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1. Introduction
Salinization is a global problem that seriously affects soil resources and ecosystem. Accurate and fast access to soil salinization information is of great significance to the solution to salinization problem and the sustainable development of agriculture(Cho et al., 2018; Ren et al., 2019). Soil salinization in Hetao Irrigation Area, China, has a long history and the salinized land in this area accounts for 70% of the salinized land and 65% of the cultivated land in Inner Mongolia(Wu et al., 2019).
Satellite remote sensing, with such advantages as large area coverage and dynamicity, has been widely applied to the qualitative, quantitative, and dynamic analysis of soil salinization(Fang et al., 2019; Zhang and Zhao, 2019). Eldeiry and Garcia (2008) built Soil Salt Content (SSC) inversion models using the respective band combination of Ikonos and Landsat satellite images, and found that the vegetation in the test site had a certain impact on the model accuracy. A similar conclusion was confirmed in the study by Sidike et al. (2014) on soil salinity map using the QuickBird satellite. In order to explore the effect of vegetation on SSC inversion, scholars carried out a large number of soil salinization monitoring researches. Allbed et al. (2014) explored the salinity predicting ability of vegetation and salinity indices extracted from the Ikonos satellites under the conditions of bare and vegetated land, and concluded that the predictive power varied from the different vegetation coverage. ZHANG et al. (2019a) monitored salinization at different depths with the GF-1 satellite in the Hetao Irrigation Area under vegetation coverage. Their optimal model obtained also had certain limitations due to the effects of crop types and growth periods. To examine the effect of vegetation coverage, Hu et al. (2019) selected bare land, sparsely vegetated land and densely vegetated land as experimental sites by visual inspection and conducted SSC inversion. The study found that there was not a simple negative correlation between SSC and vegetation coverage. As a result, among the salinity prediction models of different test sites, the prediction accuracy of the model for the densely vegetated area was rather low. Peng et al. (2019) further used the Normalized Difference Vegetation Index (NDVI) thresholds of 0.1 and 0.2 to characterize the effect of different Fractional Vegetation Cover (FVC) on salinity prediction accuracy. The comparison suggested that the model of sparsely vegetated land with mixed spectral information of vegetation and soil was low in accuracy, while the models of bare and densely vegetated lands with pure spectral information were quite satisfying. However, the division of the study area was not based on the difference of the actual environmental conditions, which led to the uncertainty in the result of salinization monitoring by remote sensing. It is widely acknowledged that FVC is closely related to the growth stage of the crop. In the soil salinization monitoring of the vegetated land, the research on a specific growth period often masks the dynamic difference of the entire growth process, and this problem can be avoided by FVC division based on test site information. In addition, in the vegetated land, the salt distribution in the active layer of the crop root will affect the crop growth, so satellite remote sensing has been used to indirectly detect deep soil salinity. The salinization degree at the deep main active layers of the root system can be judged by interpreting the crop growth status, which can more accurately describe the effect of salt stress on crop growth. However, there are few researches on salinity prediction based on different growth stages, FVC and soil depths.
Soil salinization is estimated and monitored mainly with the linear regression and machine learning methods. The Partial Least Squares Regression (PLSR) algorithm is widely used in soil salinity inversion. It can solve the problem of multicollinearity effectively where there are a large number of independent variables (Zovko et al., 2018). Farifteh et al. (2007) used PLSR and Artificial Neural Networks (ANN) to quantitatively analyze the reflectance spectra of saline soils, and found that the former performed slightly better than the latter. However, many scholars has proved that the Cubist is better than PLSR, because Cubist takes a divide-and-conquer strategy and seeks to the minimum of intra subset variation at each node (Peng et al., 2019). The Extreme Learning Machine (ELM) is a learning tool first proposed by Huang and Siew in 2004. Compared with other learning algorithms, ELM can reduce the computation time for feature extraction and prediction, and improve learning efficiency (Mello et al., 2013; Prasad et al., 2018). In recent years, although ELM technology has been widely used in many fields(Ghimire et al., 2018; Sanikhani et al., 2018), the application research on soil salinization monitoring has not been reported in the relevant literature available.
In Jiefangzha Irrigation District, we first obtained spectral covariates from the GF-1 satellite remote sensing images as independent variables and soil conductivity data from the soil samples and laboratory treatment as dependent variables. Then we calculated the FVC using the Dichotomy Pixel Model (DPM), and classified the sample set as control treatment A (the full data with undivided FVC, TA) and experimental treatments B (bare land, TB), C (mid-low FVC, TC), D (mid FVC, TD) and E (high FVC, TE), and based on each treatment, three models (PLSR, Cubist and ELM) were constructed at each of the three different depths. Finally, we obtained the optimal models of each treatment by comparing model accuracy. This procedure aimed to accurately monitor the soil salinization in the study area, enrich the soil salinity inversion models on different FVC, and finally obtain the quantitative soil salinity extraction model with high-precision based on each FVC in Jiefangzha Irrigation Area from satellite remote sensing.
[bookmark: _Toc5857_WPSOffice_Level1]2. Material and methods
2.1 Study area
Jiefangzha Irrigation District (106°43'~107°27' E, 40°34 '~41°14' N) is located in Hetao Irrigation Area in Inner Mongolia, China. The soil in the upstream is mainly silty loam, loam and clay loam while that in the middle and lower reaches clay loam(Yu et al., 2010).
Every year about 1~1.2 billion m3 of water is diverted from the Yellow River for the irrigation in this area. Such large quantity of irrigation water has caused the decline of the underground water and the accumulation of soil salinity. In addition, the terrain slopes gently (gradient is about 0.02%), and the uneven lateral runoff and the strong vertical evaporation make soil salinization one of the main factors restricting the agriculture development in the irrigation area(Wu et al., 2019).
2.2 Sample collection and laboratory measurement

[bookmark: OLE_LINK5]In this study, we collected soil samples in the Jiefangzha Irrigation District four times in 2018(April 27, June 15, July 27and August 8).Seventy sampling points with different degrees of salinization in the irrigation area were set up with full consideration of uniform distribution of sampling points, the salt distribution, vegetation cover and other actual local conditions. The distribution of sampling points is shown in Fig.1. Soil samples were collected with a soil drill (d =5.72cm) near the root system at the depth of 0~20, 0~40, 0~60cm using 5-point sampling method. The location of each sampling point and the surrounding environment information were recorded by a handheld GPS. The soil samples were quickly placed in previously marked aluminum boxes, weighed, transferred to the laboratory, dried at 105℃for 8 hours in the drying box, and weighed again(ZHANG et al., 2019b). After removing the stones, plant roots and litter, the soil solution was prepared (the ratio of soil to distilled water is 1:5) and kept still for 8 hours after full stirring. After the extraction of the filtrate, its electrical conductivity(EC1:5,) was measured with a conductivity meter of LeiCi DDS-307A (YouKe, ShangHai, China) and the SSC(SSC,%) was calculated with the empirical formula: SSC=(0.2882 EC1:5+0.0183) (Ivushkin et al., 2019).
2.3 Collection and processing of satellite image data 
[bookmark: OLE_LINK7]The primary data were collected from GF-1 images (GF-1 WFV camera) downloaded from the China Centre For Resources Satellite Data and Application (www.cresda.com), and the cloud cover of the images was lower than 10%. The satellite images were taken on April 27, June 15, July 27 and August 8 in 2018,which were synchronized with the date of soil sample collection. The GF-1 images (the spatial resolution of 16 m) contain 4 bands: band 1 (B) 0.45 -0.52μm, band 2 (G) 0.52-0.5μm, band 3 (R) 0.63-0.69 μm and band 4 (NIR) 0.77-0.89 μm. In order to eliminate the geometric distortion and radiation errors of the images, such preprocessing of the downloaded images as geometric correction, radiometric calibration and atmospheric correction were conducted using ENVI 5.3.1 so as to improve the quality of satellite imagery (Ma, 2013). The geometric distortion was caused by the curvature motion of the Earth, the change of the sensor height and attitude angle while the radiation errors by the atmospheric scattering and absorption (Fang et al., 2019; Zhang and Zhao, 2019). Finally, spectral covariates were calculated by the spectral reflectance (Table 1).
2.4 Classification of vegetation coverage
[bookmark: _Toc22861_WPSOffice_Level2]2.4.1 Calculation of FVC 
With its good handleability, DPM was used to calculate FVC in this study. This paper assumed that there was only the information of vegetation and bare land in the pixel. The ratio of their respective areas in the pixels is their respective weight, and the percentage of the vegetation spectral information in the pixel is the FVC of the pixel(Hirano et al., 2004; Jiapaer et al., 2011). The formula of DPM is as follows:
                                      (1)
where VI is the vegetation index, VIsoil  is the vegetation index with pure soil pixel, VIveg is the vegetation index with pure vegetation pixel(Li et al., 2014). 
The Normalized Vegetation Index (NDVI), as the best indicator of crop growth status and vegetation spatial distribution density, was selected as the vegetation index of the DPM. The NDVI can be used to detect vegetation with high sensitivity and reduce the noise caused by atmosphere (Jia et al., 2016). When NDVI substitutes for the VI in formula (1), the formula to calculate FVC can be obtained as follows:
                                                (2)
where NDVIsoil is the value of NDVI of bare land, NDVIveg is the value of NDVI of fully vegetated area.
The process of FVC calculation is as follows:
Step 1: An outlier of the soil samples collected in July was removed; then the remaining samples were divided into samples of bare and vegetated areas using the supervised classification method for satellite images acquired in each month; and the samples of bare land in the four months were integrated as the sample set of the bare land ;
Step 2: The NDVI of all vegetation samples was calculated using ENVI 5.3.1 with the following formula:
(3)
where NIR is the near-infrared band reflectivity, R is the red band reflectivity;
Step 3: We deleted the outliers of the NDVI, selected the confidence coefficient of 99% , obtained the NDVI probability distribution of the images acquired in the four months, and calculated the maximum (NDVImax) and minimum (NDVImin) values within the confidence interval.
Step 4: The FVC value of each month was calculated by replacing the NDVIsoil and NDVIveg with the NDVImin and NDVImax respectively in formula (2).
[bookmark: _Toc27322_WPSOffice_Level2]2.4.2 Division of FVC
[bookmark: OLE_LINK2]The FVC was divided according to the National Report on Desertification Control in China and the classification method applied in the area with similar geographical features and vegetation types. Accordingly, the study area was divided into the following five types: undivided FVC, bare land, mid-low FVC (20% <FVC <55%), mid FVC (55% ≤ FVC <75%) and high FVC (FVC ≥ 75%), which were recorded as TA, TB, TC, TD and TE respectively. Vegetation samples in four months of each type were integrated into the corresponding data sets.
[bookmark: _GoBack]With GF-1 satellite image in June as an example, the classification result obtained using the above method is shown in Fig.2.
[bookmark: OLE_LINK8]2.5 The Best Subset Selection algorithm



[bookmark: OLE_LINK10][bookmark: OLE_LINK9]The Best Subset Selection (BSS) method fits all possible combinations of different independent variables with the least squares method so that an optimal model is selected among all possible models. This method is simple and suitable for the conditions with fewer independent variables. The main calculation process is as follows: given a response vector , predictor matrix  , and a subset size k between 0 and , BSS finds the subset of k predictors that produces the best fit in terms of squared error, solving the nonconvex problem:





where  is thenorm of. (Here and throughout, for notational simplicity, we omit the intercept term from the regression model) (Hastie et al., 2017). The BSS is completed with MATLAB R2019a.
2.6 Modeling method and performance assessment
[bookmark: _Toc19378_WPSOffice_Level2]2.6.1 Modeling methods
[bookmark: _Toc12525_WPSOffice_Level3]2.6.1.1 PLSR
[bookmark: OLE_LINK19][bookmark: OLE_LINK18][bookmark: OLE_LINK23][bookmark: OLE_LINK22][bookmark: OLE_LINK25][bookmark: OLE_LINK24][bookmark: OLE_LINK27][bookmark: OLE_LINK26][bookmark: OLE_LINK28][bookmark: OLE_LINK29]PLSR is a multivariate regression method developed by introducing the principal component analysis and variance analysis on the basis of the traditional least squares regression analysis. Compared with the traditional least squares regression method, PLSR is superior in data dimensionality reduction, information synthesis and screening. PLSR is used to extract the orthogonal or potential predictive variables and explain the changes of as many dependent variables as possible (Ma, 2013). In this study, PLSR was used to obtain the correlation between predicted salt values (predictive variable) and measured salt values (dependent variable) using SPSS 25.0.
[bookmark: _Toc30786_WPSOffice_Level3]2.6.1.2 Cubist
[bookmark: OLE_LINK30][bookmark: OLE_LINK31][bookmark: OLE_LINK34][bookmark: OLE_LINK35][bookmark: OLE_LINK32][bookmark: OLE_LINK33][bookmark: OLE_LINK38][bookmark: OLE_LINK39][bookmark: OLE_LINK41][bookmark: OLE_LINK40]Cubist is a spatial data mining algorithm that uses a divide-and-conquer strategy to divide the predictive variables recursively (Henaka Arachchi et al., 2016; Padarian et al., 2014). The Cubist model constructs a "tree" by splitting data on the predictors and generates a set of "if-then" rules. Each rule is based on certain conditions, and different linear models can capture the local linearity, so the prediction accuracy can be improved and the “tree” can be smaller (Berkal et al., 2014; Ma et al., 2017a). The Cubist integrates the advantages of the regression trees and multiple linear regression (Akpa et al., 2016; Somarathna et al., 2016). Committees and neighbors, the two important parameters of the Cubist model, are optimized by cross-validation and Grid search methods with the train function of the caret package, and determined when the model has the minimum Root Mean Square Error (RMSE).
2.6.1.3 ELM
[bookmark: OLE_LINK43][bookmark: OLE_LINK42]The Extreme Learning Machine (ELM) is a relatively new computational (or data intelligence) model designed to solve the deficiency of the classical machine learning models. Calculations in the ELM require no iteration as gradient-based algorithms do (Ghimire et al., 2018; Mello et al., 2013). In addition, the hidden nodes of the ELM can be generated randomly, and the output weight can be solved by the least squares method. ELM is convenient, learning efficient, and more adaptable to some nonlinear activation and kernel functions (Prasad et al., 2018; Sanikhani et al., 2018). The ELM is operated with the elmNNRcpp package of R 3.5.1.
[bookmark: _Toc4154_WPSOffice_Level2]2.6.2 Model construction
Each dataset of different depth was arranged in a descending order of soil salinity, and a sample was selected from every three samples as the verification set, so that the ratio of calibration dataset to validation dataset was approximately 2:1. This selection method can ensure the range consistency and homogeneous distribution of the calibration samples and validation samples. The PLSR, Cubist and ELM were used to build the SSC inversion models for calibration set. Through the analysis of the correlation between the measured and predicted value, we obtained the best SSC inversion model for each treatment.
[bookmark: _Toc22211_WPSOffice_Level2]2.6.3 Evaluation indicators
Two indices were used to evaluate the model accuracy: Coefficient of determination (R2) and RMSE. The value range of R2 is from 0 (most unstable) to 1 (most stable). RMSE characterizes the deviation degree between the predicted and measured value. The closer the value is to 0, the higher prediction accuracy and the stronger predictive ability the model has. Therefore, the model has the best performance when the R2 is close to 1 while the RMSE 0 (ZHANG et al., 2018). The calculation formulas of R2 and RMSE are (4) and (5) respectively as follows: 
(4)

(5)



where  is the predicted SSC, is the measured SSC,  is the average SSC, n is the sample size.
3. Results
[bookmark: OLE_LINK3]3.1 Descriptive statistics for soil properties
In this study, the 279 samples (including 70 points in May, June and August and 69 in July) were divided into five types. The descriptive statistics of the soil salinity is shown in Fig.3 and Table 2.
The mean SSC values of TB, TC, TD and TE were 0.365%, 0.089%, 0.045% and 0.029%, respectively (Fig.3). The values indicated significant difference of the soil salinization in these treatments with a tendency that the soil salinization degree decreased as the FVC increased. TB, representing bare land with a large area of visible salt crust, had the highest SSC while TE, land with high vegetation coverage, had the lowest SSC. 
[bookmark: OLE_LINK44][bookmark: OLE_LINK45][bookmark: OLE_LINK46][bookmark: OLE_LINK49][bookmark: OLE_LINK47][bookmark: OLE_LINK48]The soil salinity discrete degrees of TB, TC, TD and TE were moderate (when CV was between 10% and 100%) as shown in Table 2, indicating that the change of SSC in the study area was mainly caused by natural factors. The CV of the TA was greater than 1, which showed that undivided vegetation coverage caused serious data dispersion and variation.
[bookmark: OLE_LINK50][bookmark: OLE_LINK51]The SSC range and statistical distribution (mean, SD, CV, kurtosis, and skewness) of the calibration, validation and total sets was similar, and this could ensure the representativeness of the samples and avoid the estimation deviation in the model construction and verification.
3.2 Correlation between spectral covariates and measured SSC under different vegetation coverage
The correlation between spectral covariates and SSC are shown in Fig.4.
The SSC of TA had no significant correlation with spectral covariates (Fig.4a). The FVC division significantly improved the correlation, and the improvement of TB and TE were more significant than that of TC and TD. The correlation between salt spectral indices and SSC was significantly higher than that of vegetation spectral indices for bare land. With the increase of vegetation coverage, the contribution of vegetation spectral indices to the soil salinization monitoring increased gradually, and the correlation between vegetation spectral indices and SSC was significantly higher than that of salt spectral indices for high FVC, which was consistent with previous researches (Alhammadi and Glenn, 2008).
3.3 Indices screening with BSS under different FVC
Twenty-three spectral covariates were combined randomly using the BSS algorithm to obtain the combinations of the multiple independent variables in each treatment at different depths. The Stepwise Multiple Regression was used to evaluate the performance of the screening combinations. The best spectral covariate combinations of each treatment are shown in Table 3. The statistical analysis of Table 3 indicated that salinity indices accounted for 56.25%, 56.25%, 31.25% and 26.7% of the best combinations of TB, TC, TD and TE, while the vegetation indices accounted for 25%, 25%, 62.5% and 66.7%, respectively. With the increase of FVC, the sensitivity of the salinity indices to SSC decreased and the contribution of vegetation indices increased. This conclusion is in accordance with that of section 3.2.
3.4 The optimal depth of salt inversion models under different vegetation coverage
In this study, the optimal spectral covariate combination selected by the BSS algorithm was used as the model independent variable, and SSC as the dependent variable. The three methods of PLSR, Cubist and ELMR were used to construct SSC inversion models at different depths of five treatments respectively. The results are shown in Fig.5 through Fig.7.
[bookmark: _Toc10103_WPSOffice_Level2]3.4.1 SSC inversion models based on PLSR algorithm
The results of the soil salinity inversion using PLSR are shown in Fig.5.
At 0-60cm, the model precision of TA reached the highest level, and the R2 reached the highest value while RMSE the lowest value. The closer the ratio of Rc2 (the R2 of calibration dataset) to Rv2 (the R2 of validation dataset) was to 1, the more stable the model is. So the optimal inversion depth of TC was 0-40 cm. The modeling results of TB, TD and TE showed significant monotonicity (TD increased and TB and TE decreased monotonically), so the optimal inversion depths of the three were 0-20, 0-60 and 0-20cm, respectively.
[bookmark: _Toc26207_WPSOffice_Level2]3.4.2 SSC inversion models based on Cubist machine learning method
The results of the salinity inversion models with Cubist algorithm are shown in Fig.6. 
The R2 and RMSE of calibration dataset and validation dataset obviously indicated the best inversion depths of TA and TB were 0-60cm and 0-20cm, respectively. The TC models showed that the R2 first increased and then decreased as the depth increased, and the accuracy reached the highest at 0-40 cm. The accuracy of three calibration models of TD increased with the increase of the depth, while TE had the opposite tendency, so the best inversion depths of TD and TE were 0-60cm and 0-20cm, respectively.
[bookmark: _Toc31948_WPSOffice_Level2]3.4.3 SSC inversion models based on ELM machine learning method
The evaluation indicators of the salinity inversion models with ELM are shown in Fig.7.
With the increase of depth, the R2 of TA, TB, TD and TE showed monotonous changing tendency (TA and TD increased while TB and TE decreased monotonously), so the optimal inversion depths of them were 0-60, 0-20, 0-60 and 0-20 cm, respectively. The R2 of TC first increased and then decreased as the depth increased, and the highest value was obtained at 0-40 cm, at which the RMSE reached the lowest value. 
3.5 Comparison of the precision of PLSR, Cubist and ELM models
According to section 3.4, the best inversion depths of TA, TB, TC, TD and TE were 0-60, 0-20, 0-40, 0-60 and 0-20cm, respectively. The results of validation model of each treatment are shown as Fig.8 for further precision analysis of PLSR, Cubist and ELM models.
The R2 and RMSE of the three models showed that with the same FVC, the PLSR model had the smallest R2 and the largest RMSE, and thus had the lowest model accuracy. Both Cubist and ELM displayed better modeling performance. In contrast, Cubist exhibited better fitting, stronger stability and predictive power, and fewer model error, and the Cubist was proposed to monitor soil salinization at 0-60, 0-20, 0-40 and 0-20cm depth respectively for TA, TB, TC, TE and the ELM at 0-60cm for TD to obtain the best inversion results.
The R2 and RMSE of the models also showed that the optimal model accuracy of different treatments was: TE > TB > TC > TA > TD. In addition, FVC division could improve the model accuracy of mid-low FVC model to a certain extent, and significantly improve that of bare land model and high FVC model.
3.6  Effect of FVC division on soil salinity maps based on Cubist model
With the image acquired in June as example, according to the FVC division method and the Cubist model (suitable for most treatments) obtained above, the topsoil salt content maps based on the two cases ( divided FVC and undivided FVC) were obtained with ENVI, Python and Arcgis. In the images, the white parts wipped off were towns, which were not involved in salinity inversion.
According to Fig.9, the salinization degree in the irrigation area was mild in June. The none and mild salinized area approximately accounted for 81.1% of the total area. This is because the summer irrigation intensifies the salt migration to the deeper soil and weakens salt accumulation in the surface. The severe salinized soil and saline soil were distributed in the area with less irrigation and great salt accumulation (mainly including abandoned farmland, low-lying land, salt wasteland), approximately accounting for 19.1% of the irrigation area .
Detailed comparison of the two figures showed that the ratios of different salinized areas to the total irrigation area were different. The ratios of the SSC in the intervals of 0.2-0.5% (56.99%) and above 1.0% (7.87%) in Fig.9 (a) were larger than those of Fig.9(b) in the corresponding intervals (45.88%, 7.16%), respectively. The ratios in the intervals of 0-0.2% (24.03%) and 0.5-1.0% (11.11%) of the undivided-FVC image were smaller than those of the divided-FVC image in the corresponding intervals (35.13%, 11.83%), respectively. With Fig.10 as a reference, the rations of different salinization of the divided-FVC image were closer to those of the measured data and the error may be caused by mapping with the Cubist method for mid FVC. This conclusion was fully confirmed by Fig.11. The light yellow area in the true color image (Fig.11a) represents the barren grassland and the corresponding soil should be highly salinized. The distribution and proportion of different salinized soil in Fig.11(c) were more consistent with that of the measured data comparing with Fig.11(b). In summary, FVC division could precisely reflect and monitor the soil salinization in the irrigation area.
4. Discussion
4.1 Significance of FVC division
Quantitative prediction and mastery of the distribution of soil salt is of great significance for soil salinization control. Previous studies on salinity inversion in bare land or in a certain crop growth period often covered up the differences in the whole growth process, and the vegetation coverage division could reflect the dynamic differences in the study area. In this study, the main functions of dividing FVC were embodied in improving: (i) the correlation between spectral covariates and soil salinity; (ii) the accuracy of SSC inversion model and salinity map.
(i) FVC division contributed to the significant increase of the correlation between each index and SSC. This arises from the different contribution of vegetation spectral index and salinity spectral index to soil salinization monitoring(Zhang et al., 2011), and the contribution of each index can be distinguished more clearly by FVC division so that the overall correlation can be improved. In bare land, the contribution of salinity spectral index was significantly higher than that of vegetation spectral index. With the increase of FVC, the contribution of vegetation spectral index gradually increased while that of salinity index gradually decreased. Under high FVC, the contribution of vegetation index was significantly higher than that of salinity index.
(ii) Vegetation, which can directly blur the soil information, is an important factor affecting soil salinization monitoring. The errors of different salinization vary according to the different FVC. The vegetation spectral index, as the most commonly used factor, is usually more sensitive to the change of soil salinity with high FVC, while salinity index is the opposite. However, during remote sensing monitoring of soil salinization, scholars often failed to divide the study area and select the best parameters according to the difference of such environmental conditions as FVC, which led to the uncertainty of monitoring results. Therefore, this study divided the sample set into four types of FVC and built SSC inversion models for each of them. Detecting and estimating soil salinity in the active layer of the crop root by remote sensing and crop growth status analysis can help characterize the effect of salt stress on crop growth precisely and get more accurate soil salinization monitoring model and soil salinity distribution map.
4.2 The optimal inversion depth
According to the analysis, the factors affecting the optimal inversion depth mainly include the range and activity of root system, root sensitivity and SSC in different depths. The surface soil of bare land has no shelter, which causes high evaporation and moisture movement from the lower layer to upper layer under direct sunlight, leading to the accumulation of soil surface salt, so 0-20cm is the optimal depth for the SSC inversion of bare soil. With vegetation cover, soil salt stress will affect crop roots, resulting in significant changes in crop spectral features and growth status. Therefore, detecting and estimating soil salinity in the active layer of the crop root by remote sensing and crop growth status analysis can also help identify the effect of soil depth on the model accuracy. With the increase of FVC, the crop gradually enters the late growth stage from the early one, with the root system extending from 30cm to 60cm.The main active layer of the root system was at 20-40cm of mid-low FVC and that of mid FVC was at 40-60cm.Therefore, the correlation between SSC and GF-1 data were the highest at 0-40cm and 0-60cm of mid-low and mid FVC, respectively(ZHANG et al., 2019a). According to the principle that crop condition can be used as an indirect indicator to identify the soil salinity in the root system, the optimal inversion depth with high vegetation cover should be 0-60cm in theory, but the optimal inversion depth obtained from the experiment was 0-20cm. This is because high FVC occurs in the mid and late stages of irrigation in study area when the huge evaporation of the irrigation water causes the sunk salt to return to the surface soil. The strong transpiration of intensive vegetation further intensifies the surface salt accumulation. Therefore, surface salt has strong effect on the crop growth under high FVC and 0-20cm is the optimal inversion depth.
In summary, the optimal depths of SSC inversion obtained in this study, in which the different FVC were taken into account, are consistent with that of the previous research. More importantly, the optimal depth of 0-20cm under high FVC was obtained when the actual irrigation stages in the study area was considered. Therefore, this result has more practical value. 
4.3 The optimal model
In this study, PLSR, Cubist and ELM were used for soil salinity inversion, and the Cubist model demonstrated the highest inversion accuracy due to its "divide-and-conquer" modeling strategy. PLSR lacks optimization of specific environmental condition factors, so its model accuracy is lower than that of Cubist, which agrees with the findings of other scholars (Ma et al. (2017b)). The core function of ELM algorithm is to randomly select the input weight and hidden layer bias of the network and it does not require too much human intervention in selecting the most suitable model parameters. This study showed that, compared with PLSR, the learning speed and modeling accuracy of ELM improved significantly.
4.4 Limitations and prospects
In this study, our division of the FVC into five kinds according to the actual situation of the Jiefangzha Irrigation District basically represents the growth stages of the local crops, but we failed to consider the effect of different crops on salt inversion. At the same time, the planting methods and density of the same crop may also affect the soil salinity monitoring. These issues deserve further study.
5. Conclusion
In this study, the SSC inversion at three different depths under different FVC was explored systematically. The research includes the following three steps: calculation of FVC and spectral covariates based on GF-1 satellite image and ground-collected data; division of FVC according to the local criteria; and construction of forty-five SSC inversion models using PLSR, Cubist and ELM. Finally we reached the following conclusions:
1) FVC division significantly improved the correlation between spectral covariates and soil salinity, and enhanced the model accuracy and predictive ability to some extent.
2) The model stability and prediction ability ranked from high to low as Cubist, ELM, and PLSR to a first approximation, and the model accuracy of bare land and high FVC were higher than that of mid-low FVC.
3) The best inversion models of bare land, mid-low FVC and high FVC are built using Cubist at the soil depths of 0-20, 0-40 and 0-20cm, respectively, and that of mid FVC is built by ELM at 0-60cm. The R2 and RMSE of the validation dataset of TB, TC, TD and TE are 0.61, 0.52, 0.16, 0.74 and 0.11, 0.12, 0.43, 0.09, respectively.
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