθ̄V −1(h+ 1)b−1hx

+ V −1 θ̄
b(h+ 1)brx

1 + q
qx − V −1 θ̄h

1 + q
qx + V −1 θ̄[(h+ 1)b − 1]

1 + q
qx. (3.30)

Multiplying the above by V
α+1
2 , squaring both sides, integrating over I, and using Sobolev’s

inequality and Schwarz’s inequality, by virtue of (3.7) and (3.23), we get for t ∈ [0, T ],

(
1

2
)2bθ̄2bV α−1

∫
I
r2
xxdx ≤ V α−1

∫
I
θ̄2b(h+ 1)2br2

xxdx

≤28V α+1

∫
I
r2
t dx+ CV α−1

∫
I
h2
xr

2
xdx+ 7θ̄2V α−1

∫
I
h2
xdx

+ CV α−1

∫
I
r2
xq

2
xdx+ 28(1 + b222|b−1|)θ̄2V α−1

∫
I
h2q2

xdx

≤28V α+1 | rt |2L2 +7θ̄2V α−1 | hx |2L2 +28(1 + b222|b−1|)M2θ̄2V α−1 | qx |2L2

+
1

20
(
1

2
)2bθ̄2bV α−1 | rxx |2L2 +CV α−1{| rx |2L2 | hx |2L2 + | rx |2L2 | qx |2L2

+ | rx |2L2 | hx |4L2 + | rx |2L2 | qx |4L2}. (3.31)

Therefore, it follows from (3.29) and (3.31) that for α ∈ [0, 1
2 ], there exists a positive constant

m2 only depending on b and θ̄, such that for M ≤ m2 and t ∈ [0, T ], we have

(
1

2
)2bθ̄b+1{

∫
I
V αq2

xdx}t + (
1

2
)2b+1θ̄2V α−1

∫
I
q2
xdx+ (

1

2
)2bθ̄2bV α−1

∫
I
r2
xxdx

≤28V α+1 | rt |2L2 +7θ̄2V α−1 | hx |2L2 +
1

10
(
1

2
)2bθ̄2bV α−1 | rxx |2L2

+ CV α−1{| rx |2L2 | hx |2L2 + | rx |2L2 | qx |2L2 + | rx |2L2 | hx |4L2 + | rx |2L2 | qx |4L2}. (3.32)
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Multiplying (3.4) by (−V αθ̄bhxx), integrating over I and using the boundary condition (3.5),
we obtain for t ∈ [0, T ] that

{
∫
I

θ̄b+1

2(γ − 1)
h2
xdx}t + V α−1

∫
I

θ̄a+b+1(h+ 1)ah2
xx

1 + q
dx− αθ̄2

2(γ − 1)
V α−1

∫
I
h2
xdx

=V α−1(−
∫
I

aθ̄a+b+1(h+ 1)a−1h2
xhxx

1 + q
dx+

∫
I

θ̄a+b+1(h+ 1)aqxhxhxx
(1 + q)2

dx

−
∫
I

θ̄b+1(h+ 1)brxhxx
1 + q

dx+

∫
I

θ̄2hhxx
1 + q

dx−
∫
I

θ̄2b(h+ 1)br2
xhxx

1 + q
dx

+

∫
I

θ̄b+1rxhhxx
1 + q

dx−
∫
I

θ̄b+1[(h+ 1)b − 1]rxhxx
1 + q

dx−
∫
I

θ̄2[(h+ 1)b − 1]hxx
1 + q

dx)

≡
8∑
i=1

Ji. (3.33)

Due to (3.7), using Young’s inequality, Hölder’s inequality and Sobolev’s inequality, by virtue
of (3.13), (3.16) and (3.23), we obtain the estimations on each term on the right hand side of
(3.33) as follows. For t ∈ [0, T ],

J1 =− V α−1

∫
I

aθ̄a+b+1(h+ 1)a−1h2
xhxx

1 + q
dx ≤ aθ̄a+b+12|a−1|+1V α−1 | hx |L∞ | hx |L2 | hxx |L2

≤ 1

16

θ̄a+b+1

2a+1
V α−1 | hxx |2L2 +CV α−1 | hx |6L2 , (3.34)

