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Abstract

The bonding in metals is analysed within the framework of the PATMOS (Perturbed
AToms in MOlecules and Solids) model. The binding energy per atom is written
as a sum of a distortion energy of the atom and the partitioned interaction energy
comprising Coulombic, exchange and correlation terms. On the basis of calculations
on one-dimensional arrays of sodium and chromium atoms, the following conjecture
is suggested. Metals are made of weakly interacting atoms, i.e. perturbed atoms. A
proper description of bonding requires an unrestricted Hartree-Fock wave function as
the basic approximation. Metals and molecules have in common the predominance of
the Coulombic interatomic interaction energy. Electron correlation is of paramount
importance.
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INTRODUCTION

Metallic bonding is apparently very different from bonding in polyatomic molecules. The

latter is localized and directional. For a huge class of molecules, it can be described by

localized electron-pair bonds. This picture of bonding is not easily transferred to a metal.

For an alkali metal with a bcc-structure, there are eight nearest-neighbour atoms for a

particular atom, but only one valence electron for each atom. Hence, a system of electron-

pair bonds for the metal is indeed difficult to imagine. To cope with this enigma it is

customary to suppose that a metal is characterized by a delocalized “sea” of electrons and

that this “sea” of negative charge holds the atoms together. The corresponding mathematical

model is Hartree-Fock theory with delocalized orbitals, i.e. canonical Hartree-Fock orbitals.

However, within the one-determinant approximation, the wave function is invariant with

respect to a unitary transformation of the orbitals. A delocalized picture can be transferred

to a localized picture. Accordingly, the original problem of explaining bonding is as puzzling

as before. The scientific community has then more or less disregarded this particular problem

and instead focused on what can be obtained by molecular orbital theory with delocalized

orbitals. An extensive body of scientific work demonstrates the success of this approach.

One of the difficulties of explaining bonding in metals can be traced back to a simplistic

interpretation of the electron-pair bond concept. It is often interpreted as if electrons in

complexes prefer to stick together in pairs. However, electrons repel each other, and left

to themselves they separate. As for the ground state of a system, electrons try to come as

close as possible to the nuclei in accordance with the Pauli exclusion principle. For localized

orbitals we might interprete the Pauli principle as stating that two electrons with different

spins can occupy the same part of the physical space. In order to obtain the lowest possible

total energy for the system, the electrons arrange themselves in such a way that they are

close to a nuclues or a pair of nuclei. In electron-pair bonds an electron of an atom is

shifted towards the nucleus of a neighbouring atom, and vice versa. This particular feature

of the electron-pair bonding is demonstrated in a work by Røeggen and Gao1. By moving

away from the paring concept but keeping its physical content of the bonding, i.e. shifting

of electrons in direction of neightboring atoms, bonding in metals might be more easily

2



understood.

Another key to understand bonding in metals is related to the electron density. The

density in metals is not very different from the sum of the atomic densities of isolated atoms

put in the positions of the nuclei of the metal. Hence, the atomic wave-functions are only

modestly distorted in forming the metal. This fact has an important corollary. If one

uses restricted Hartree-Fock in the study of metals, which implies doubly occupied orbitals,

this feature of the metallic bond cannot be disclosed. Therefore, one should preferably use

unrestricted Hartree-Fock as a basic approximation in describing metals since it is essential

to have one spatial orbital for each valence electron.

In this work we shall adopt the PATMOS model1,2 (Perturbed AToms in MOlecules and

Solids) to analyse bonding in metals. The concept of perturbed atoms is ideally suited for

such an analysis. The bonding energy per atom can be calculated in terms of distortion

energies for the atoms involved and Coulomb, exchange and correlation energies between

pair of atoms.

The structure of the article is as follows: The second section is devoted to a short descrip-

tion of the PATMOS model adapted to periodic systems. In the third section we present our

studies on sodium and chromium.

