Potential use of pulsed electric fields for mass transfer intensification of drops in liquid–liquid extraction
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Abstract
Mass transfer intensification of circulating drops, in liquid–liquid extraction, was investigated using pulsed electric field in an extraction column equipped with parallel electrodes. The kerosene–acetic acid–water chemical system was employed in which mass transfer resistance exists mainly in the organic phase. The low electric field strengths of 2 - 16 V/cm and frequencies of 100 - 1000 Hz were applied. Results showed no sensible change in the hydrodynamics of drops and terminal velocities were precisely close to the Grace model, implying that the system physical properties remained constant. It was while electric field had significant impact on the mass transfer with the average and maximum enhancements of 30.3 and 70.5%. The experimental data were nicely reproduced based on the Kumar and Hartland correlation and in relation to a developed correlation for the enhancement factor in terms of Reynolds number, strength and frequency of the pulsed electric field.
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1 │ INTRODUCTION
High capability of the liquid–liquid extraction process for separating heat-sensitive, valuable volatile or nonvolatile substances from liquid feeds has leaded to its wide applications in many fields like petroleum, petrochemical and biochemistry industries.1 Conventional industrial extractors are classified according to the inter-dispersing of phases and the most conventional types are mixer-settlers and columns.2 Although columns, have been the most commonly used equipment, which provide a wide contact area and adjustable operations, experimental investigations are constrained because of high costs and tedious time consuming. Therefore, single drop experiments, instead of swarms, owing to low complexity, less solvent consumptions and saving cost, has been recommended.3 Indeed, single drop studies are considered as the base of drops swarm behavior; however, in addition to these findings, the drops breakage and coalescence should also be taken into account in the large scale operations.
Heretofore, the role of operating parameters such as pH,4 temperature5 and chemical additives of surfactants6 and nanoparticles7,8 have been investigated. Further, application of external fields like magnetic and ultrasonic has been examined.9,10,11 In this regard, the enhancing effect of ultrasound waves in the absence and presence of nanoparticles has been attributed to small scale agitation and turbulence in the continuous phase. These are while, application of electric field as a promising phenomenon in process intensification and as an adoptable approach with alternative parameters in drop-wise extraction is still distinctive, albeit attainable. 
Electric field has been proved with substantial effects on transport processes and improves heat/mass transfer coefficient. Poulter and Miller,12 were pioneers in investigating the effect of electric field in a heat exchanger with amazing results. Later, Sadek et al.13 studied heat transfer intensification in the horizontal tube side of a convective condensation system. The use of external field was an appealing technique among various enhancement methods.
In the field of solid–liquid extraction, pulsed electric field-assisted extraction, as a new emerging technique, with interesting advantages over the conventional methods, has encouraged the investigators for applying this technique more appropriately in food industry. Barba et al.14 and Moradi and Rahimi15, for instance, have demonstrated the potential use of pulsed electric field to improve extraction of valuable proteins, phenolic compounds and anthocyanin from berries; as well as vegetable oil from sunflower seeds.
Concerning liquid–liquid extraction, numerous studies have been reported by investigators. The influence of a time-periodic non-uniform electric field on the mass transfer coefficient of an established suspended drop has been reported by Lee et al.16 and positive effects, due to improved fluid mixing, been observed. A comparative theoretical study on the impact of different electric fields including steady and time-periodic, uniform and non-uniform, on the heat transfer of suspended drops with internal resistance has been reported by Abdelaal and Jog.17 Both phases have been dielectric fluids. It was concluded that the time-periodic electric field was more beneficial compared to the stationary electric field and the enhancement was strongly dependent on the frequency. Subsequently, the same authors worked theoretically on the heat transfer of moving drops with external resistance of dielectric fluids and confirmed that, in contrast to internal resistive drops, the time-periodic electric fields were not as effective as the uniform steady electric field.18 Thus, application of steady and unsteady electric fields in a chemical system has to be considered with respect to the mass transfer resistance in the involved phases. From analogy between heat and mass transfer some results been concluded.
Generally, researches on mass transfer of drops under different electric fields seem to encounter two problems for industrial scale applications. Firstly, investigations are limited to particular dielectric fluids and has not been extended to conventional chemical systems; and secondly, from economic and safety points of view, application of high voltage electric fields are facing problems. Concerning these constrains, a novel liquid–liquid extraction column equipped with low voltage pulsed electric field was utilized and hydrodynamic and mass transfer performance of drops were investigated. The core-objective of this study was scrutinizing the behavior of different size drops while exposing to pulsed electric field. The well-known chemical system of kerosene–acetic acid–water with mass transfer resistance in the organic phase was used. It is notable that no investigation has been reported on applying an electric field to improve mass transfer in the conventional liquid–liquid extraction columns. The capability of pulsed electric fields with adjustable strength and frequency leads to mass transfer intensification through chaotic fluid mixing in drops.
[bookmark: _Toc32218975]2 │ EXPERIMENTAL
[bookmark: _Toc32218976]2.1 │ Chemicals
All experiments were performed with the chemical system of kerosene–acetic acid–water. Kerosene was a product of Sigma Aldrich (CAS registry No. 8008-20-6, reagent grade) and acetic acid with weight fraction purity of 99.8% was supplied from Merck. Fresh pure water was used as the continuous phase. Standard 0.1 N sodium hydroxide titrant (Merck) was used to determine the acetic acid concentration of the samples.