J2 =V α−1

∫
I

θ̄a+b+1(h+ 1)aqxhxhxx
(1 + q)2

dx ≤ 2a+2θ̄a+b+1V α−1 | hx |L∞ | qx |L2 | hxx |L2

≤ 1

16

θ̄a+b+1

2a+1
V α−1 | hxx |2L2 +CV α−1 | hx |2L2 | qx |4L2 , (3.35)

J3 =− V α−1

∫
I

θ̄b+1(h+ 1)brxhxx
1 + q

dx ≤ 2b+1θ̄b+1V α−1 | hxx |L2 | rx |L2

≤ 1

16

θ̄a+b+1

2a+1
V α−1 | hxx |2L2 +CV α−1 | rx |2L2 , (3.36)

J4 =V α−1

∫
I

θ̄2hhxx
1 + q

dx ≤ 1

16

θ̄a+b+1

2a+1
V α−1 | hxx |2L2 +CV α−1 | h |2L2 , (3.37)

J5 =− V α−1

∫
I

θ̄2b(h+ 1)br2
xhxx

1 + q
dx ≤ 2b+1θ̄2bV α−1 | rx |L∞ | rx |L2 | hxx |L2

≤ 1

16

θ̄a+b+1

2a+1
V α−1 | hxx |2L2 +

1

10
(
1

2
)2bθ̄2bV α−1 | rxx |2L2 +CV α−1(| rx |4L2 + | rx |6L2), (3.38)

J6 =V α−1

∫
I

θ̄b+1rxhhxx
1 + q

dx ≤ 2θ̄b+1V α−1 | h |L∞ | rx |L2 | hxx |L2

≤ 1

16

θ̄a+b+1

2a+1
V α−1 | hxx |2L2 +CM2V α−1 | rx |2L2 , (3.39)

J7 =V α−1

∫
I

θ̄b+1[(h+ 1)b − 1]rxhxx
1 + q

dx ≤ 2|b−1|+1bθ̄b+1V α−1 | h |L∞ | rx |L2 | hxx |L2

≤ 1

16

θ̄a+b+1

2a+1
V α−1 | hxx |2L2 +CM2V α−1 | rx |2L2 , (3.40)
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and

J8 = −V α−1

∫
I

θ̄2[(h+ 1)b − 1]hxx
1 + q

dx ≤ 1

16

θ̄a+b+1

2a+1
V α−1 | hxx |2L2 +CV α−1 | h |2L2 . (3.41)

Substituting (3.34)–(3.41) into (3.33), and using (3.10), we deduce that for α ∈ [0, 1
2 ], M ≤ 1,

there exists a positive constant C2 only depending on a, b, γ, and θ̄, such that for any t ∈ [0, T ],

{
∫
I

θ̄b+1

2(γ − 1)
h2
xdx}t +

θ̄a+b+1

2a+2
V α−1

∫
I
h2
xxdx

≤ 1

10
(
1

2
)2bθ̄2bV α−1 | rxx |2L2 +C2V

α−1(| rx |2L2 + | hx |2L2 + | h |2L2)

+ CV α−1(| rx |4L2 + | hx |6L2 + | hx |2L2 | qx |4L2 + | rx |6L2). (3.42)

Multiplying (3.3) by V α+1rt, integrating over I and using the boundary condition (3.5), we
have for t ∈ [0, T ],