THE PATMOS MODEL FOR PERIODIC SYSTEMS

The detailed description of the PATMOS model is given in our previous works1,2. Here we

present what is of particular relevance for periodic systems: the energy partitioning, the

modeling of an infinite structure by a finite set of unit cells, the use of a specific and local

basis set for each atom and a localization procedure appropriate for periodic systems.

Energy partitioning

The PATMOS energy can be partitioned in the following way

EPATMOS =
Natoms∑
A=1

(EUHF
A + Ecorr

A ) +
Natoms∑
A<B

(ECoul
AB + Eexch

AB + Ecorr
AB ) +

Natoms∑
A<B<C

Ecorr
ABC + · · · . (1)
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In Eq. (1) Natoms denotes the number of atoms in the physical model, EUHF
A and Ecorr

A are

respectively the unrestricted Hartree-Fock (UHF) energy and the correlation energy for atom

A, ECoul
AB and Eexch

AB are respectively the Coulomb and exchange part of the interaction energy

between the atoms A and B, and Ecorr
AB is the correlation energy between the same atoms.

Effective atomic energies can be introduced

EPATMOS =
Natoms∑
A=1

Eeff
A , (2)

where

Eeff
A = EUHF

A + Ecorr
A +

1

2

Natoms∑
B 6=A

(ECoul
AB + Eexch

AB + Ecorr
AB )

+
1

3


Natoms∑
B,C

A<B<C

Ecorr
ABC +

Natoms∑
B,C

B<A<C

Ecorr
BAC +

Natoms∑
B,C

B<C<A

Ecorr
BCA

+ · · · . (3)

An important term for a periodic system is the sum of effective atomic energies for the

atoms in the reference cell:

EPATMOS
uc =

Nuc
atoms∑
A=1

Eeff
A , (4)

In Eq. (4) Nuc
atoms is the number of atoms in the unit cell. As we increase the number of

unit cells in the physical model, EPATMOS
uc should converge to the corresponding value for the

infinite system.

In this work we are interested in the binding energy per atom:

Ebind
A = Eeff

A − Eiso
A , (5)

where Eiso
A is the energy of the isolated atom. Then it follows from Eq. (3)

Ebind
A = ∆dist

A + ECoul
A,inter + Eexch

A,inter + Ecorr
A,inter (6)
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where

∆dist
A = EUHF

A + Ecorr
A − EUHF,iso

A − Ecorr,iso
A , (7)

ECoul
A,inter =

1

2

Natoms∑
B 6=A

ECoul
AB , (8)

Eexch
A,inter =

1

2

Natoms∑
B 6=A

Eexch
AB , (9)

Ecorr
A,inter =

1

2

Natoms∑
B 6=A

Ecorr
AB +

1

3


Natoms∑
B,C

A<B<C

Ecorr
ABC +

Natoms∑
B,C

B<A<C

Ecorr
BAC +

Natoms∑
B,C

B<C<A

Ecorr
BCA

+ · · · . (10)

The term ∆dist
A , the distortion energy, represents the change in the energy of atom A in

the complex due to the presence of the surrounding atoms. The interpretation of the terms

in Eqs. (8–10) should be evident.

In this work we adopt the orbital energy incremental scheme, introduced by Nesbet3,

for calculating the correlation energy. Nesbet’s original work has been refined by Stoll

and coworkers4–6, by Røeggen7,8, and more recently by Bytautas and Ruedenberg9. A

multireference incremental scheme has been introduced by Voloshina and Paulus10 in a

correlation treatment of bulk metals. As suggested by Røeggen and Gao2, the correlation

energy in the PATMOS model can be calculated by any size extensive correlation model.

Work is under way to include a coupled-cluster model in our computer code.