Physical properties of the chemical system, at 20 °C, are listed in Table 1. A self-adjustable temperature densiometer (Anton Paar DMA 4500, Austria) equipped with automatic viscosity correction and uncertainty of 0.05 kg/m3 was used to measure density of dispersed and continuous phases. Viscosity of each phase was measured using an Ubbleohde viscometer with an uncertainty of 210–3 mPa.s according to Poiseville’s law:

 										(1) 





where ,  and  are viscosity, density and efflux time in the viscometer capillary, respectively and  and  are viscometer constants. Interfacial tension of the chemical system has already been reported.19 Molecular diffusivity of acetic acid in each phase was calculated through the Wilke and Chang correlation.20 In this regard, prediction of molecular weight of kerosene, containing a complex mixture of hydrocarbons (C10 - C14), is essential. Obtaining volume average boiling point from ASTM D86 distillation data for kerosene21 as well as the slope of the distillation curve, the volume average boiling point and the appropriate correction was determined, giving mean average boiling point of 217.4 °C. Subsequently, from density and the mean average boiling point, the molecular weight of the kerosene was determined as 182.2 g/mole. Details are given by Normand and Treil.22

Table 1. Physical properties of the used chemical system at 20 °C.
	Phase
	
(kg/m3)
	
(mPa.s)
	
(m2/s)
	
(mN/m)

	Continuous (water) 
	998.23
	1.002
	1.173
	47.219

	Dispersed (kerosene) 
	792.37
	1.325
	1.787
	



[bookmark: _Toc32218978]2.2 │ Experimental set-up
A schematic view of the used set-up as well as pulsing protocol is illustrated in Figure 1. A Pyrex glass column of 10 cm diameter and 51 cm length was the extracting column. Different drop sizes were generated from six different glass nozzles, installed separately at the bottom of the column and attached to an adjustable syringe pump (JMS- SP 500, Japan) for introducing dispersed phase of kerosene, containing 2.5 wt% acetic acid. To determine initial concentration under steady state conditions, a small column was used with the same nozzles to access drops at an initial location of 6 cm above each nozzle tip, while similar conditions of the main column were dominant. It should be noted that all the experiments were conducted in mass transfer direction of dispersed to continuous phase.

