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Abstract 22 

Genetic tools are increasingly used to identify and discriminate between species. One key 23 

transition in this process was the recognition of the potential of the ca 658bp fragment of the 24 

organelle cytochrome c oxidase I (COI) as a barcode region, which revolutionised animal 25 

bioidentification and lead, among others, to the instigation of the Barcode of Life database 26 

(BOLD), containing currently barcodes from >7.9 million specimens. Following this discovery, 27 

suggestions for other organellar regions and markers, and the primers with which to amplify 28 

them, have been continuously proposed. Most recently, the field has taken the leap from PCR 29 

based generation of DNA references into shotgun sequencing-based ‘genome skimming’ 30 

alternatives, which the ultimate goal of assembling organellar reference genomes. 31 

Unfortunately, in genome skimming approaches, much of the nuclear genome (as much as 32 

99% of the sequence data) is discarded, which is not only wasteful but can also limit the power 33 

of discrimination at or below the species level. Here, we advocate that the full shotgun 34 

sequence data can be used to assign an identity (that we term for convenience its ‘DNA-mark’) 35 

for both voucher and query samples, without requiring any computationally intensive 36 

pretreatment (e.g., assembly) of reads. We argue that if reference databases are populated 37 

with such ‘DNA-marks’, it will enable future DNA-based taxonomic identification to 38 

complement, or even replace PCR of barcodes with genome skimming, and we discuss how 39 

such methodology ultimately could enable identification to population, or even individual, level. 40 

 41 

 42 

Keywords: Biodiversity, DNA Barcoding, DNA reference databases, Environmental DNA, K-43 

mers, Next Generation Sequencing 44 

 45 

 46 

  47 



3 

From DNA barcoding to DNA-marking 48 

DNA sequences are increasingly being applied as a tool with which to assign identity to query 49 

samples, most famously through the use of so-called ‘DNA barcodes’ (Hebert, Cywinska, Ball, 50 

& deWaard, 2003a). Originally conceived as a ca 658bp fragment of the organelle cytochrome 51 

c oxidase I (COI) gene to serve as a taxonomic tool for use in animal bioidentification, the idea 52 

was elegant. Users would PCR amplify and then Sanger sequence this marker, chosen based 53 

on their observations using lepidopterans as a test, to be conserved enough to be targeted 54 

with generic (pan-taxa) primer sets, while variable enough to provide variation at the 55 

interspecific level (while similarly not varying at the intra-specific level). This elegant idea of a 56 

barcoding region with which to tell species across life forms apart quickly caught on, and 57 

subsequently a flurry of other organellar regions and markers and associated primer sets were 58 

proposed. For example, 16s rRNA was used for animals including mammals (Taylor, 1996), 59 

amphibians (Vences, Thomas, van der Meijden, Chiari, & Vieites, 2005) and insects (Clarke, 60 

Soubrier, Weyrich, & Cooper, 2014); 12s was proposed for vertebrates (Riaz et al., 2011);  61 

Matk (Lahaye et al., 2008) and rbcl (Fazekas et al., 2008) for plants; and ITS for fungi, (Schoch 62 

et al., 2012). 63 

 64 

As DNA barcoding’s potential became increasingly apparent, it spurred rapid development in 65 

a range of associated laboratory and computational techniques to help optimise its 66 

performance, through facilitating efficient generation of high quality and economical data. In 67 

the laboratory, progress has principally been focused on decreasing the costs for generating 68 

single DNA reference and query barcodes - a key step for democratising its use. For example, 69 

the state-of-the-art is to use Illumina (Liu, Yang, Zhou, & Zhou, 2017) or PacBio (Hebert et al., 70 

2018) technology to simultaneously sequence multiplexed amplicons derived from voucher 71 

specimens, so as to generate tens of thousands of sequence in parallel, thus decreasing 72 

sequencing costs to only a few cents per barcode (Hebert et al., 2018). A second avenue of 73 

progress relates to the development of computational methods designed to optimise the 74 

information potential of barcode data, in particular in light of challenges such as error within 75 



4 

query barcode sequences or incomplete or even erroneous reference databases (e.g. Bridge, 76 

Roberts, Spooner, & Panchal, 2003; Briski, Ghabooli, Bailey, & MacIsaac, 2016)). However, 77 

perhaps the most important of these developments was the realisation that the power of 78 

barcoding is constrained by the quality of reference data against which to compare query 79 

sequences, thus the need for comprehensive and curated barcode reference databases 80 

based on the sequencing of vouchered information. Hebert and team’s BOLD database 81 

(Ratnasingham & Hebert, 2007) epitomises this ideal, containing barcode sequences from 82 

over >7.9 million specimens (http://www.boldsystems.org/index.php, retrieved February 83 