{
∫
I
V α θ̄

b(h+ 1)br2
x

2(1 + q)
dx}t + {

∫
I
V α θ̄[(h+ 1)b − 1− h]rx

1 + q
dx}t +

∫
I
V α+1r2

t dx

=αV α−1

∫
I

θ̄b+1(h+ 1)br2
x − 2θ̄2hrx + 2θ̄2[(h+ 1)b − 1]rx

2θ̄b(1 + q)
dx+ V α

∫
I

bθ̄b(h+ 1)b−1htr
2
x

2(1 + q)
dx

+ V α

∫
I

θ̄[b(h+ 1)b−1 − 1]htrx
1 + q

dx+ V α

∫
I
dx− V α

∫
I

θ̄b(h+ 1)br2
xqt

2(1 + q)2
dx

− V α

∫
I

θ̄[(h+ 1)b − 1− h]rxqt
(1 + q)2

dx

≡
5∑
i=1

Li. (3.43)

Due to (3.7), applying (3.23), Sobolev’s inequality, Hölder’s inequality and Schwarz’s inequality,
and using the equations (3.2) and (3.4), we get the following estimations on each term on the
right hand side of (3.43). For t ∈ [0, T ],

L1 ≤αC(| rx |2L2 + | h |2L2), (3.44)

L2 ≤
1

290
(
1

2
)2bθ̄2bV α−1 | rxx |2L2 +

1

29

θ̄a+b+1

2a+4
V α−1 | hxx |2L2 +C | rx |2L2 +C | rx |4L2 +C | hx |4L2

+ C | rx |6L2 +C | hx |2L2 | rx |4L2 +C | rx |2L2 | hx |2L2 | qx |2L2 , (3.45)

L3 ≤
1

290
(
1

2
)2bθ̄2bV α−1 | rxx |2L2 +

1

29

θ̄a+b+1

2a+4
V α−1 | hxx |2L2 +C | rx |2L2 + | hx |2L2 +C | rx |3L2

+ C | rx |4L2 +C | rx |2L2 | hx |2L2 +C | rx |2L2 | qx |2L2 +C | rx |2L2 | qx |4L2 , (3.46)

L4 ≤
1

290
(
1

2
)2bθ̄2bV α−1 | rxx |2L2 +C | rx |2L2 +C | rx |3L2 +C | rx |6L2 , (3.47)

and L5 ≤ C(| rx |2L2 + | h |2L2). (3.48)
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Substituting (3.44)–(3.48) into (3.43) and considering α ∈ [0, 1
2 ], we have

{
∫
I
V α θ̄

b(h+ 1)br2
x

2(1 + q)
dx}t + {

∫
I
V α θ̄[(h+ 1)b − 1− h]rx

1 + q
dx}t +

∫
I
V α+1r2

t dx

≤ 3

290
(
1

2
)2bθ̄2bV α−1 | rxx |2L2 +

1

29

θ̄a+b+1

2a+3
V α−1 | hxx |2L2 +

1

29
C3V

α−1(| rx |2L2 + | h |2L2)

+ CV α−1{| rx |3L2 +C | rx |4L2 + | hx |4L2 + | rx |2L2 | hx |2L2 + | rx |2L2 | qx |2L2 + | rx |6L2

+ | hx |2L2 | rx |4L2 + | rx |2L2 | qx |4L2 + | rx |2L2 | hx |2L2 | qx |2L2}, (3.49)

where C3 is a positive constant only depending on a, b, γ, u1 and θ̄.

Furthermore, we define

A(t) ,
∫
I
V α θ̄

b(h+ 1)br2
x

2(1 + q)
dx, B(t) ,

∫
I
V α θ̄[(h+ 1)b − 1− h]rx

1 + q
dx, (3.50)

and then by using Young’s inequality and Schwarz’s inequality, we have

(
1

2
)b+3θ̄b

∫
I
V (t)αr2

x(t)dx− (22|b−1|b2 + 1)2b+4θ̄2−b
∫
V (t)αh2dx ≤ A(t) +B(t)

≤(2bθ̄b + θ̄)

∫
I
V (t)αr2

x(t)dx+ (22|b−1|+1b2 + 2)θ̄

∫
V (t)αh2dx. (3.51)