[bookmark: _Toc32218980] To provide a uniform pulsed electric field, two parallel stainless steel electrodes were submersed symmetrically in the column. The distance between electrodes was fixed along at 5 cm. An electric field generator was designed, allowing to change the strength per unit distance between electrodes () via different applied voltages and frequencies of signals. It consists of a function generator providing bipolar square pulses in the range of centiseconds to milliseconds as well as amplifier to have desired electric field strength. A 15 MHz oscilloscope (TRIO CS-1560A II, Japan) was monitoring the frequency and the shape of the signals. The electric field strength could be measured and monitored with respect to the applied voltage and frequency during experiments.
 [image: ]
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Figure 1. Schematic of the experimental setup (a) and the applied pulsed electric field protocol (b).
2.3 │ Procedure
To perform each experiment, the syringe and the connection tube to the nozzle tip was first filled with the acetic acid containing kerosene. The column was then filled with the pure water as continuous phase. The electric field was then established when drops were passing upward through the column. The contact time, drop size, initial and final concentration were determined for each run. Taking photographs from moving drops with a high resolution camera (Cannon A590), positioned perpendicular to the transport path and with the aid of an image processor software (Image J V.1.8) the size of drops was easily determined. In another attempt, to check the procedure, the obtained drop sizes were verified by counting the number of generated drops during a specified period and drop size was calculated knowing the flow rate adjusted by the syringe pump. The time of passing a drop through the initial to the final collection point and the contact time was recorded and the average time was accounted in calculating the terminal velocity and the mass transfer coefficient. Setting dispersed phase flow rate range within 40-130 mL/h for different nozzles, led to adjust the distance between two subsequent drops at typically more than 50 mm apart, which in turn inhibits the effect of interactions between drops.
[bookmark: _GoBack]The generated drops from each nozzle, after travelling 33 cm distance from initial point, were collected by an inverted glass funnel placed at top of the column, attached to a pipette and vacuum bulb. By occasional, pulling out the collected drops into the pipette, the contact time between the two phases at the level of the narrow pipette inlet was minimized to inhibit mass transfer during sampling. The collected samples with specified volumes were kept in closed tubes for immediate analysis by titration with the standard 0.1 N sodium hydroxide solution. As was described, initial concentrations were obtained by using the short column. Experiments were conducted at the room temperature of 20 ± 2 °C.
[bookmark: _Toc32218981]
3 │ RESULT AND DISCUSSION
[bookmark: _Toc32218982]3.1 │ Hydrodynamic investigations
Table 2 presents different ranges of generated drop sizes from the used six nozzles. The size of drops did not vary by applying the pulsed electric field since no impact of the electric pulses reached the drop formation zone and no physical property alteration seemed to be appropriate. Accordingly, there was also no sensible change in the terminal velocity due to applying electric field along the column.

Considering internal flow pattern, drops are categorized into three groups of rigid, circulating and oscillating. Here circulating drops were generated and to ensure this matter, the critical drop size () at which oscillation begins to appear, was calculated from23

 							(2)




where and  denote the viscosity and density of continuous phase, and  and  represent the system interfacial tension and difference between the density of phases, respectively. According to the literature, the flow pattern of circulating drops could be distinguished based on several criteria:24




- Dimensionless group, introduced by Grace et al.,25 where  and  are Eötvös and Morton dimensionless numbers,

- Drop Webber number, ,

- Drop Reynolds number, , and


-  ratio, where is the inverse of Morton number.





In the above equations,  is drop size,  is terminal velocity and indices ,  and  stand for continuous, dispersed and pure water phases. The values of the above criteria and the corresponding range for circulating state are listed in Table 3. As it is obvious, drops were in circulating mode. The ascending trend of terminal velocity with drop size is demonstrated in Figure 2. Comparing the terminal velocity data with those predicted by Grace et al. indicates excellent agreement.
Table 2. Drop size range (in mm) generated from different nozzles.
	Nozzle number

	1
	2
	3
	4
	5
	6

	2.23 - 2.45
	2.64 - 2.81
	3.05 - 3.18
	3.20 - 3.29
	3.32 - 3.54
	3.59 - 3.71



Table 3. Different criteria and corresponding values to indicate circulating drops.
	Criterion

	

	
	

	
	

	
	

	
	
(mm)

	

	
	0.41 - 1.10
	
	5.2 - 10.7
	
	213.1 - 432.8
	
	(2.43 - 3.63) < 6.79




Figure 2. Variation of the terminal velocity versus drop size.
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3.2 │ Mass transfer investigations


From a mass balance around a moving drop with defined size in a limited time, the overall dispersed phase mass transfer coefficient, , can be derived by integrating over the entire contact time () and while concentration changes from initial to the final value, giving:26

 									(3)

where  is the extraction fraction, determined as:

										(4)




where  is the solute initial concentration and  and  are, respectively, final and equilibrium solute concentrations in drops. In the chemical system of kerosene–acetic acid–water with dispersed to continuous mass transfer direction, considering the column rather high capacity of continuous phase (4 L), there will be no sensible change in its purity even in the case of complete mass transfer to water. Therefore, the corresponding equilibrium concentration, , is trivial.


As illustrated in Figure 3,  was increased steadily with the electric field strength. The  variations were from (118.2 - 161.1) μm/s to (121.4 – 274.5) μm/s, respectively, for the absence and presence of the electric field, giving an average and maximum enhancement of about 30.3 and 70.5% under the applied conditions. This promising effect can be attributed to the effective fluid mixing and chaotic advection caused by bipolar square pulsed signals in the column. Applying electric field leads to higher flow mixing and mass transfer coefficient.27 Another plausible recognized reason is the mismatch between dielectric properties of drops and continuous phase which induces an electric interfacial stress by the external field that tend to enhance chaotic mixing inside the drops.28 Meanwhile, as Figure 3 shows, mass transfer coefficient generally increases with drop size (from different nozzles) either with or without electric field. Certainly, drops tend to higher internal circulation as they become larger and easier mass transfer with a shorter contact time will be appropriate.
Increasing the frequency of the electric field, on the other hand; firstly, gives an increase in the mass transfer coefficient (Figure 4), followed by a decrease and provides an optimum frequency at about 300 Hz with the maximum mass transfer enhancement. For very small frequencies, due to the large time scale of induced mixing, mass transfer enhancement would be low. On the other hand, for high frequency pulsed waves, the field direction changes before any significant movement of fluid particles, giving no further effective mixing. Higher frequencies can even lead to a state of purely transferring drops, i.e. with no electric field.27 It is noteworthy that the optimum 300 Hz frequency was consistent for the all applied strengths.

Figure 3. Overall mass transfer coefficient versus electric field strength for different nozzles at frequency of 300 Hz. 

[bookmark: _Toc32218984]Figure 4. Overall mass transfer coefficient versus electric field frequency for different nozzles at electric field strength of 10 V/cm.
3.3 │ Modelling the mass transfer coefficient



A precise predictable model for mass transfer enhancement could be achieved by considering the pulsed electric field characteristics and physical properties of fluids as well as drop size. In accord to Whitman two film theory, the overall mass transfer coefficient () is simply related to individual local coefficients of phases,  and , and the slope of equilibrium distribution curve as

										(5)


Considering the low equilibrium curve slope of the system () within the acetic acid concentration variation range, it can be justified that mass transfer resistance in the continuous phase is negligible and . 

Several models have been proposed for mass transfer coefficient of single drops moving in continuous phase. Among them, Newman29 and Kronig and Brink30 models are not applicable in the present study since the Newman model describes the molecular diffusion in stagnant drops and Kronig and Brink model is for circulating drops with low Reynolds number, while drops in this work have rather a high Reynolds numbers (> 213.1). Here, the well-known Kumar and Hartland31 correlation for the dispersed phase Sherwood number, , which is based on fitting to a wide range of experimental points of 21 groups of investigators is applicable as

		(6)



where  is the dispersed phase Schmidt number and  as a dimensionless enhancement factor to account for the intensified mass transfer of circulating drops. Applying this correlation, based on the experiments in this work with no pulsed electric field (), shows excellent agreement with the obtained data as depicted in Figure 5. Recent investigations confirm the nice predictive ability of the Kumar and Hartland correlation.7,8,32 


Figure 5. Overall mass transfer coefficient versus drop size in the absence and presence of pulsed electric field.
			 