The physical model

In calculations on periodic systems one has to replace the infinite system by a model compris-

ing a finite number of unit cells: a reference cell and a certain number of nearest neighbour

cells. On this finite set of unit cells we impose translation symmetry. We shall have exactly

the same localized wave functions in the neighbour cells as in the reference cell. Hence, there

is no “surface” effect in our physical model. In the optimization of the UHF wave function

for the atoms in the reference cell, we modify the orbitals such that we have translation

symmetry at each step of the iterative cycle. We denote the number of unit celss in the

model as Nuc
model.
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The PATMOS basis set procedure

In the recent work by Røeggen and Gao2 a basis function (BF) region is defined as a unit

cell and a certain number of nearest neighbour unit cells. The number of unit cells of the

BF-region is denoted Nuc
bf . See illustraction in Fig. 1. Two different atom-centered basis

sets are associated with each nucleus, a large one,
{
χA,lbµ ;µ = 1, · · · ,mlb

A

}
, and a small one,{

χA,sbµ ;µ = 1, · · · ,msb
A

}
. The basis set for an atom in the reference cell is then

ΩA
dual =

{
χA,dual
µ ;µ = 1, · · · ,mdual

A

}
=
{
χA,lbµ ;µ = 1, · · · ,mlb

A

} BF-region⋃
B 6=A

{
χB,sbµ ;µ = 1, · · · ,msb

B

}
. (11)

The spatial part of a spin orbital (α- or β-type):

ψAi =

mdual
A∑
µ=1

Udual
µ,i χ

A,dual
µ . (12)

The orbitals of the UHF wave functions are subjected to orthogonality constraints:

〈ψA,αi |ψ
B,α
j 〉 = δijδAB, (13)

〈ψA,βi |ψ
B,β
j 〉 = δijδAB. (14)

The constraints, Eqs. (13, 14), require special attention in optimization procedure since the

orbitals of different atoms are expressed in different basis sets.

Localization of orbitals

Localization of orbitals associated with different atoms is a non-trivial problem. Standard

localization procedure cannot be used since we have different basis sets for different atoms.

Our approach is the following:

Let PA,dual denote the projection operator associated with the basis set ΩA
dual, Eq. (11).

The spatial part of an α-type orbital of an atom B in the BF-region of atom A

ψBj =

mdual
B∑
µ=1

UB,dual
µ,j χB,dual

µ , j = 1, · · · , Nα
B. (15)
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Projection onto the basis set associated with atom A

ψ̂Bj = PA,dualψBj , j = 1, · · · , Nα
B. (16)

The set
⋃BF-region
B 6=A

{
ψ̂Bj ; j = 1, · · · , Nα

B

}
is not necessarily orthogonal to the α-type orbitals

of atom A. The set
{
ψ̂Bj

}
is therefore first made orthogonal to the α-type orbitals of atom

A, followed by a symmetric orthonormalization yielding
⋃BF-region
B 6=A

{
ψ̃Bj ; j = 1, · · · , Nα

B

}
.

The next step is symmetric localization of the set
{
ψAi ; i = 1, · · · , Nα

A

}⋃BF-region
B 6=A

{
ψ̃Bj ; j = 1, · · · , Nα

B

}
.

The resulting orbitals for atom A are then the proper localized orbitals.

CASE STUDIES

In this preliminary study of bonding and localization we restrict our attention to one-

dimensional periodic systems. Two- and three-dimensional systems require further approx-

imations in order to be computational feasible. We have chosen sodium and chromium as

two different types of metals to be considered.

Our code requires family-type basis sets. Further, the exponents are all drawn from the

same set of universal type exponents, i.e. {ηk = αβk−1, k = 1, · · · , kmax}. The parameters

defining the basis sets are given in Table 1. The correlation energy is calculated according

to the Nesbet scheme truncated at the 2-electron FCI (full configuration interaction) level.

We use an integral threshold of 10−7 Eh for the Cholesky decomposition of the two-electron

integral matrix11. For the determination of the UHF wave function we have always Nuc
model =

Nuc
bf .