Last, we do the computation as

N × (3.27) + (3.28) + (3.32) + 29× (3.42) + (3.49),

where

N = θ̄b−1 + 7θ̄2 + C1 + C2 + C3 + (22|b−1|b2 + 1)2b+4θ̄2−b,

and then we have the following estimate

{V α(t) | (q, qx, r, hx)(t) |2L2 +A(t) +B(t) +NV α(t) | h(t) |2L2}t
+ V α−1(t)

(
| (q, qx, rx, hx, h)(t) |2L2 + | (rxx, hxx)(t) |2L2

)
+ V α+1(t) | rt(t) |2L2

≤CV α−1(t)
(
| rx |3L2 + | rx |4L2 + | hx |4L2 + | rx |2L2 | hx |2L2 + | rx |2L2 | qx |2L2

+ | rx |6L2 + | hx |6L2 + | rx |2L2 | hx |4L2 + | rx |2L2 | qx |4L2 + | hx |2L2 | rx |4L2

+ | hx |2L2 | qx |4L2 + | rx |2L2 | hx |2L2 | qx |2L2

)
, (3.52)

for t ∈ [0, T ] and α ∈ [0, α1], provided that θ̄ ≥ θ∗ and M ≤ min{1
2 ,m1,m2}. Here we put

Z(t) ,| (q, r, h)(t) |2H1 . (3.53)

Then by (3.51) and (3.13), it follows from (3.52) that

{V (t)αZ(t)}t + V (t)α−1Z(t){1− C(Z(t)
1
2 + Z(t) + Z(t)2)}

+V (t)α−1 | (rxx, hxx)(t) |2L2 +V α+1(t) | rt(t) |2L2≤ 0, (3.54)

for any t ∈ [0, T ], α ∈ [0, α1]. When I0 is suitably small, solving the above differential inequality
and we obtain

V (t)αZ(t) ≤ vα1Z(0), ∀ t ∈ [0, T ], α ∈ [0, α1]. (3.55)

Thus, from (3.53) and (3.55), we have the following estimate

V (t)α | (q, r, h)(t) |2H1≤ vα1 I2
0 , ∀ t ∈ [0, T ], α ∈ [0, α1]. (3.56)

Furthermore, we could deduce from (3.54) and (3.56) that∫ t

0
| (rxx, hxx)(s) |2L2 ds ≤ I2

0 , ∀ t ∈ [0, T ], α ∈ [0, α1]. (3.57)
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Therefore, (3.8) and (3.9) are satisfied and the proof of Proposition 3.1 is completed. �

3.2. Global Existence.

Now, we are ready to prove our main result with the help of Proposition 3.1.

Proof of Theorem 1.1. First, let θ∗ and M be the same as in Proposition 3.1, and let
ε = 1

4M . Next, the local existence result in Lemma 2.3 yields the local existence of unique

strong solution (q, r, h) to (3.2)–(3.6) on [0, T1] × I, satisfying (q, r, h) ∈ C([0, T1];H1), which
together with Sobolev’s inequality implies that there exists T0 ∈ (0, T1) such that | q, r, h |0,T0≤
M . Then by using Proposition 3.1 on [0, T0], we obtain the estimate (3.8) and (3.9) for any
t ∈ [0, T0], from which we deduce that | (q, r, h)(T0) |L∞≤ M , infx∈I V (1 + q)(T0, x) > C and
infx∈I θ̄(1 + h)(T0, x) > C, where C is some positive constant only depending on a, b, γ, u1

and θ̄. Therefore, by a standard argument, we can extend the priori estimate (3.8) on [0, T0]
to a global priori estimate, and we refer readers to [15] for the details. Finally, with the help
of the global priori estimate (3.8), the existence of global solution (q, r, h) to (3.2)–(3.6) can
be established by extending the local strong solution to a global one by a standard continuity
argument, for which we refer readers to [11,16]. Let v = V (1 + q), u = U + r and θ = θ̄(1 +h),
we could verify that (v, u, θ) is a global strong solution to (1.8)–(1.12), satisfying (1.26) and
(1.27). As for the decay property (1.28), it follows from (1.27) by using Sobolev’s inequality.

The proof of Theorem 1.1 is completed. �
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