Equation (6) was applied according to each experimental condition under the electric field and the corresponding  value was obtained, which were within 1.04 - 1.76. The values were then correlated in terms of influencing parameters of drops Reynolds number, as well as the strength and frequency of the pulsed electric field. Since the enhancement factor is a dimensionless parameter, the involved parameters have to be consistent. Accordingly, the maximum surface velocity () due to applying uniform electric field is given as27

 							(7)




where  and  are electrical conductivity and electrical permittivity (a physical quantity that describes fluids ability to permit an electric field) ratio of continuous to dispersed phase, respectively, and  is the electrical permittivity of the continuous phase. The ratio of the maximum surface velocity to the terminal velocity with the contribution of viscosity ratio would provide a dimensionless parameter, , as27

									(8)
This dimensionless parameter involves the electric field strength as well as physical properties of the chemical system and drop size. Bearing in mind the analogies of heat and mass transfer, the frequency of electric field can also be expressed relative to molecular diffusivity as:

										(9)
which resembles a similar parameter in heat transfer17 as the inverse of Fourier number, in which thermal diffusivity is used instead of molecular diffusivity.
The mathematical procedure for fitting the enhancement factor to the dimensionless parameters, based on regression analysis, was conducted by Curve Expert Professional 1.6.5 Software. The obtained following correlation is proposed

				(10)



This correlation gives  value as unit value if any parameter in the second term to be zero, i.e. for the case of no electric field. Another noticeable point is that increasing-decreasing trend of mass transfer coefficient due to frequency variation are correlated using two involved terms of . As is depicted in Figure 6, the symmetric distribution of experimental and calculated points from Equations (9 and 10) are around the square diagonal which confirms the predictive ability of the model with great precision. All data points fall within the maximum relative deviation of 5%.

Figure 6. Comparison between experimental and calculated values of Sherwood number.
[bookmark: _Toc32218985]4 │ CONCLUSION
Intensification of single drop liquid–liquid extraction through applying pulsed electric field was feasible using the chemical system of kerosene–acetic acid–water. Altering the strength and frequency of electric field was the outstanding advantage. In hydrodynamic study, there was no sensible change in drop size, contact time and terminal velocity within the range of applied electric field conditions. The variation of terminal velocity was in close agreement with the Grace model. In the mass transfer investigations, it was revealed that electric field strength causes significant mass transfer promotion due to the provided effective fluid mixing and chaotic advection. Moreover, irrespective to drop size, electric field with frequency up to an optimum value, enhance the mass transfer; however, higher frequencies, due to a rapid change of field direction, cause a sensible reduction in the mass transfer. The Kumar and Hartland correlation in relation to the proposed correlation of enhancement factor, in terms of pertinent parameters, can precisely predict the overall mass transfer coefficient for different drop sizes under applied conditions.



Nomenclature
	

	viscometer constant

	

	concentration (g/L)

	

	drop diameter (mm)

	

	electric field strength (V/cm) , extraction fraction

	

	
Eötvös number, 

	

	standard gravity (m/s2)

	

	
dDimensionless group defined by Grace et al.,

	

	viscometer constant, local mass transfer coefficient

	

	overall dispersed phase mass transfer coefficient (μm/s)

	

	electrode distance (cm)

	

	ratio of the maximum surface velocity to the terminal velocity

	

	
Morton number, 

	

	inverse of Morton number

	

	electrical conductivity ratio

	

	
Reynolds number, 

	

	electrical permittivity ration

	

	
Schmidt number, 

	

	
Sherwood number, 

	

	contact time, (s)

	

	maximum surface velocity (m/s)

	

	terminal velocity (m/s)

	

	
drop Weber number, 



Greek Symbols
	

	interfacial tension (N/m)

	

	difference

	

	electrical permittivity

	

	dynamic viscosity (Pa.s)

	

	density (kg/m3)

	

	electric field frequency

	

	
Dimensionless frequency, 



Subscripts
	c
	continuous phase

	cr
	critical

	

	dispersed phase

	

	final value

	

	initial value

	

	overall dispersed phase

	w
	water 



Superscripts
	equilibrium value  
	*
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