Na atoms

The one-dimensional array of Na atoms has an equal nearest neighbour distance of rNa1,Na2 =

7.021922 bohr, the experimental equilibrium distance of nearest neighbour atoms in bcc

solid sodium12. The basis sets adopted are uncontracted GTF (Gaussian type functions),

a (18s12p) for the small basis and (18s12p4s3f1g) for the large basis. The s- and p-type

functions are identical for the two basis sets. The parameters defining the basis sets are

given in Table 1.
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The bonding picture is described by charge centroids and charge ellipsoids1,13. The core

orbitals, i.e. 1s, 2s and 2p orbitals, are practically unchanged compared to the corresponding

orbitals of the isolated atom. The 3s valence orbital on each atom is elongated along the

“bond” axis (x-axis) and contracted along the y- and z-axis. See Fig. 2. The longest and

shortest half axes are respectively 2.9992 bohr and 2.5501 bohr. This should be compared

with 2.5846 bohr for the half axes of the spherical symmetric 3s orbital of the isolated atom.

There is a small shift of the 3s orbital towards the second nucleus in the reference cell. The

3s α-type orbital has the following charge centroid: (0.0016, 0.0000, 0.0000) bohr. This shift

is due to the finite number of unit cells of the physical model. As is evident from Fig. 2,

atom 1 has one atom less on the left hand side than on the right hand side. However, the

localized picture of the bonding is very clear. The electron density of an atom is shifted in

the direction of the neighbouring atoms.

In Table 2 we consider the convergence property of the model with respect to the model

parameters Nuc
model and Nuc

bf . For a fixed value of Nuc
bf = 3, we notice that the UHF energy,

i.e. EUHF,eff
uc , is converged when we include the first and second nearest neighbour (NN) unit

cells in the model. The PATMOS energy, i.e. EPATMOS,eff
uc , is also close to convergence. The

difference in energy when we use the two different parameter sets (Nuc
model = 7, Nuc

bf = 3)

and (Nuc
model = 5, Nuc

bf = 3) is only −0.000006 Eh. On the other hand, we have a slight

larger deviation when we increase the basis set region. The difference in energy related to

the two parameter sets (Nuc
model = 5, Nuc

bf = 5) and (Nuc
model = 5, Nuc

bf = 3): 0.000018 Eh and

0.000020 Eh for EUHF,eff
uc and EPATMOS,eff

uc , respectively.

In Table 3 we look at the different contributions to the binding energy per atom from

different neighbouring unit cells. We notice the rapid convergence with respect to the distance

from the reference cell. By using the magnitude of the Coulombic contribution as the energy

unit, the last line of Table 3 gives an instructive picture of the binding in a one-dimensional

array of Na atoms. The dominant attractive contribution is the Coulombic term. But this

negative term is cancelled by the positive distortion energy. The exchange term yields a

small attractive term such that the system is bounded at the UHF level. The correlation

energy is of paramount importane in order to obtain a reliable binding energy. Its relative

value is −0.81 compared with the binding energy per atom of −0.92. However, it should

8



be kept in mind that the Nesbet hierarchy truncated at the 2-electron FCI level, typically

overestimated the correlation energy with 10–15%. But for this particular system, based on

FCI calculated on Li clusters1, we believe that the error due to the disregard of 3-electron

and higher order FCI terms in the Nesbet hierarchy, can be safely neglected for this system.

In this work we present mainly results for one-dimensional periodic systems. However,

we have one preliminary UHF result on a two-dimensional lattice of Na atoms. We have

included in the physical model 1 NN and 2 NN unit cells, i.e. Nuc
model = 9. For the basis

function region we have the same number of unit cells, i.e. Nuc
bf = 9. The distance between

the nearest neighbour atoms was intended to be the same as in the one-dimensional case.

The charge centroids for the 3s orbitals: (0.10, 0.11, 0.00) bohr and (4.86, 4.83, 0.00) bohr.

