Competing Interests
The authors have declared that no competing interest exists.
References:
Bhargava P, & Schnellmann RG (2017). Mitochondrial energetics in the kidney. Nat Rev Nephrol 13: 629-646.
Bonventre JV (2012). Can we target tubular damage to prevent renal function decline in diabetes? Semin Nephrol 32: 452-462.
Chang CR, & Blackstone C (2007). Drp1 phosphorylation and mitochondrial regulation. EMBO Rep 8: 1088-1089; author reply 1089-1090.
Curtis MJ, Alexander S, Cirino G, Docherty JR, George CH, Giembycz MA, et al. (2018). Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br J Pharmacol 175: 987-993.
Dagda RK, Gusdon AM, Pien I, Strack S, Green S, Li C, et al.(2011). Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson’s disease. Cell Death Differ 18: 1914-1923.
Galvan DL, Long J, Green N, Chang BH, Lin JS, Schumacker P, et al. (2019). Drp1S600 phosphorylation regulates mitochondrial fission and progression of nephropathy in diabetic mice. J Clin Invest 129: 2807-2823.
Gregg EW, Li Y, Wang J, Burrows NR, Ali MK, Rolka D, et al.(2014). Changes in diabetes-related complications in the United States, 1990-2010. N Engl J Med 370: 1514-1523.
Gu X, Peng CY, Lin SY, Qin ZY, Liang JL, Chen HJ, et al. (2019). P16(INK4a) played a critical role in exacerbating acute tubular necrosis in acute kidney injury. Am J Transl Res 11: 3850-3861.
Ito T, Tanimoto M, Yamada K, Kaneko S, Matsumoto M, Obayashi K, et al. (2006). Glomerular changes in the KK-Ay/Ta mouse: a possible model for human type 2 diabetic nephropathy. Nephrology (Carlton) 11:29-35.
Jiang H, Shao X, Jia S, Qu L, Weng C, Shen X, et al. (2019). The Mitochondria-Targeted Metabolic Tubular Injury in Diabetic Kidney Disease. Cell Physiol Biochem 52: 156-171.
Kang YJ, Bang BR, Han KH, Hong L, Shim EJ, Ma J, et al. (2015). Regulation of NKT cell-mediated immune responses to tumours and liver inflammation by mitochondrial PGAM5-Drp1 signalling. Nat Commun 6: 8371.
Kilkenny C, Browne W, Cuthill IC, Emerson M, & Altman DG (2010). Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160: 1577-1579.
Lee JH, Kim JH, Kim JS, Chang JW, Kim SB, Park JS, et al. (2013). AMP-activated protein kinase inhibits TGF-beta-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal transition. Am J Physiol Renal Physiol 304: F686-697.
Lu W, Karuppagounder SS, Springer DA, Allen MD, Zheng L, Chao B, et al. (2014). Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson’s-like movement disorder. Nat Commun 5:4930.
Mahaffey KW, Neal B, Perkovic V, de Zeeuw D, Fulcher G, Erondu N, et al. (2018). Canagliflozin for Primary and Secondary Prevention of Cardiovascular Events: Results From the CANVAS Program (Canagliflozin Cardiovascular Assessment Study). Circulation 137: 323-334.
McGrath JC, & Lilley E (2015). Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol 172: 3189-3193.
Neal B, Perkovic V, & Matthews DR (2017). Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. The New England journal of medicine 377: 2099.
Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. (2019). Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med 380: 2295-2306.
Reers M, Smiley ST, Mottola-Hartshorn C, Chen A, Lin M, & Chen LB (1995). Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol 260: 406-417.
Reidy K, Kang HM, Hostetter T, & Susztak K (2014). Molecular mechanisms of diabetic kidney disease. J Clin Invest 124: 2333-2340.
Rossello X, & Yellon DM (2017). The RISK pathway and beyond. Basic research in cardiology 113: 2.
Russo LM, Sandoval RM, Campos SB, Molitoris BA, Comper WD, & Brown D (2009). Impaired tubular uptake explains albuminuria in early diabetic nephropathy. Journal of the American Society of Nephrology : JASN 20: 489-494.
Sharp WW, Fang YH, Han M, Zhang HJ, Hong Z, Banathy A, et al.(2014). Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. Faseb j 28:316-326.
Steven S, Oelze M, Hanf A, Kroller-Schon S, Kashani F, Roohani S, et al. (2017). The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biol 13: 370-385.
Takiyama Y, Harumi T, Watanabe J, Fujita Y, Honjo J, Shimizu N, et al. (2011). Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1alpha expression and oxygen metabolism. Diabetes 60: 981-992.
Tang SC, & Lai KN (2012). The pathogenic role of the renal proximal tubular cell in diabetic nephropathy. Nephrol Dial Transplant 27: 3049-3056.
Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas S, et al. (2015). Diabetic kidney disease. Nat Rev Dis Primers 1: 15018.
Toyama EQ, Herzig S, Courchet J, Lewis TL, Jr., Loson OC, Hellberg K, et al. (2016). Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351: 275-281.
Wang Q, Zhang M, Torres G, Wu S, Ouyang C, Xie Z, et al. (2017). Metformin Suppresses Diabetes-Accelerated Atherosclerosis via the Inhibition of Drp1-Mediated Mitochondrial Fission. Diabetes 66:193-205.
Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P, et al.(2012). Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 15: 186-200.
Wang Z, Jiang H, Chen S, Du F, & Wang X (2012). The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148: 228-243.
Wanner C, Inzucchi SE, & Zinman B (2016). Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 375:1801-1802.
Washburn WN, & Poucher SM (2013). Differentiating sodium-glucose co-transporter-2 inhibitors in development for the treatment of type 2 diabetes mellitus. Expert Opin Investig Drugs 22: 463-486.
Weinberg JM, Venkatachalam MA, Roeser NF, & Nissim I (2000). Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proceedings of the National Academy of Sciences of the United States of America 97: 2826-2831.
Wikstrom JD, Israeli T, Bachar-Wikstrom E, Swisa A, Ariav Y, Waiss M, et al. (2013). AMPK regulates ER morphology and function in stressed pancreatic beta-cells via phosphorylation of DRP1. Mol Endocrinol 27: 1706-1723.
Zhou H, Wang S, Zhu P, Hu S, Chen Y, & Ren J (2018). Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol 15: 335-346.
Zinman B, Lachin JM, & Inzucchi SE (2016). Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. The New England journal of medicine 374: 1094.