2020). 84 

 85 

Recently, DNA reference databases are increasingly being complemented by shotgun 86 

sequencing-based ‘genome skimming’ alternatives (Coissac, Hollingsworth, Lavergne, & 87 

Taberlet, 2016; Nevill et al., 2020; Zeng et al., 2018). In such approaches, while the original 88 

barcode loci are sequenced (Liu et al., 2013) with probability depending upon the coverage, 89 

the biggest benefit comes from the sequencing and assembly of organellar genomes (Gillett 90 

et al., 2014). Unfortunately, much of the nuclear genome (as much as 99% of the sequence) 91 

is discarded. Ultimately, this can limit the power of discrimination at or below the species level 92 

(Rubinoff & Holland, 2005). 93 

 94 

As such, we build on the suggestion first outlined by Coissac and colleagues (Coissac et al., 95 

2016), and advocate that the full shotgun sequence data generated from voucher specimens 96 

could also be used to assign an identity (that we term for convenience here its ‘DNA-mark’), 97 

without requiring any computationally intensive pretreatment (e.g., assembly) of reads. With 98 

such reference information in place, we argue that future studies that aim to assign an identity 99 

to query samples could complement, or even replace PCR of barcodes with shotgun 100 

sequencing, yielding data that could be matched to information in the reference database 101 

using computational methods that treat both the query and reference samples as “bags of 102 
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reads” (Sarmashghi, Bohmann, P. Gilbert, Bafna, & Mirarab, 2019). We believe that this 103 

methodology ultimately could enable identification to population, or even individual, level. 104 

 105 

The limits of traditional barcoding 106 

It is impossible to overstate the impact that traditional single-locus DNA barcoding has had 107 

over the past 15 years, and it will without doubt continue to represent a fundamental pillar of 108 

many future studies. However, after such extensive use, its limitations are also now apparent, 109 

raising the obvious question as to whether these can be overcome? Principal among them is 110 

the taxonomic resolution at which traditional barcodes can effectively operate - having been 111 

chosen with the aim of discriminating at the species level (although even this is not 112 

guaranteed), they work sub-optimally as one moves below the species to other units that may 113 

interest end users - such as the population, or even individual. This problem is confounded by 114 

the ‘barcoding gap’ challenge, namely that the genetic distance between taxonomic units is 115 

not a constant, thus while traditional barcodes may be effective in discriminating between 116 

different species in one genus, they may fail to perform on other genera (Shearer & Coffroth, 117 

2008; e.g. Wiemers & Fiedler, 2007). A third limitation inherent to their relatively short length 118 

means they rarely can be used to resolve phylogenies with high statistical support, while a 119 

fourth challenge relates to the minimum length of intact DNA templates required to 120 

successfully PCR amplify a barcode locus. The DNA content of many specimens of interest is 121 

often heavily degraded due to age, storage conditions, or chemical treatment, and remaining 122 

fragments may simply be too short to allow initial PCR amplification step (Orlando, Gilbert, & 123 

Willerslev, 2015). Lastly, heavily degraded samples may also be contaminated with 124 

exogenous sources of DNA, which given the sensitivity of PCR, can potentially lead to the co 125 

(or even preferential) amplification of the contaminant over the true target (Hofreiter, Serre, 126 

Poinar, Kuch, & Pääbo, 2001). 127 

 128 

The decreasing cost of sequencing using so-called Next Generation Sequencing (NGS) 129 

technologies has provided partial solutions to this problem, in particular thanks to the 130 
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introduction of the ‘genome skimming’ approaches (Coissac et al., 2016). In their current 131 

implementation, DNA extracted from voucher specimens are converted into NGS libraries, 132 

shotgun sequenced to relatively low genome coverage, then either original barcode loci such 133 

as COI (Liu et al., 2013), or full organellar genomes are reconstructed bioinformatically from 134 

this data (Fig. 1) (Gillett et al., 2014). Thanks to library indexing, many samples can be 135 

multiplexed before sequencing, meaning that many tens (or even hundreds) of organelle 136 

genomes can be sequenced on a single sequencing run (even more, if coupled to target-137 

enrichment (Liu et al., 2016)). This yields a significant increase in information potential. This 138 

is further increased by the reduction in DNA preservation requirements when bypassing the 139 

conventional PCR step. For genome skimming, DNA fragments as short as 25-30 bp are 140 

usable, in stark contrast to the ca 700 bp requirement in traditional barcoding, which can hinder 141 

generation of reference sequences from old or badly preserved specimens. In light of these 142 

benefits, today several projects have actively chosen to employ genome skimming over 143 

traditional PCR to generate barcode-like data, for example the PhyloAlps (phyloalps.org), 144 

NORBOL (norbol.org) and DNAmark (dnamark.ku.dk) initiatives, and in doing so are extending 145 

the concept of traditional DNA barcode reference databases (Hebert, Cywinska, Ball, & 146 

deWaard, 2003b) to encompass organelle genome data. However, while this represents a 147 

natural development to traditional barcoding, we highlight that even this approach has its 148 

limits. Should sufficient genetic diversity and population structure exist in the target species, 149 

organelle genomes might enable us to narrow identification to the sub-species, or even 150 

population level; however, unless organelle haplotypes are unique to individual organisms, 151 

their resolution stops here. Furthermore, inferences based on single non-recombining loci (no 152 

matter how long) are notoriously susceptible to challenges such as Incomplete Lineage 153 

Sorting, thus making them suboptimal for  assigning identity or inferring evolutionary histories 154 

(Funk & Omland, 2003; McKay & Zink, 2010). Lastly and importantly, genome skimming 155 

simply seems wasteful as it only exploits a fraction of the generated sequence data. The 156 

nuclear DNA component of shotgun sequenced DNA extracts can represent >99% of the 157 
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reads (Liu et al., 2016), and we argue this holds valuable information that can further the goals 158 

of sample identification. 159 

 160 

Exploiting the power of the nuclear genome 161 

Given that the nuclear genome sequence of any non-clonal organism is a representation of its 162 

evolutionary history, it represents the ultimate source of information for those wishing to assign 163 

identity to samples. In theory, with enough reference data one could identify every genetically 164 

distinct organism on the planet. As such, if one looks to the future, the obvious desirable end 165 

goal would be to generate fully assembled nuclear genomes from both query and voucher 166 

samples and to do this across the entire Tree of Life, as advocated for example by initiatives 167 

such as the Earth Biogenome Project (Lewin et al., 2018) (https://www.earthbiogenome.org/), 168 

which are starting to be realised through projects such as the Darwin Tree of Life Project ( 169 

https://www.sanger.ac.uk/science/collaboration/darwin-tree-life-project). Unfortunately 170 

however, while sequencing technology is advancing at a remarkable rate thanks to the 171 

increases in accuracy, read length and overall output of platforms such as the PacBio Sequel 172 

II, which has allowed generation of largely complete genome assemblies for many organisms, 173 

the assembled nuclear genomes come with their own challenges. Firstly, nuclear genomes 174 

are expensive to generate as they require sequencing to high depths of coverage. Secondly, 175 

the assembly is constrained by depth of sequencing and the repeat structure of the genome. 176 

On the one hand, if the depth of sequencing is high, then the computational power needed for 177 

the assembly is very high. On the other hand, sequencing depth cannot be too small either as 178 

this will be problematic for successful assembly. Typically, a minimum depth of coverage is 179 

required that falls in the range of at least 50x for a relatively straightforward diploid organism 180 

(Sohn & Nam, 2018). A further challenge is repeat sequences, which when longer than the 181 

reads sequenced, can prevent unambiguous assembly. Repeats can be resolved by 182 

construction of mate-pair/large insert libraries for short-read technologies or  extraction of high 183 

molecular weight DNA and long-read sequencing using single molecule sequencing. This in 184 
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turn limits both which specimens can be used, and complicates the requisite laboratory 185 

equipment and skills.  186 

 187 

In summary, the costs of assembling nuclear genomes are high, both with regards to cost, 188 

data generation and the computational assembly. This puts nuclear genomes well beyond the 189 

budgets and capabilities of most people actively interested in using DNA as a tool for routine 190 

taxonomic assignment of many samples. However, given that nuclear genome sequences are 191 

unique, regardless of whether they have been assembled into contigs, scaffolds or 192 

chromosomes, it follows that even unassembled shotgun sequence data might hold 193 

information that could be exploited for taxonomic assignment. And thus given such data is 194 

already being generated by current reference database genome skimming and genome 195 

projects, we argue that now is the time to explore its potential and develop suitable laboratory 196 

and computational tools for its exploitation. 197 

 198 

Unleashing the full potential of genome skimming using assembly-free methods 199 

How might we best exploit this residual nuclear DNA data? The ideal solution would be an 200 

approach that is fast, simple and efficient, and at least in the short term while sequencing costs 201 

are still in the range of >10 USD per GB (Rachtman, Balaban, Bafna, & Mirarab, 2020), restrict 202 

sequencing effort to a minimum. Our proposed solution is to instead use unassembled reads 203 

from the nuclear genome (so-called “bags of reads”) to perform the function currently assigned 204 

to barcodes (or organelle genomes), namely populate reference databases against which 205 

queries can be matched (Fig. 1 & 2). Critically, such a method would need to be simple and 206 

intuitive, and computationally efficient - both with regards to data processing and storage. 207 