The half axes of the 3s-ellipsoids: ∆lx = ∆ly = 3.04 bohr and ∆lz = 2.43 bohr. The

half axes for the 3s-ellipsoid for the isolated atom is 2.5846 bohr. See Fig. 3 for a pictorial

representation. We notice the expansion of the 3s orbital in the direction of the neighbouring

atoms. Unfortunately, it has not been feasible for us to calculate the correlation energy. But

we have the binding energy per atom at UHF level: 0.002260 Eh. This value can be compared

with the corresponding quantity for the one-dimensional case: 0.001958 Eh. Hence, increased

binding as we move from a one-dimensional lattice to a two-dimensional lattice.

One-dimensional array Cr atoms

Among the transition metals chromium is a great challenge from a theoretical point of view.

To obtain accurate values for the spectroscopic constants of the Cr2 molecule is a formidable

computational task. An extensive discussion on this problem is given in the recent work by

Vancoillie et al.14. The core of the problem is the non-bonding of the molecule at the Hartree-

Fock level. This implies that the correlation energy must be calculated very accurately. For

a one-dimensional array of Cr atoms, it turns out that in the PATMOS model the system

is only weakly non-bonded at the UHF level. The correlation energy is still very important,

but not in the same critical way as in the diatomic molecule.

The one-dimensional array of Cr atoms has an equal nearest neighbour distance of

rCr1,Cr2 = 4.72089 bohr, the experimental equilibrium distance of nearest neighbour atoms

in bcc solid chromium12. The basis sets adopted are uncontracted GTF, a (15s9p6d) for
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the small basis and (15s9p6d4f2g) for the large one. The s-, p- and d-type functions are

identical for the two basis sets. Paramters defining the basis setws are given in Table 1.

The electron configuration for the atoms: (1s22s22p63s23p64s13d5). In the reference cell all

valence orbitals of atom 1 are α-type orbitals, and all valence orbitals of atom 2 are β-type

orbitals.

The bonding picture is described by charge centroids and charge ellipsoids. The core

orbitals, i.e. {1s22s22p63s23p6}, are practically unchanged compared with the orbitals of

the isolated atom. In Table 4 we give half axes and volumes of the ellipsoids, and kinetic

energy for the valence orbitals. For the isolated atom we have the following volumes for the

d orbitals: {2.4588, 2.4588, 2.4588, 2.4839, 2.5917} bohr. The volume of the 4s ellipsoid is

52.3027 bohr3. The kinetic energy for the 3d and 4s orbitals are respectively 4.97444 Eh and

0.61949 Eh. We notice that for the complex three 3d orbitals expand. They are bonding

orbitals. Two 3d orbitals contract slightly. They are weakly antibonding orbitals. The

4s orbital contract and hence is antibonding. In Fig. 4 we have depicted the 4s ellipsoid

and the ellipsoid of the 3d orbital which is mostly affected by the bonding. The charge

centroids for respectively the d1 ellipsoid and 4s ellipsoid are (−0.0007, 0.0000, 0.0000) bohr

and (0.0035, 0.0000, 0.0000) bohr. As for the other d orbitals, the charge centroids have

distances from the “mother” nucleus less than 0.00001 bohr.

In Table 5 we look at the convergence property of the model with respect to the model

parameters, Nuc
model and Nuc

bf . The difference in the effective PATMOS energy for the unit

cell atoms is only −0.000006 Eh when we move from (Nuc
model = 5, Nuc

bf = 3) to (Nuc
model = 7,

Nuc
bf = 3). On the other hand we have a largeer deviation when we change the basis function

region. The difference in PATMOS energy is 0.000793 Eh when we move from (Nuc
model = 5,

Nuc
bf = 3) to (Nuc

model = 5, Nuc
bf = 5). Hence, for this system high accuracy requires that both

the first and the second nearest neighbour unit cells are included in the basis function region.

