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1. Introduction and Preliminaries

In 1930 Kuratowski [2], introduced the measure of non-compactness α(S) where S is a bounded
subset of a metric space X. This notion was used effectively in the definition of a Hausdorff
measure of non-compactness, χ(S), see e.g. [1] and the references therein. One of the main aim
is to derive best proximity point results for certain mappings, by using the concept of a measure
of noncompactness.

We shall present some definitions, notations and results which will be needed in the sequel.
Throughout this paper, the letter E represents an infinite dimensional Banach Space. The
symbols co(C) denotes the closure of convex hull of C ⊂ E, which is the smallest closed and
convex set that contains C. Furthermore, the expressions ME and NE indicated the family of
nonempty bounded subsets of E and the subfamily consisting of all relatively compact subsets
of E, respectively.

A function ψ : [0,∞) → [0,∞) is called an altering distance function [4] if the following
properties are satisfied:

(1) ψ is nondecreasing and continuous;
(2) ψ−1(0) = 0;
(3) ψ(t) < t for t > 0.

The class of all altering distance functions will be denoted by Ψ. Also, by Φ we denote the class
of all continuous and nondecreasing functions ϕ : [0,∞) → [0,∞) such that ϕ(t) > 0 for all
t > 0.

A mapping F : [0,∞)2 → R is called C-class function [5] if it is continuous and satisfies the
following axioms:

(1) F (s, t) ≤ s;
(2) F (s, t) = s implies that either s = 0 or t = 0; for all s, t ∈ [0,∞).

We denote C-class functions as C, for short.

Definition 1.1. [3] A mapping µ : ME → [0,∞) is said to be a measure of noncompactness in
E if it satisfies the following conditions:

(A1) ∅ 6= Kerµ := {X ∈ME : µ(X) = 0} ⊆ NE.
(A2) X ⊆ Y ⇒ µ(X) ≤ µ(Y ).
(A3) µ(X) = µ(coX) = µ(X).
(A4) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].
(A5) If (Xn) is a sequence of closed sets in ME such that Xn+1 ⊆ Xn, for each positive integer

n, and if limn→∞ µ(Xn) = 0 then the intersection set X∞ =
⋂∞
n=1Xn is nonempty.

The family Kerµ described in (A1) is said to be the kernel of the measure of non-compactness
µ. Note that the intersection set lies in 6= Ker, that is, X∞ ∈ Kerµ, since µ(X∞) ≤ µ(Xn) for
any n.

The following is one of the pioneer results in the direction of finding fixed point via the
measure of non-compactness and it extend the well-known Schauder fixed point theorem.
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Theorem 1.2. ([3, Darbo]). Let C be a nonempty, bounded, closed, and convex subset of a
Banach space E and let T : C → C be a continuous mapping. Assume that there exists a
constant k ∈ [0, 1) such that

µ(T (X)) ≤ kµ(X)

for any subset X of C, then T has a fixed point.

Definition 1.3. Let X be a Banach space. We say that X is strictly convex if the following
implication holds for all x, y, p ∈ X and R > 0:

‖x− p‖ ≤ R,
‖y − p‖ ≤ R,
x 6= y

⇒ ‖x+ y

2
− p‖ < R.

Let A and B be two nonempty subsets of a normed linear space Y . The pair (A,B) satisfies
a property if both A and B satisfy that property. So, we say that (A,B) is closed if and only if
both A and B are closed; (A,B) ⊆ (C,D) ⇔ A ⊆ C, B ⊆ D. From now on, B(x; r) will mean
the closed ball in the Banach space X centered at x ∈ X with radius r > 0. We shall also adopt
the following notations

δx(A) = sup{d(x, y) : y ∈ A} for all x ∈ X,
δ(A,B) = sup{d(x, y) : x ∈ A, y ∈ B},

diam(A) = δ(A,A).

We mention that if A is a nonempty and compact subset of a Banach space X, then co(A) is
compact (see Dunford-Schwartz [13]). In addition, we set

dist(A,B) := inf{‖x− y‖ : (x, y) ∈ A×B},
A0 := {x ∈ A : ∃ y′ ∈ B : ‖x− y′‖ = dist(A,B) (y′ is called a proximal point of x)},
B0 := {y ∈ B : ∃ x′ ∈ A : ‖x′ − y‖ = dist(A,B) (x′ is called a proximal point of y)}.

Definition 1.4. A nonempty pair (A,B) in a normed linear space Y is said to be proximinal if
A = A0 and B = B0.

It is remarkable to note that if (A,B) is a nonempty, bounded, closed and convex pair in a
reflexive Banach space X, then (A0, B0) is also nonempty, closed and convex.

A mapping T : A ∪B → A ∪B is said to be
(i) relatively nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for any (x, y) ∈ A×B,
(ii) relatively u-continuous mapping if

for all ε > 0, there is δ > 0 : if ‖x− y‖∗ < δ then ‖Tx− Ty‖∗ < ε,

for all (x, y) ∈ A×B, where ‖x− y‖∗ = ‖x− y‖ − dist(A,B).
(iii) cyclic if T (A) ⊆ B and T (B) ⊆ A,
(iv) noncyclic if T (A) ⊆ A and T (B) ⊆ B,

(v) compact if the pair (T (A), T (B)) is compact (see [18]).

Definition 1.5. Let (A,B) be a nonempty pair in a Banach space X and T : A ∪ B → A ∪ B
be a mapping. If T is cyclic, then a point p ∈ A ∪ B is said to be a best proximity point for T
provided that

‖p− Tp‖ = dist(A,B).

Also, if T is noncyclic, then the pair (p, q) ∈ A×B is called a best proximity pair for T provided
that

p = Tp, q = Tq, ‖p− q‖ = dist(A,B).

Existence of best proximity points (pairs) for cyclic (noncyclic) relatively nonexpansive map-
pings was first studied by Eldred-Kirk-Veeramani ([14]), under a geometric concept of proximal
normal structure. Here, we state the following existence results which play important roles in
our coming discussions.

Theorem 1.6. ([18, Theorem 3.2]) Let (A,B) be a nonempty, bounded, closed and convex pair
in a reflexive Banach space X. Assume that T : A∪B → A∪B is a cyclic relatively nonexpansive
mapping. If T is compact, then it admits a best proximity point.
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Theorem 1.7. ([19, Theorem 5]) Let (A,B) be a nonempty, bounded, closed and convex pair in
a reflexive and strictly convex Banach space X. Assume that T : A∪B → A∪B is a noncyclic
relatively u-continuous mapping. If T is compact, then it admits a best proximity pair.

The cyclic (noncyclic) version of condensing mappings was introduced in [18] in order to study
the existence of best proximity points (pairs) and to generalize Theorems 1.6 and 1.7 above.

Definition 1.8. Let (A,B) be a nonempty and convex pair in a Banach space X and µ a
measure of non-compactness on X. A cyclic (noncyclic) mapping T : A∪B → A∪B is said to
be a condensing operator if there exists r ∈ (0, 1) such that for any nonempty, bounded, closed,
convex, proximal and T -invariant pair (H1, H2) ⊆ (A,B) such that dist(H1, H2) = dist(A,B)
we have

µ(T (H1) ∪ T (H2)) ≤ rµ(H1 ∪H2).

Next results are real extensions of Theorem 1.2 due to Darbo.

Theorem 1.9. ([18, Theorem 3.4]) Let (A,B) be a nonempty, bounded, closed and convex pair
in a reflexive Banach space X and µ an measure of non-compactness on X. If T : A∪B → A∪B
is a cyclic relatively nonexpansive mapping which is condensing in the sense of Definition 1.8,
then it admits a best proximity point.

The above theorem holds true for noncyclic relatively nonexpansive mapping whenever we
add an additional condition “strict convexity”:

Theorem 1.10. ([18, Theorem 3.4]) Let (A,B) be a nonempty, bounded, closed and convex pair
in a reflexive and strictly convex Banach space X and µ an measure of non-compactness on X.
If T : A∪B → A∪B is a noncyclic relatively nonexpansive mapping which is condensing in the
sense of Definition 1.8, then it admits a best proximity pair.

We also refer to Gabeleh-Vetro [20] for the generalizations of Theorems 1.9 and 1.10, by
considering a class of cyclic (noncyclic) Meir-Keeler condensing operators.

2. Condensing operators on C-class of functions

Motivated by the class of condensing operators in Definition 1.8, we introduce the following
new classes of cyclic (noncyclic) mappings.

Definition 2.1. Let (A,B) be a nonempty and convex pair in a Banach space X and µ an
measure of non-compactness on X. A cyclic (noncyclic) mapping T : A∪B → A∪B is said to
be a condensing operator on C-class of functions if for any nonempty, bounded, closed, convex,
proximal and T -invariant pair (H1, H2) ⊆ (A,B) such that dist(H1, H2) = dist(A,B) we have

ψ
(
µ
(
T (H1) ∪ T (H2)

))
≤ F

(
ψ
(
µ(H1 ∪H2)

)
, ϕ
(
µ(H1 ∪H2)

))
, (1)

for all ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C.

Remark 2.2. If in the above definition ψ(t) = t and F (s, t) = rs for all s, t ∈ [0,∞) and for
some r ∈ (0, 1), then T is a condensing operator in the sense of Definition 1.8.

Remark 2.3. If in the above definition ψ(t) = t and F (s, t) = sβ(s) for all s, t ∈ [0,∞) where
β : [0,∞) → [0, 1) is a function such that β(tn) → 1 ⇒ tn → 0, then T is a β-condensing
operator which was recently introduced in [19].

We begin our main results with the next existence theorem.

Theorem 2.4. Let (A,B) be a nonempty, disjoint, bounded, closed and convex pair in a strictly
convex Banach space X such that A0 is nonempty and µ is an measure of non-compactness on
X. Let T : A∪B → A∪B be a noncyclic relatively u-continuous mapping which is a condensing
operator on C-class of functions. Then T has a best proximity pair.