 208 

Coissac and colleagues (Coissac et al., 2016) have suggested that assembly-free and 209 

mapping-free methods (Blaisdell, 1986; Fan, Ives, Surget-Groba, & Cannon, 2015; Maillet, 210 

Collet, Vannier, Lavenier, & Peterlongo, 2014; Song et al., 2013; Vinga & Almeida, 2003) 211 

naturally meet many of these criteria. They are typically fast and conceptually simple. 212 
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Following this aim, several groups have recently developed methods specifically aimed at 213 

handling characteristics specific to genome skimming, including low coverage and sequencing 214 

errors (Sarmashghi et al., 2019; Tang, Ren, & Sun, 2019). Indeed, many alignment-free 215 

methods are available and their application to genome skims should be explored. We note 216 

that accurate analyses of skimming data will require several computational components (Fig. 217 

2). In recent years, a new toolkit of methods for analyzing skimming data has started to 218 

emerge. Below, we discuss some of these advances, focusing specifically on analyses based 219 

on short oligomers, or k-mers. 220 

 221 

K-mer-based distance calculation. A collection of k-mers sampled at random from the 222 

nuclear genome encodes a remarkable amount of information. For a genome of size 𝑛, and 223 

ignoring repeats, a k-mer of sufficient size (𝑙𝑜𝑔!𝑛) will be unique in that genome with high 224 

probability. Helpfully, the probability of finding that k-mer in another genome relates directly to 225 

the evolutionary distance to the other genome. Modelling two genome-skims simply as sets of 226 

k-mers 𝐴 and 𝐵, we can define the fraction of shared k-mers by the Jaccard index: 227 

 228 

𝐽 =
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

. 229 

 230 

𝐽 is intimately connected to the genomic distance 𝐷 between the two organisms (Fan et al., 231 

2015). Assuming all mutations to be equally likely, we can estimate 𝐷 as 232 

 233 

𝐷 = 1 − (
2𝐽
1 + 𝐽

)
!
". 234 

 235 

Moreover, 𝐽 can be computed efficiently, using as few as 103 k-mers using hashing techniques 236 

(Ondov 2016). However, this method assumes the coverage is high enough that each k-mer 237 
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is sampled at least once. Recently, we developed a method called Skmer that allows for 238 

accurate estimation of genomic distance with extremely low (e.g., 0.1X) coverage, even when 239 

the coverage is unknown and in the presence of sequencing errors (Sarmashghi et al., 2019). 240 

Skmer uses k-mer frequencies to estimate genome length, coverage, and sequencing error 241 

and uses the Jaccard index to compute genomic distance using a more complex version of 242 

the equation above. Because assembly is not needed, adding new species to the reference 243 

set of Skmer requires minimal preprocessing or indexing, and thus, is straightforward. While 244 

Skmer has performed well in comparison to other assembly-free methods (Sarmashghi et al., 245 

2019; Zielezinski et al., 2019), our intention here is not to advocate Skmer specifically; our 246 

general arguments apply to other assembly-free methods (see Zielezinski et al., 2019).  247 

 248 

Sample identification. Once the genomic distance is measured, sample identification can 249 

follow the standard approach of finding the voucher species with the smallest distance to the 250 

query. The tool Skmer has shown high accuracy in this setting. For example, on datasets of 251 

Anopheles mosquitos with genome skims of size 0.1, 0.5, or 1Gb (corresponding to ~0.5X-7X 252 

coverage), Skmer correctly identified the best match to every query skim, even when species 253 

close to the query were removed from the reference set (Sarmeshgi, 2018); in more 254 

challenging datasets of Drosophila and birds, Skmer was still correct in 190 out of 210, and 255 

375 out of 460 tests, respectively. 256 

 257 

When an exact match to the query species is not available in the reference set, a phylogenetic 258 

approach is helpful. Phylogenetic placement can find the best placement of the query on a 259 

reference phylogeny of vouchers. Recently developed methods such as APPLES can perform 260 

phylogenetic placement using distances alone (Balaban, Sarmashghi, & Mirarab, 2019). 261 

Phylogenetic placement can improve accuracy of identification. For example, in a leave-one-262 

out reanalysis of a dataset of 61 lice genome skims (Boyd et al., 2017), APPLES was able to 263 

find the correct phylogenetic placement in 97% of cases, whereas simply picking the closest 264 

match was accurate in only 54% of the tests (Balaban et al., 2019). 265 
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 266 

Read cleanup and filtering. Before computing distances between DNA-marks, several 267 

technical and conceptual issues must be addressed. Standard processing of reads, including 268 

adapter removal, deduplication, and merging of paired-end-reads are all needed and can be 269 

achieved using standard tools such as BBTools (Bushnell, 2014). A remaining type of 270 

preprocessing needed is dealing with extragenic DNA from sources other than the species of 271 

interest. While this is a serious issue, we note that it is not unique to a DNA-mark approach, 272 

and rather represents an important challenge for the field, and we revisit it later in the article. 273 

 274 

Why haven’t genome-wide approaches been adopted yet? 275 

One valid question is why such approaches have not already been adopted? Firstly, until 276 

recently, shotgun sequencing costs per unit sequenced have simply been prohibitively 277 

expensive. Nevertheless, as sequencing costs per base continue to drop, the end-to-end costs 278 

will be increasingly dominated by processes necessary to the data generation (Fig. 3). This 279 

includes for example, the salaries of staff paid to collect voucher samples, extract and 280 

generate the DNA data, assemble and run QC on the results, and ultimately upload the data 281 

and accessory information into reference databases. Thus, while the difference purely in 282 

economic cost of PCR versus shotgun sequencing may at first look significant, the difference 283 

in true cost becomes minimal (Fig. 3). Secondly, it might be assumed that the computational 284 

burden associated with any NGS-based method is high. However, as already alluded to 285 

above, computational burdens for assembly-free methods are considerably reduced. For 286 

example, the total running time (using 24 CPU cores) to compute 1081 distances between all 287 

pairs of 48 avian genome skims using the Skmer tool took only 33 minutes (Sarmashghi et al., 288 

2019). Thirdly, while map-free, alignment-free methods of comparing genomes (including 289 

some based on k-mers) have been known in the Bioinformatics community (Marçais & 290 

Kingsford, 2011; Ondov et al., 2016), the power of k-mer analysis for making inference with 291 

low-coverage genome-skims was not well understood until recently (Fan et al., 2015; 292 

Sarmashghi et al., 2019). Following these advances, user-friendly software programs to 293 
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efficiently use the k-mer data are being actively developed, and new methods for improving 294 

their accuracy and usability are being designed.  295 

 296 

We would argue that the only thing stopping this approach being implemented now is an 297 

exploration of its performance and potential, alongside the development of appropriate 298 

laboratory methods (such as efficient and cost-effective library build protocols applicable to 299 

badly preserved voucher specimens, e.g. Troll et al. (2019)) and development of reference 300 

databases with suitable infrastructure. 301 

 302 

Open methodological questions 303 

As mentioned above, methods for computing genomic distance from genome skims and for 304 

phylogenetic analysis of those distances exist. Despite the progress, several unanswered 305 

methodological questions need to be further explored by the research community. Some of 306 

the questions are computational in nature while others are related to lab techniques and the 307 

curation of comprehensive reference libraries. In the following section we briefly discuss what 308 

some of these might be. 309 

 310 

Computational questions 311 

Coverage: A natural question is what depth of coverage will be needed for accurate sample 312 

identification. The answer is not straightforward and will depend on many factors, including 313 

genome length, sequencing errors introduced due to either post mortem DNA degradation 314 

(Lindahl, 1993; Pääbo, 1989) or library preparation enzyme and platform sequencing 315 

chemistry, and perhaps even the genomic architecture (e.g., the prevalence of repeats and 316 

polyploidy). The required depth of coverage is also a function of the genetic similarity between 317 

taxa. For example the coverage required to distinguish a human from a chimpanzee sample 318 

would be higher than human from gibbon, simply as the former pair share many more k-mers 319 

than the latter. Thus, a single number will not be universally applicable to different groups. 320 

Moreover, within species diversity is highly variable across the tree of life (Leffler et al., 2012). 321 
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Nevertheless, our initial studies show that for species-level identification, 1X coverage may be 322 

sufficient in most cases (Sarmashghi et al., 2019), and thus given our aforementioned 323 

argument that labor, not sequencing, is the bottleneck, perhaps, using a fixed sequencing 324 

effort (say, 2Gb per species) would suffice in most cases. Nevertheless, more research is 325 

needed to characterize the exact resolution that can be obtained for a given coverage. This 326 

question has to be studied for different types of species with different genomic architectures.  327 

 328 

Population-level characterization. Related to the question of coverage is the question of 329 

resolution: Can a DNA-mark distinguish groups at the subspecies level? Current methods 330 

such as Skmer tend to have very high accuracy for distances as low as 10-2 and reasonable 331 

accuracy for distances in the 10-3 range. For some groups, sub-species identification will 332 

require finer resolution. Accurately computing even lower distances despite low coverage 333 

(e.g., 1-5X) may be possible with improved methods. We believe increasing the resolution will 334 

require a more complex modelling of the genomic structure and in particular the profile of the 335 

repeated k-mers across the genome. However, disentangling repeat structure from the k-mer 336 

frequency profiles observed due to the random coverage of the genome is not easy and will 337 

require new algorithms. 338 

 339 

Mutational models: Any measure of genomic distance is tightly linked with mutational 340 

processes that are modeled. For example, the Skmer method directly models substitutions 341 

but not processes such as insertions and deletions, gene duplications and losses, abundant 342 

repeats, polyploidy, and horizontal gene transfer. Some of these mutation types (e.g., indels) 343 

are arguably modeled by Skmer indirectly. Nevertheless, the robustness of the k-mer based 344 

methods needs to be tested and improved in the face of complex mutations such as large-345 

scale duplications. This is especially important for plants and other organisms with complex 346 

genomic architecture.  347 

 348 
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Sequencing technology: The exact choice of the sequencing technology will affect not only 349 

the lengths of sequences generated and sequencing error rates, but can also introduce biases 350 

through preferential sequencing of certain regions over others due to GC content etc (Browne 351 

et al., 2020). All of these may impact the accuracy of k-mer-based methods. In practice, it may 352 

also be that a reference dataset would be composed of skims sequenced with different 353 

technologies. Would query searches against such databases remain unbiased? Since k-mers 354 

break down long sequences into short ones anyway, there is reason to hope that they will 355 

remain robust to the choice of the sequencing technology. Nevertheless, empirical tests with 356 

mixed sequencing technologies currently do not exist.  357 

 358 

Sampling: If reference databases are not comprehensive, and this goes for any reference 359 

database whether traditional barcode, organelle genome or k-mer reference databases, 360 

taxonomic assignments of queries can suffer. Besides developing reference libraries with 361 

denser sampling, a phylogenetic perspective can also be helpful, as the metagenomics 362 

community has learned (Brady & Salzberg, 2009; Janssen et al., 2018; Matsen, 2015; Matsen, 363 

Kodner, & Armbrust, 2010; Nguyen, Mirarab, Liu, Pop, & Warnow, 2014). Considering 364 

phylogenetic relationships between the query and reference sequences, we can look for the 365 

largest taxonomic level (e.g., a genus, family, or class) in which the query can be confidently 366 

placed. To this end, we have developed algorithms that combine k-mer-based distances with 367 

phylogeny-based placement (Balaban et al., 2019). However, phylogenetic placement of 368 

genome skims can further benefit from methods that better characterize placement 369 

uncertainty, model rate variations and gene tree discordance across the genome, and 370 

incorporate complex substitution models.    371 

 372 

Extragenic DNA: The most pernicious challenge is the possibility that the generated 373 

sequence data derives from more than one source. That is, voucher samples might not only 374 

contain DNA from the target species, but also that from other organisms. This could be from 375 

naturally impure voucher samples, for example endophytes associated with plants, or the gut 376 
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contents of preserved insects, or even simply a result of microbial driven degradation. 377 

Alternatively, it could derive from contamination during the laboratory procedures, or even 378 

library bleeding during sequencing as has been reported for some Illumina platforms (Kircher, 379 

Sawyer, & Meyer, 2012; Sinha et al., 2017) and which may yield impure datasets. While 380 

conventional PCR or genome skimming approaches are not immune to contamination, 381 

identification and removal of contaminants is a much more straightforward process.  382 

 383 

A recent study showed that for assembly-free methods of genome matching, estimates of 384 

genomic distance are negatively impacted if contamination are not detected (Rachtman et al., 385 

2020). Using both mathematical modelling and empirical data, the authors elucidated how the 386 

amount of contamination and the similarity of the contamination across skims being compared 387 

interact with negative impacts of contamination. Contaminating sequence reads can impact k-388 

mer based measures of distance in complex ways. The most damaging scenario is when both 389 

the query and the reference skims are impure, especially if the impurity of the query skim 390 

happens to be similar to that of some reference skims. In a scenario like that, the estimated 391 

distance from the query to a reference may be low, not because of the phylogenetic similarity 392 

but because of the similarity in contaminants.  393 

 394 

One approach to deal with sample impurity is to filter out reads suspected to be contaminants. 395 

Existing methods such as BLAST or Kraken (Wood, Lu, & Langmead, 2019) can be used to 396 

search reads against databases of known contaminants. For example, if the sample is known 397 

to be of an insect, we can match reads against databases of bacteria, fungi, viruses, and 398 

mammals. Any strong matches to these can be then eliminated. The analysis by Rachtman et 399 

al. (2020) has shown filtering using Kraken-II to be effective in reducing the negative impacts 400 

of contamination, but only when the contaminants have relatively close matches to the 401 

contaminant reference library (e.g., a match with up to 5-10% genomic distance). This 402 

observation leaves us with a methodological gap, namely, efficient yet more effective methods 403 

of read matching at higher distances. These search methods should go beyond (near) exact 404 
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matching to species available in the contaminant database, as those databases will always be 405 

incomplete. Instead, they should use the databases as a guide to broadly find reads that have 406 

likely originated from organisms other than the clade of interest. An alternative to this 407 