In Tables 6 and 7 we look at different contributions to the binding energy per atom

from different neighbouring unit cells. We notice the rapid convergence with respect to the

increasing number of unit cells included in the model. The “driving force” of the binding is

the Coulombic interaction term. But electron correlation is important. The binding energy

per atom and the interaction correlation term are of the same magnitude. The binding
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energy obtained by using (Nuc
model = 7, Nuc

bf = 3) and (Nuc
model = 5, Nuc

bf = 5) are very close,

i.e. −0.030769 Eh and −0.030322 Eh, respectively. The orbitals included in the correlation

calculation are {3s23p64s13d5}. As stated, the correlation energy is calculated according to

the Nesbet scheme truncated at the 2-electron FCI level. If we suppose that the error in the

calculated correlation energy due to neglected terms in the Nesbet hierarchy, is of the order

10%, we will have an error in the calculated binding energy of the same order.

CONCLUDING REMARKS

In this work we have focused on one-dimensional structures of sodium and chromium atoms.

However, we have also some preliminary calculations on potassium and vanadium. The

localization of the valence orbitals for these atoms are similar to what has been presented for

sodium and chromium. Hence, supporting our conjecture about the bonding in metals. On

the other hand, we have a large number of calculations on lithium, both one-, two- and three-

dimensional periodic structures. Lithium has in fact been our selected element for testing

our ideas about metallic bonding. These calculations contradicted our picture of metallic

bonding as advocated in this work. For the lithium systems the bonding seemed to be of the

diatomic type, i.e. a shift of the 2s valence orbital towards one of the nearest neighbouring

atoms. This lack of symmetry was very disturbing before we realised that lithium might in

a sense be the odd metallic element. The extension of the core orbitals, measured by the

charge ellipsoids, shows that the volume of the 1s ellipsoid for the Li atom is 0.2413 bohr3

while the 2s ellipsoid for the Na atom has a volume of 0.5043 bohr3. For this particular

reason, and when we use a small number of unit cells in the physical model, the diatomic

type of bonding might be more efficient than the metallic type of bonding, as demonstrated

for sodium and chromium. The binding properties of lithium should therefore be discussed

in a separate study.

On the basis of this study we put forward the following conjecture about bonding in

pure metals: First, metals comprise weakly interacting atoms. But since an atom is bonded

to several neighbouring atoms, the binding energy can be large. Second, in order to have

a proper description of the bonding, a UHF wave function is required as a root function
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in a wave function model since the electron must be allowed to be close to their original

nucleus, i.e. the nucleus of the isolated atom. Third, the mechnism of bonding in metals

and molecules is similar with respect to the predominance of the interatomic Coulombic

interaction. Fourth, electron correlation is of paramount importance for obtaining accurate

binding energies.

In this work we have chosen the Nesbet hierarchy truncated at the 2-electron FCI level

for calculating the correlation energy. The advantage of this approach is the possibility of

using a large basis set. The disadvantage is the lack of coupling between the two-electron

terms. The natural remedy is to include three- and four-electron FCI terms. But his last

approach is quite cumbersome with an increasing number of electrons. The scheme which

we shall include in our computer code is a combination of 2-electron FCI terms as in the

Nesbet hierarch and a coupled cluster model. First, we calculate the 2-electron FCI terms

for the system in question. Then we construct a set of natural orbitals (NOs) based on

the 2-electron FCI terms. From this set we select the dominant NOs and use this set as

basis functions in a coupled cluster calculation on the complex. This step is followed by a

new calculation of the 2-electron FCI terms and with selected NOs as basis. The differene

between the coupled cluster energy and the sum of the 2-electron FCI terms (based on NOs),

is the proper coupling term. The sketch approach is very similar to the computational models

Røeggen8,15 used in the study of intermolecular interactions. We believe that the outlined

procedure should be an accurate and reliable procedure for calculating the correlation energy

for periodic systems.
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Figure 1: Model of infinite, one-dimensional periodic system of unit cells. Reproduced from

J. Chem. Phys. 148, 134118 (2018), with the permission of AIP Publishing.

Figure 2: Intersection between the xy-plane and the charge ellipsoids of the 3s α- and β-

type orbitals of the atoms in the reference cell of a one-dimensional array of Na atoms.

The number of unit cells in the model and the number of unit cells in the basis function

region are, respectively, Nuc
model = 5 and Nuc

bf = 5. