Competing Interests
The authors have declared that no competing interest exists.
References:
Bhargava P, & Schnellmann RG (2017). Mitochondrial energetics in the
kidney. Nat Rev Nephrol 13: 629-646.
Bonventre JV (2012). Can we target tubular damage to prevent renal
function decline in diabetes? Semin Nephrol 32: 452-462.
Chang CR, & Blackstone C (2007). Drp1 phosphorylation and mitochondrial
regulation. EMBO Rep 8: 1088-1089; author reply 1089-1090.
Curtis MJ, Alexander S, Cirino G, Docherty JR, George CH, Giembycz
MA, et al. (2018). Experimental design and analysis and their
reporting II: updated and simplified guidance for authors and peer
reviewers. Br J Pharmacol 175: 987-993.
Dagda RK, Gusdon AM, Pien I, Strack S, Green S, Li C, et al.(2011). Mitochondrially localized PKA reverses mitochondrial pathology
and dysfunction in a cellular model of Parkinson’s disease. Cell Death
Differ 18: 1914-1923.
Galvan DL, Long J, Green N, Chang BH, Lin JS, Schumacker P, et
al. (2019). Drp1S600 phosphorylation regulates mitochondrial fission
and progression of nephropathy in diabetic mice. J Clin Invest
129: 2807-2823.
Gregg EW, Li Y, Wang J, Burrows NR, Ali MK, Rolka D, et al.(2014). Changes in diabetes-related complications in the United States,
1990-2010. N Engl J Med 370: 1514-1523.
Gu X, Peng CY, Lin SY, Qin ZY, Liang JL, Chen HJ, et al. (2019).
P16(INK4a) played a critical role in exacerbating acute tubular necrosis
in acute kidney injury. Am J Transl Res 11: 3850-3861.
Ito T, Tanimoto M, Yamada K, Kaneko S, Matsumoto M, Obayashi K, et
al. (2006). Glomerular changes in the KK-Ay/Ta mouse: a possible model
for human type 2 diabetic nephropathy. Nephrology (Carlton) 11:29-35.
Jiang H, Shao X, Jia S, Qu L, Weng C, Shen X, et al. (2019). The
Mitochondria-Targeted Metabolic Tubular Injury in Diabetic Kidney
Disease. Cell Physiol Biochem 52: 156-171.
Kang YJ, Bang BR, Han KH, Hong L, Shim EJ, Ma J, et al. (2015).
Regulation of NKT cell-mediated immune responses to tumours and liver
inflammation by mitochondrial PGAM5-Drp1 signalling. Nat Commun
6: 8371.
Kilkenny C, Browne W, Cuthill IC, Emerson M, & Altman DG (2010). Animal
research: reporting in vivo experiments: the ARRIVE guidelines. Br J
Pharmacol 160: 1577-1579.
Lee JH, Kim JH, Kim JS, Chang JW, Kim SB, Park JS, et al. (2013).
AMP-activated protein kinase inhibits TGF-beta-, angiotensin II-,
aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal
transition. Am J Physiol Renal Physiol 304: F686-697.
Lu W, Karuppagounder SS, Springer DA, Allen MD, Zheng L, Chao B,
et al. (2014). Genetic deficiency of the mitochondrial protein PGAM5
causes a Parkinson’s-like movement disorder. Nat Commun 5:4930.
Mahaffey KW, Neal B, Perkovic V, de Zeeuw D, Fulcher G, Erondu N,
et al. (2018). Canagliflozin for Primary and Secondary Prevention of
Cardiovascular Events: Results From the CANVAS Program (Canagliflozin
Cardiovascular Assessment Study). Circulation 137: 323-334.
McGrath JC, & Lilley E (2015). Implementing guidelines on reporting
research using animals (ARRIVE etc.): new requirements for publication
in BJP. Br J Pharmacol 172: 3189-3193.
Neal B, Perkovic V, & Matthews DR (2017). Canagliflozin and
Cardiovascular and Renal Events in Type 2 Diabetes. The New England
journal of medicine 377: 2099.
Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan
DM, et al. (2019). Canagliflozin and Renal Outcomes in Type 2
Diabetes and Nephropathy. N Engl J Med 380: 2295-2306.