“exclusion-filtering” method is inclusion-filtering: designing methods that can identify reads that 408 

have, in fact, likely originated from some organism in the clade of interest.  409 

 410 

Mixture analysis. The existing methodology for k-mer based analysis of DNA-marks mostly 411 

assumes the sample is of one target species (plus contaminants). Akin to metabarcoding, we 412 

can imagine a scenario where meta DNA-marks are obtained from samples that include a mix 413 

of species of interest. For example, the sample may include a mix of several insects that are 414 

hard to physically separate. Or it may be bee-bread, the collection of pollen from several plants 415 

and fungi that constitute the food source in a bee nest. Can a DNA-mark from a mixed sample 416 

be decomposed into its constituent parts? While designing methods to solve this problem is 417 

not trivial, the success of the metagenomic field makes us optimistic that methods for 418 

deconvoluting a DNA-marks into their constituent species can be developed in the near future. 419 

 420 

Sample collection, lab and sequencing developments 421 

As mentioned above, the DNA-mark approach could be complicated by sample impurity. Such 422 

can arise at all steps of the workflow but at the very basal step at the point of sample collection. 423 

As with other approaches for DNA reference data generation, it is best to collect samples for 424 

DNA extraction and sequencing that contain as little DNA from other sources as possible. For 425 

instance, avoiding obvious endophytes on plants and avoiding contamination by one’s own 426 

DNA and from other sources during collection. 427 

 428 

When generating all types of reference data, DNA-mark reference data included, we need to 429 

do it efficiently, cost-effectively and reliably and ensure that it causes minimal destruction to 430 

voucher specimens. For generation of DNA-mark reference data, and to some extent all of 431 

this is valid for other approaches too, this can be achieved by following validated and 432 
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standardised workflows and pipelines. Importantly, these should seek to i) minimise (cross) 433 

contamination during lab work, through e.g. working in pre and post PCR laboratories and in 434 

clean working environments and by minimising hands-on-labour, e.g. through semi-automated 435 

laboratory processing on robots and semi-automated bioinformatic pipelines, ii) simplify DNA 436 

extractions so they are pure and relatively universal across sample types, and iii) ensure that 437 

protocols for preparation of DNA extracts for sequencing, the so-called library build, are as 438 

simple as possible, that they allow low quantities of input DNA and that they account for 439 

potential artefacts such as ‘library bleeding’, which if not taken into account can cause false 440 

assignment of sequences to samples and thereby contaminate samples (Kircher et al., 2012; 441 

Sinha et al., 2017). With regards to sequencing platforms, these need to be cheap, high-442 

throughput, simple to use and reliable. 443 

 444 

Concluding remarks 445 

A community effort will be needed if we are to effectively address the challenges associated 446 

with using k-mers in general, and in parallel establish the required curated public DNA-mark 447 

reference database against which queries can be run. This could, for example, be comprised 448 

of both the processed genome skim data and the assembled organellar genomes that can be 449 

mined from genome skims. This in turn would ideally be based on both data submitted by 450 

those deliberately aiming to contribute to the database, and mined from pre-existing shotgun 451 

sequence datasets - as long as sufficient controls are in place to ensure that such data is 452 

derived from the taxa it is labelled with (something that has plagued genetic studies, including 453 

those based on conventional barcoding, since the introduction of such databases 454 

(Mioduchowska, Czyż, Gołdyn, Kur, & Sell, 2018)). Given that such data would naturally 455 

complement well established initiatives such as those comprising of either barcode fragments 456 

such as the Barcode of Life Database (BOLD), and/or organelle and whole genomes such as 457 

in Norbol, Phyloalps and DNAmark and the various initiatives under the Earth BioGenome 458 

Project, one desirable strategy might even be to simply embed the framework within one of 459 

these resources. 460 
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 461 

With such initial framework in place, our hope is that this will provide both a valuable tool with 462 

which to complement conventional barcoding, and also open up new research questions 463 

(Table 1). Obvious potential avenues include exploring whether such approaches might also 464 

be used to identify the genetic sources within more complex DNA mixtures, as is currently 465 

done using DNA metabarcoding of, for example environmental DNA or DNA extracted from 466 

bulk specimen samples (Taberlet, Coissac, Pompanon, Brochmann, & Willerslev, 2012). 467 

Other potential avenues could be as a new tool for reconstructing phylogenies, analysing the 468 

genetics of populations, and even identifying samples to the individual level. 469 
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Table 1. Overview of sample collection, laboratory and sequence processing steps and of 652 
applications of DNA-based sample identification methods.  653 
 654 

  Traditional PCR-based 
barcoding 

Genome skimming* using 
next generation 
sequencing 

Earth 
Biogeome
Project** 

  Sanger 
sequencing 

Next 
generation 
sequencing 

Organelle 
assembly 

k-mers Whole 
genome 
assembly 

Sample 
collection 

Sampling 
efforts 

Same  Same  Same Same Same 

 Voucher 
specimen 

Same  Same  Same  Same Same 

Lab Extraction Standard Standard Standard Standard High 
Molecular 
Weight 

 PCR of marker 
region 

Yes Yes No No No 

 Library build No Yes Yes Yes Yes Multiple 
types 

Sequence 
read 
processing 

Initial trimming 
of sequence 
reads 

Yes (manual) Yes Yes Yes Yes 

 Quality check 
of barcode 
sequence 

Yes (manual) Yes Yes No Yes 

 Creating k-mer 
profile 

No No No Yes No 

 Assembly of 
organelle 
genome 

No No Yes Optional Yes 

 Assembly of 
whole 
genomes 

No No No No Yes 

Applications Identification 
at taxonomic 
species-level 

Sometimes Sometimes Yes Yes Yes 

 Taxonomic 
identification 
of simple 
samples 

Yes Yes Yes Yes Yes 

 Taxonomic 
reconstruction 
of complex 
samples 

Yes Yes Yes unless 
contains very 
closely 
related taxa 

Perhaps - 
remains to 
be fully 
explored 

No 

 Population 
level 
resolution 

Rarely - 
requires 
population 
structure and 

Rarely - 
requires 
population 
structure 

Sometimes - 
if 
characterised 
by unique 

Perhaps - to 
be fully 
explored 

Yes if 
sufficient 
population 
structure 
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high genetic 
divergence 
between 
populations 

and high 
genetic 
divergence 
between 
populations 

organelle 
haplotypes 

exists  

 Discerning 
individual level 
information 

No No No Perhaps  Yes 

 655 
*Requires ca. 1 gbp of shotgun sequencing (Coissac et al., 2016). **If funding can be secured, 656 
the EBP aims to generate chromosome level genome assemblies for all known Eukaryote 657 
species (Lewin et al., 2018). 658 
  659 
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 660 

 661 
Figure 1. Methods to assign a genetic identity to voucher and query samples. (A) Traditional 662 
approaches are based on PCR amplification of barcode loci. (B) Increasingly genome-663 
skimming is used to bioinformatically mine the © barcode loci or whole organelle genomes 664 
from shotgun sequenced data. (D) We advocate that the remaining data could be used to 665 
assign a k-mer profile to the specimen, (E) ultimately enhancing the resolution to which it can 666 
be identified (E). 667 

 668 
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 669 

Figure 2. Overview of the DNA-mark pipeline. Computational steps are shown in blue boxes, 670 
and one example tool that can be used in each step is shown below each box. For each set 671 
of reads (whether representing the voucher or the query), the sample has to be first 672 
preprocessed in several stages. First, reads are cleaned up to remove adapters, deduplicate 673 
reads, and merge paired-end reads. Then, extragenic reads need to be filtered out, typically 674 
by matching each read against a database of potential contaminants. The remaining reads 675 
need to be represented as k-mers; the set of k-mers need to be hashed and sketched for 676 
efficient storage and fast processing. Also, the coverage of the genome skim and properties 677 
of the underlying genome (e.g., its size and repeat structure) need to be estimated. Thus, the 678 
preprocessing (which needs to happen only once) generates both the k-mer set and the 679 
genomic paramters, which are sufficient for sample identification. To identify a new query 680 
sample, we need to first compute its distance to the set of reference genome skims. The query 681 
can be assigned to the reference with the smallest distance. Alternatively, the query can be 682 
placed on a reference phylogenetic tree (which can be computed from the genome skims or 683 
can be retrieved from any other source).  684 
 685 
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 686 
 687 
Figure 3. (A) Simplified description of the workflow process for generating different types of 688 
data that could be used for taxonomic identification. (B) Illustrative example showing that while 689 
the cost of the different sequencing techniques is rapidly converging as such methodologies 690 
become increasingly economic, the underlying costs of sample collection, vouchering, DNA 691 
extraction etc. remains constant. We argue this supports the rationale for exploiting genome 692 
skims fully as a tool to complement traditional barcoding.  693 