Proof. Notice that (A0, B0) is closed, convex and proximinal. Relatively u-continuity of the
mapping T ensures that (A0, B0) is T -invariant. By a similar notations of the proof of [19,
Theorem 6], we set A0 = A0 and D0 = B0 and for all n ∈ N define

Cn = co(T (Cn−1)), Dn = co(T (Dn−1)).
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Thus

C1 = co(T (C0)) = co(T (A0)) ⊆ A0 = C0,
and iteratively we have Cn−1 ⊇ Cn for all n ∈ N. Analogously, we find that Dn−1 ⊇ Dn for all
n ∈ N. On the other hand, we have

T (Cn) ⊆ co(T (Cn)) = Cn+1 ⊆ Cn.

Equivalently, we have T (Dn) ⊆ Dn. Thus, we conclude, for all n ∈ N, that each pair (Cn,Dn) is
T invariant and moreover each mentioned pair is closed and convex. Moreover, by the fact that
T relatively u-continuous, if (x, y) ∈ C0 × D0 with ‖x − y‖ = dist(A,B), then ‖Tnx − Tny‖ =
dist(A,B) for all n ∈ N. Since (Tnx, Tny) ∈ Cn ×Dn, we have

dist(Cn,Dn) = dist(A,B), ∀n ∈ N.

On the other hand, if u ∈ C1 = co(T (C0)), then u =
∑m

j=1 cjT (uj) where uj ∈ C0 for all

1 ≤ j ≤ m such that cj ≥ 0 and
∑m

j=1 cj = 1. Since (C0,D0) is proximinal, for all 1 ≤ j ≤ m there

exists vj ∈ D0 such that ‖uj−vj‖ = dist(C0,D0) (= dist(A,B)) and so ‖Tuj−Tvj‖ = dist(A,B).
Put v :=

∑m
j=1 cjT (vj). Then v ∈ D1 and

‖u− v‖ = ‖
m∑
j=1

cjT (uj)−
m∑
j=1

cjT (vj)‖ ≤
m∑
j=1

‖T (uj)− T (vj)‖ = dist(A,B).

Hence, the pair (C1,D1) is proximinal. By a similar argument we conclude that the (Cn,Dn) is
proximinal for all n ∈ N∪{0}. Notice that if there exists k ∈ N for which max{µ(Ck), µ(Dk)} = 0,
then (Ck,Dk) is a compact pair and the result follows from Theorem 1.7. Thus we suppose that
max{µ(Cn), µ(Dn)} > 0 for all n ∈ N. In view of the fact that T is a condensing operator on
C-class of functions, we obtain

ψ
(
µ(Cn+1 ∪ Dn+1)

)
= ψ

(
max{µ(Cn+1), µ(Dn+1)}

)
= ψ

(
max{µ(co(T (Cn))), µ(co(T (Dn)))}

)
= ψ

(
max{µ((T (Cn))), µ((T (Dn)))}

)
≤ψ
(
µ(T (Cn) ∪ T (Dn))

)
(*)

≤ F
(
ψ
(
µ(Cn ∪ Dn)

)
, ϕ
(
µ(Cn ∪ Dn)

))
≤ ψ

(
µ(Cn ∪ Dn)

)
. (2)

Since {µ(Cn ∪ Dn)} is a decreasing sequence we may assume that

lim
n→∞

µ(Cn ∪ Dn) = r

for some r ≥ 0. Now from (2) and the continuity of the ψ, F we must have

ψ(r) ≤ F
(
ψ(r), ϕ(r)

)
≤ ψ(r),

and so by the property of the function F we conclude that either ψ(r) = 0 or ϕ(r) = 0. In both
cases, we must have r = 0. Thereby,

lim
n→∞

µ(Cn ∪ Dn) = max{ lim
n→∞

µ(Cn), lim
n→∞

µ(Dn)} = 0.

It now follows from the condition (A5) of Definition 1.1 that the pair (C∞,D∞) is nonempty,
closed and convex which is T -invariant, where C∞ =

⋂∞
n=0 Cn and D∞ =

⋂∞
n=0Dn. Also

dist(C∞,D∞) = dist(A,B) and clearly, (C∞,D∞) is proximinal. On the other hand, max{µ(C∞), µ((D∞))} =
0 which ensures that the pair (C∞,D∞) is compact. Now the result follows from Theorem 1.7. �

The cyclic version of Theorem 2.4 can be constructed in order to study the existence of best
proximity points in the setting of Banach spaces which are not strictly convex, necessarily.