Reers M, Smiley ST, Mottola-Hartshorn C, Chen A, Lin M, & Chen LB
(1995). Mitochondrial membrane potential monitored by JC-1 dye. Methods
Enzymol 260: 406-417.
Reidy K, Kang HM, Hostetter T, & Susztak K (2014). Molecular mechanisms
of diabetic kidney disease. J Clin Invest 124: 2333-2340.
Rossello X, & Yellon DM (2017). The RISK pathway and beyond. Basic
research in cardiology 113: 2.
Russo LM, Sandoval RM, Campos SB, Molitoris BA, Comper WD, & Brown D
(2009). Impaired tubular uptake explains albuminuria in early diabetic
nephropathy. Journal of the American Society of Nephrology : JASN
20: 489-494.
Sharp WW, Fang YH, Han M, Zhang HJ, Hong Z, Banathy A, et al.(2014). Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction
in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1
inhibition to reduce mitochondrial fission. Faseb j 28:316-326.
Steven S, Oelze M, Hanf A, Kroller-Schon S, Kashani F, Roohani S,
et al. (2017). The SGLT2 inhibitor empagliflozin improves the primary
diabetic complications in ZDF rats. Redox Biol 13: 370-385.
Takiyama Y, Harumi T, Watanabe J, Fujita Y, Honjo J, Shimizu N, et
al. (2011). Tubular injury in a rat model of type 2 diabetes is
prevented by metformin: a possible role of HIF-1alpha expression and
oxygen metabolism. Diabetes 60: 981-992.
Tang SC, & Lai KN (2012). The pathogenic role of the renal proximal
tubular cell in diabetic nephropathy. Nephrol Dial Transplant
27: 3049-3056.
Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas
S, et al. (2015). Diabetic kidney disease. Nat Rev Dis Primers
1: 15018.
Toyama EQ, Herzig S, Courchet J, Lewis TL, Jr., Loson OC, Hellberg
K, et al. (2016). Metabolism. AMP-activated protein kinase
mediates mitochondrial fission in response to energy stress. Science
351: 275-281.
Wang Q, Zhang M, Torres G, Wu S, Ouyang C, Xie Z, et al. (2017).
Metformin Suppresses Diabetes-Accelerated Atherosclerosis via the
Inhibition of Drp1-Mediated Mitochondrial Fission. Diabetes 66:193-205.
Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P, et al.(2012). Mitochondrial fission triggered by hyperglycemia is mediated by
ROCK1 activation in podocytes and endothelial cells. Cell Metab
15: 186-200.
Wang Z, Jiang H, Chen S, Du F, & Wang X (2012). The mitochondrial
phosphatase PGAM5 functions at the convergence point of multiple
necrotic death pathways. Cell 148: 228-243.
Wanner C, Inzucchi SE, & Zinman B (2016). Empagliflozin and Progression
of Kidney Disease in Type 2 Diabetes. N Engl J Med 375:1801-1802.
Washburn WN, & Poucher SM (2013). Differentiating sodium-glucose
co-transporter-2 inhibitors in development for the treatment of type 2
diabetes mellitus. Expert Opin Investig Drugs 22: 463-486.
Weinberg JM, Venkatachalam MA, Roeser NF, & Nissim I (2000).
Mitochondrial dysfunction during hypoxia/reoxygenation and its
correction by anaerobic metabolism of citric acid cycle intermediates.
Proceedings of the National Academy of Sciences of the United States of
America 97: 2826-2831.
Wikstrom JD, Israeli T, Bachar-Wikstrom E, Swisa A, Ariav Y, Waiss
M, et al. (2013). AMPK regulates ER morphology and function in
stressed pancreatic beta-cells via phosphorylation of DRP1. Mol
Endocrinol 27: 1706-1723.
Zhou H, Wang S, Zhu P, Hu S, Chen Y, & Ren J (2018). Empagliflozin
rescues diabetic myocardial microvascular injury via AMPK-mediated
inhibition of mitochondrial fission. Redox Biol 15: 335-346.
Zinman B, Lachin JM, & Inzucchi SE (2016). Empagliflozin,
Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. The New
England journal of medicine 374: 1094.