Theorem 2.5. Let (A,B) be a nonempty, disjoint, bounded, closed and convex pair in a Banach
space X such that A0 is nonempty and µ is an measure of non-compactness on X. Let T :
A ∪ B → A ∪ B be a cyclic relatively nonexpansive mapping which is a condensing operator on
C-class of functions. Then T has a best proximity point.
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Proof. Using a similar argument of Theorem 2.4 we have that (A0, B0) is closed, convex, prox-
iminal and T -invariant, that is, T (A0) ⊆ B0 and T (B0) ⊆ A0. By a similar argument of the
proof of [19, Theorem 8] we define the sequence {(Cn,Dn)} as below:

Cn = co(T (Cn−1)), Dn = co(T (Dn−1)),

where, C0 := A0 and D0 := B0, then we have

C1 = co(T (C0)) = co(T (A0)) ⊆ B0 = D0,

and so, T (C1) ⊆ T (D0) which ensures that C2 = co(T (C1)) ⊆ co(T (D0)) = D1. Iteratively, we
obtain Cn+1 ⊆ Dn which is equivalent to say that Dn ⊆ Cn−1 for all n ∈ N. Therefore,

Cn+2 ⊆ Dn+1 ⊆ Cn ⊆ Dn−1, for all n ∈ N.

This concludes that {(C2n,D2n)}n≥0 is a decreasing sequence consisting of closed and convex
pairs in A0 ×B0. Besides,

T (D2n) ⊆ T (C2n−1) ⊆ co(T (C2n−1)) = C2n,

T (C2n) ⊆ T (D2n−1) ⊆ co(T (D2n−1)) = D2n.

Thus (C2n,D2n) is T -invariant. We also can see that by a similar approach of the proof of
Theorem 2.4,

dist(C2n,D2n) ≤ ‖T 2nx− T 2ny‖ ≤ ‖x− y‖ = dist(A,B),

and that (C2n,D2n) is also proximinal for all n ∈ N. Notice that if

max{{µ(C2k), µ(D2k)} = 0

for some k ∈ N, then the result follows from Theorem 1.9. Let

max{{µ(C2n), µ(D2n)} > 0

for all n ∈ N. By the fact that T is a condensing operator on C-class of functions,

ψ
(
µ(C2n+2 ∪ D2n+2)

)
= ψ

(
max{µ(C2n+2), µ(D2n+2)}

)
≤ ψ

(
max{µ(D2n+1), µ(C2n+1)}

)
= ψ

(
max{µ(co(T (D2n))), µ(co(T (C2n)))}

)
= ψ

(
max{µ((T (C2n))), µ((T (D2n)))}

)
≤ ψ

(
µ(T (C2n) ∪ T (D2n))

)
≤ F

(
(µ(C2n ∪ D2n)), µ(C2n ∪ D2n)

)
(**)

≤ ψ
(
µ(C2n ∪ D2n)

)
.

It now follows from the conditions on C-class of functions that

lim
n→∞

µ(C2n ∪ D2n) = max{ lim
n→∞

µ(C2n), lim
n→∞

µ(D2n)} = 0.

Now if we set C∞ =
⋂∞
n=0 C2n, and D∞ =

⋂∞
n=0D2n then (C∞,D∞) is nonempty, closed, convex,

and T -invariant with dist(A,B) = dist(C∞,D∞) for which we have max{µ(C∞), µ((D∞))} = 0.
Again by using Theorem 1.9 the result follows. �

It is worth noticing that if in Theorem 2.4 A = B, then the existence of fixed points will be
concluded as follows.

Corollary 2.6. ([6]) Let A be a nonempty, bounded, closed, and convex subset of a Banach
space X and let T : A→ A be a nonexpansive mapping such that

ψ(µ(T (H))) ≤ F (ψ(µ(H)), ϕ(µ(H))), (3)

for any subset H ⊆ A and where ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C. Then T has a fixed point.

Remark 2.7. It is remarkable to note that the considered mapping T in Corollary 2.6 need to
be nonexpansive and if that is continuous, then the result still holds (see Theorem 2.1 of [6] for
more details).
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3. Application to a class of functional integral equations

Let a > 0 and C([0, a]) be the family of all continuous real valued functions defined on interval
[0, a]. It is known that C([0, a]) is a Banach space with the standard norm

‖x‖ = max{|x(t)| : t ∈ [0, a]}.
Let X be a subset of MC([0,a]). For ε > 0 and x ∈ X, we denote by ω(x, ε) the modulus of

continuity of x defined by

ω(x, ε) = sup{|x(t1)− x(t2)| : t1, t2 ∈ [0, a], |t1 − t2| ≤ ε}. (4)

Furthermore, let ω(X, ε) and ω0(X) are defined by

ω(X, ε) = sup{ω(x, ε) : x ∈ X}
ω0(X) = lim

ε→0
ω(X, ε)

It was announced in [3] that above function ω0 is a measure of non-compactness in space C[0, a].
Let I = [0, a], J = [0, C] and let ϕ ∈ Φ, ψ ∈ Ψ, F ∈ C. Assume that αi, βj , : I → I, γk : J → I,

φ : I → R+, are continuous functions, where 1 ≤ i ≤ m, 1 ≤ j ≤ l, and 1 ≤ k ≤ n. Moreover,
motivated by the results of [7], we consider the following continuous functions

g : I × Rl → R, f : I × Rm → R, u : I × J × Rn → R,
so that

(1) ∃ ai for 1 ≤ i ≤ m such that

|f(t, x1, · · · , xm)− f(t, y1, · · · , ym)| ≤ F (ψ(
m∑
1

ai|xi − yi|), ϕ(
m∑
1

ai|xi − yi|)), (5)

(2) ∃ bi 1 ≤ i ≤ l such that

|g(t, x1, · · · , xl)− g(t, y1, · · · , yl)| ≤ F (ψ(

l∑
1

bi|xi − yi|), ϕ(

l∑
1

bi|xi − yi|)), (6)

(3) ∃ hi : R+ → R+ for which hi is nondecreasing for any 1 ≤ i ≤ n and

|u(t, τ, x1, · · · , xn)| ≤
n∑
1

hi(|xi|), (7)

where t ∈ I, τ ∈ J, xi, yi ∈ R.
(4) There exists a positive solution r0 of the inequality

Blr +M + C(Amr +N)(

n∑
1

hi(r)) ≤ r, (8)

where B = max{bi : 1 ≤ i ≤ l}, A = max{ai : 1 ≤ i ≤ m} and M,N, and C are the
positive constants such that

|g(t, 0, 0, · · · , 0)| ≤M, |f(t, 0, 0, · · · , 0)| ≤ N, and φ(t) ≤ C, ∀t ∈ I.
(5) By definition (4)

sup
t,t′∈I,|t−t′|≤ε

{F (|ψ(x(t)− x(t′))|, |ϕ(x(t)− x(t′))|)} ≤ F (ψ(ω(x, ε)), ϕ(ω(x, ε))) (9)

Set
xβ(t) := (x(β1(t)), x(β2(t)), · · · , x(βl(t))),

xα(t) := (x(α1(t)), x(α2(t)), · · · , x(αm(t))),

xγ(t) := (x(γ1(t)), x(γ2(t)), · · · , x(γn(t))), ∀t ∈ I.
Consider

x(t) = g(t, xβ(t)) + f(t, xα(t))

∫ φ(t)

0
u(t, τ, xγ(τ))dτ. (10)

Tx(t) := g(t, xβ(t)) + f(t, xα(t))

∫ φ(t)

0
u(t, τ, xγ(τ))dτ. (11)
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Theorem 3.1. ([6]) Let C be a nonempty, bounded, closed, and convex subset of a Banach space
E and let T : C → C be continuous mapping, such that

ψ(µ(T (M))) ≤ F (ψ(µ(M)), ϕ(µ(M))), (12)

for any subset M of C and where ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C. Then T has a fixed point.

Theorem 3.2. Under the assumptions (5),(6),(7),(8) and (9) the nonlinear integral equation
(11) has at least a solution.

Proof. By the above conditions, we shall prove the measure of noncompactness ω0(X) is satis-
fying the contraction (12). To do this we have some claims:

Claim 1. Tx ∈ Br0 ; Br0 is a ball.

Claim 2. Operator T : Br0 → Br0 is continuous.

Claim 3. Operator T satisfies (12) with respect to measure of noncompactness ω0 in Br0 .

To prove Claim 1, we have

|Tx(t)| ≤ |g(t, xβ(t))− g(t,0l)|+ |g(t,0l)| (0l = (0, · · · , 0)︸ ︷︷ ︸
l times

)

+ |f(t, xα(t))− f(t,0m) + f(t,0m)| (0m = (0, · · · , 0)︸ ︷︷ ︸
m times

)

×
∫ φ(t)

0
|u(t, τ, xγ(τ))|dτ

≤ F (ψ(

l∑
1

bi|xβi(t)|), ϕ(

l∑
1

bi|xβi(t)|)) +M (by (5))

+ C

(
F (ψ(

m∑
1

ai|xαi(t)|), ϕ(
m∑
1

ai|xαi(t)|)) +N

)(
n∑
1

h(|xγi(t)|)

)
(by (6),(7))

≤
l∑
1

bi|xβi(t)|+M + C

(
m∑
1

ai|xαi(t)|+N

)(
n∑
1

h(|xγi(t)|)

)
(Defintion (1),(7))

≤ Bl‖x‖+M + C(Am‖x‖+N)

(
n∑
1

h(‖x‖)

)

≤ Blr0 +M + C(Amr0 +N)

(
n∑
1

h(r0)

)
(by (8))

≤ r0.

This result shows that Tx ∈ Br0 .
To prove Claim 2; we prove that operator T : Br0 → Br0 is continuous. To do this, consider

ε > 0 and any x, y ∈ Br0 such that |xi − yi| ≤ ε. Then we obtain the following inequalities by
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using conditions of Theorem

|Tx(t)− Ty(t)| ≤ |g(t, xβ(t))− g(t, yβ(t))|
+ |f(t, xα(t))− f(t, yα(t))|

×
∫ φ(t)

0
|u(t, τ, xγ(τ))|dτ

+ |f(t, yα(t))− f(t,0m)| (0m = (0, · · · , 0)︸ ︷︷ ︸
m times

)

+ |f(t,0m)|
∫ φ(t)

0
|u(t, τ, xγ(τ))− u(t, τ, yγ(τ))|dτ

≤ F (ψ(
l∑
1

ai|xβi(t)− yβi(t)|), ϕ(
l∑
1

ai|xβi(t)− yβi(t)|)) (by (12))

+ C

(
F (ψ(

m∑
1

bi|xαi(t)− yαi(t)|), ϕ(
m∑
1

bi|xαi(t)− yαi(t)|))

)

×

(
n∑
1

hi(|xγi(t)|)

)

+

(
n∑
1

hi(|yγi(t)|+N)

)∫ φ(t)

0
|u(t, τ, xγ(τ))− u(t, τ, yγ(τ))|dτ

≤
l∑
1

aiψ(|xβi(t)− yβi(t)|) + C

(
m∑
1

biψ(|xαi(t)− yαi(t))

)

×

(
n∑
1

h(|xγi(t)|)

)

+

(
n∑
1

h(|yγi(t)|+N)

)∫ φ(t)

0
|u(t, τ, xγ(τ))− u(t, τ, yγ(τ))|dτ

≤
l∑
1

ai‖x− y‖+ C

(
m∑
1

bi‖x− y‖

)(
n∑
1

hi(‖x‖)

)
+ (An‖y‖+N)Cωu(I, ε)

≤ mBε+ CAmε

(
n∑
1

h(r0)

)
+ (Anr0 +N)Cωu(I, ε),

where

ωu(I, ε) = sup
t∈I,τ∈J,xi,yi∈R0,1≤i≤m,|xi−yi|≤ε

{|u(t, τ, x1, · · · , xm)− u(t, τ, y1, · · · , ym)}

where J := [0, C] and R0 = [−r0, r0]. u is uniformly continuous on I ×J ×Rm0 and ωu(I, ε)→ 0
as ε→ 0. So T is continuous on Br0 .

To prove Claim 3; we show that operator T satisfies (12) with respect to measure of noncom-
pactness ω0 in Br0 .
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Fix arbitrary ε > 0. Let us consider x ∈ X and t1, t2 ∈ I with |t1− t2| ≤ ε, for any nonempty
subset X of Br0 :

|Tx(t1)− Tx(t2)| ≤ |g(t1, xβ(t1))− g(t1, xβ(t2))|+ |g(t1, xβ(t2))− g(t2, xβ(t2))|
+[|f(t1, xα(t1))− f(t1, xα(t2))|+ |f(t1, xα(t2))− f(t2, xα(t2))|]
×
∫ φ(t1)
0 |u(t1, τ, xγ(τ))|dτ

+|f(t2, xα(t2))|
∫ φ(t1)
0 |u(t1, τ, xγ(τ))− u(t2, τ, xγ(τ))|dτ

+|f(t2, xα(t2))|
∫ φ(t2)
φ(t1)

|u(t2, τ, xγ(τ))|dτ
≤ F (ψ(

∑l
1 bi|xβi(t1)− xβi(t2)|), ϕ(

∑l
1 bi|xβi(t1)− xβi(t2)|)) + ωg(I, ε)

+C (F (ψ(
∑m

1 ai|xαi(t1)− xαi(t1)|), ϕ(
∑m

1 ai|xαi(t1)− xαi(t2)|)) + ωf (I, ε))
× (
∑n

1 hi(|xγi(τ)|)) + [|f(t2, xαi(t2)− f(t,0)|
+|f(t,0)| (Cωu(I, ε) + ω(φ, ε) (

∑n
1 hi(|xγi(τ)|)))

≤ F (ψ(B
∑l

1 ω(x, ω(βi, ε))), ϕ(B
∑l

1 ω(x, ω(βi, ε)))) + ωg(I, ε)

+C
(
F (ψ((A

∑l
m ω(x, ω(αi, ε))), ϕ((A

∑l
m ω(x, ω(αi, ε)))) + ωf (I, ε)

)
× (
∑n

1 hi(‖x‖))
+ (
∑n

1 ai‖x‖+N)) (Cω(x, ωu(I, ε)) + ω(φ, ε) (
∑n

1 hi(‖x‖))) .
(by (9))

Therefore

|Tx(t1)− Tx(t2)| ≤ F (ψ(Bmω(X, ε), ϕ(Bmω(X, ε))) + ωg(I, ε)

+ C (F (ψ((Alω(X, ε))), ϕ((Alω(X, ε)))) + ωf (I, ε))

(
n∑
1

hi(‖x‖)

)

+

(
n∑
1

ai‖x‖+N)

)(
Cω(x, ωu(I, ε) + ω(φ, ε)

(
n∑
1

hi(‖x‖)

))
(13)

≤ B
m∑
1

ω(x, ω(βi, ε)) + ωg(I, ε)

+ C

(
A

l∑
1

ω(x, ω(βi, ε)) + ωg(I, ε)

)(
n∑
1

hi(‖x‖)

)

+

(
n∑
1

ai‖x‖+N)

)(
Cω(x, ωu(I, ε) + ω(φ, ε)

(
n∑
1

hi(‖x‖)

))

≤ B
m∑
1

ω(x, ω(βi, ε)) + ωg(I, ε)

+ C

(
A

l∑
1

ω(x, ω(βi, ε)) + ωg(I, ε)

)(
n∑
1

hi(r0)

)

+ (Anr0 +N)

(
Cωu(I, ε) + ω(φ, ε)

(
n∑
1

hi(r0)

))
where

ωg(I, ε) = sup{|g(t, x1, · · · , xl)− g(t′, x1, · · · , xl)| : t, t′ ∈ I, xi ∈ R0, 1 ≤ i ≤ l, |t− t′| ≤ ε}

ωf (I, ε) = sup{|f(t, x1, · · · , xm)− g(t′, x1, · · · , xm)| : t, t′ ∈ I, xi ∈ R0, 1 ≤ i ≤ m, |t− t′| ≤ ε}
ωu(I, ε) = sup{|u(t, τ, x1, · · · , xm)−u(t, τ, y1, · · · , yn)| : t ∈ I, τ ∈ J, xi, yi ∈ R0, 1 ≤ i ≤ n, |xi−yi| ≤ ε}
also

ωαi(I, ε) = sup{|αi(t)− αi(t′)| : t, t′ ∈ I, |t− t′| ≤ ε, }
ωβi(I, ε) = sup{|βi(t)− βi(t′)| : t, t′ ∈ I, |t− t′| ≤ ε, }
ω(φ, ε) = sup{|φ(t)− φ(t′)| : t, t′ ∈ I, |t− t′| ≤ ε, }
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By (13)

ψ(ω(TX, ε)) ≤ ω(TX, ε)

≤ F (ψ(Bmω(X, ε), ϕ(Bmω(X, ε))) + ωg(I, ε)

+ C (F (ψ((Alω(X, ε))), ϕ((Alω(X, ε)))) + ωf (I, ε))

(
n∑
1

hi(r0)

)

+

(
n∑
1

ai‖x‖+N)

)(
Cω(x, ωu(I, ε) + ω(φ, ε)

(
n∑
1

hi(r0)

))
so we obtain ω(αi, ε) → 0, ω(βi, ε) → 0 and ω(φ, ε) → 0 as ε → 0, by uniformly continuous of
αi, βi on I. And similarly ωf (I, ε) → 0, ωg(I, ε) → 0 and ωu(I, ε) → 0 as ε → 0, by uniformly

continuous of f, g, u on I ×Rm0 , I ×Rl0 and I × [0, C]×Rn0 , respectively. Hence

ψ(ω0(T (X))) ≤ F (ψ(ω0(X)), ϕ(ω0(X))).

Therefore, by Theorem 3.1 we get that T has at least one fixed point in Br0 . Consequently,
nonlinear functional integral equation (11) has at least one continuous solution in Br0 ⊆ C(I).
This completes the proof. �

In what follows, we present an example to illustrate Theorem 3.2.

Theorem 3.3. ([1]) Let T be the self-operator on BC([0,∞)) in (11). If:

(i) the function t→ g(t,0) is a member of the space BC([0,∞));
(ii) there exists δ ∈ [1,+∞) such that, for each t ∈ [0,∞), we have

|g(t, xβ(t))− g(t, yβ(t))| ≤ 2eδ‖xβ(t)− yβ(t)‖
(iii) there are continuous c0, c1 : [0,∞)→ [0,∞) such that

lim
t→∞

c0(t)

∫ t

0
c1(s)ds = 0

and c0(t)c1(s) ≥ |G(t, s, u)| for all t, s ∈ [0,∞) such that t ≥ s, and for each u ∈ R;
(iv) there exists a positive r0 such that (eα − 1)r0 ≥ eαm, where m is given by

m∗ = sup
t≥0
{|g(t,0)|+ c0(t)

∫ t

0
c1(s)ds},

then T admits a fixed point in BC([0,∞)).

Fixed t ∈ [0,∞), we get C(t) = {u(t) : u ∈ C} and hence we consider the measure of noncom-
pactness µ on the family of all nonempty bounded, closed and convex subsets of BC([0,∞)),
say B(BC([0,∞))), as follows

µ(C) = ω0(C) + lim sup
t→∞

diamC(t), (14)

where diamC(t) = sup{|u(t)− v(t)| : u, v ∈ C}.

Example 3.4. Put

f(t, xα(t)) =
1

reα

(
1 +

∑m
i=1 |xi|

1 + t+
∑m

i=1 |xi|

)
g(t, xβ(t)) =

1

r

(
1 + t2

2 + t2
ln(1 +

∑l
i=1 |xi|)

2
√
eα + ln(1 +

∑l
i=1 |xi|)

+ 2e−t

)
t ∈ [0, 1],

|u(t, τ, xγ(τ))| ≤ cos ‖xγ(τ)‖
1 + t2

e−teτ/2

ϕ(t) =
√
t

ψ(t) =
t

1 + t

F (s, t) =
s

2eα

h1 = h2 = · · · = hn = 2.
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Consider the following functional integral equation

x(t) =
1

r

(
1 + t2

2 + t2
ln(1 +

∑l
i=1 |xi|)

2
√
eα + ln(1 +

∑l
i=1 |xi|)

+ 2e−t

)
+

1

2reα

(
1 +

∑m
i=1 |xi|

1 + t+
∑m

i=1 |xi|

)∫ ϕ(t)

0
u(t, τ, xγ(τ))dτ,

in the space BC([0, 1]). We have

M = N = A = B =
1

r
and C = 1,

so

Blr +M + C(Amr +N)(

n∑
1

hi(r)) ≤ l +
1

r
+ (m+

1

r
)n ≤ r, (15)

inequality (15) holds for some r := l+mn+n+ 1 > 1. Clearly, g is continuous and is such that
the function t→ g(t,0) is an element of BC([0, 1]).

We have

0 ≤ |f(t, xα(t))− f(t, yα(t))|

≤ 1

2reα

(
1 +

∑m
i=1 |xi|

1 + t+
∑m

i=1 |xi|
−

1 +
∑m

i=1 |yi|
1 + t+

∑m
i=1 |yi|

)
≤ 1

2reα

(
t
∑m

i=1(|xi| − |yi|)
1 + t+

∑m
i=1(|xi| − |yi|)

)
≤ 1

2reα

( ∑m
i=1(|xi − yi|)

1 +
∑m

i=1(|xi − yi|)

)
≤ 1

2reα

(
ψ(

m∑
i=1

(|xi − yi|))

)

≤ 1

r

(
F (ψ(

m∑
i=1

(|xi − yi|)), ϕ((
m∑
i=1

(|xi − yi|))))

)

≤ F

(
ψ(

m∑
i=1

(|xi − yi|)), ϕ((

m∑
i=1

(|xi − yi|))

)
, (according to (5) of Theorem 3.2)

and likewise (6) of Theorem 3.2 holds.

0 ≤ |g(t, xβ(t))− g(t, yβ(t))|

≤ 1

2eα

l∑
i=1

(|xi − yi|) for all α ∈ [1,∞)

≤ 1

2eα

l∑
i=1

(|xi − yi|) ≤ 2eδ‖xβ(t)− yβ(t)‖ (for some δ ∈ [1,∞); (ii) of Theorem 3.3)

and proof of Theorem 3.3. And

|u(t, τ, xγ(τ))| ≤ cos ‖xγ(τ)‖
1 + t2

e−teτ/2

≤ 1

1 + t2
e−teτ/2 ≤ 2

1 + t2
≤ 2n =

n∑
i=1

hi(|xi|).

(according to (7) of Theorem 3.2)

Let c1, c2 : [0,∞)→ [0,∞) be defined by

c1(t) = e−t, c2(τ) = eτ/2 for all t, τ ∈ [0,∞),

which means condition (ii) of Theorem 3.3 holds.
By

|u(t, τ, xγ(τ))| ≤ cos ‖xγ(τ)‖
1 + t2

e−tes/2 ≤ e−tes/2 for all t, s ∈ [0,∞).
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Clearly,

lim
t→∞

e−t
∫ t

0
es/2ds = lim

t→∞
2e−t(et/2 − 1) = 0,

the condition (iii) form Theorem 3.3 is also holds. Also,

m∗ = sup
t≥0
{|g(t,0)|+ c0(t)

∫ t

0
c1(s)ds} = sup

t≥0
{2e−t + 2e−t(2et/2 − 1)} = 2.

Fixed t ∈ [0,∞), we get C(t) = {u(t) : u ∈ C} and hence we consider the measure of noncom-
pactness µ on the family of all nonempty bounded, closed and convex subsets of BC([0,∞)), say
B(BC([0,∞))), as follows

µ(C) = ω0(C) + lim sup
t→∞

diamC(t), (16)

where diamC(t) = sup{|u(t)− v(t)| : u, v ∈ C}. and so we get

lim sup
t→∞

diam(T (C))(t) ≤ 1

2eδ
lim sup
t→∞

diam(C)(t). (17)

By (16) and (17), we deduce that

ψ(µ(T (C))) =
µ(T (C))

1 + µ(T (C))

≤ µ(T (C))

≤ 1

2eδ
µ(C)

= F (ψ(µ(C)), ϕ(µ(C))).

If we put r0 = 3 in the condition (iv) of Theorem 3.3 will be hold. So, Theorem 3.3 confirms
that the operator

Tx(t) := g(t, xβ(t)) + f(t, xα(t))

∫ ϕ(t)

0
u(t, τ, xγ(s))ds, (18)

has solution.
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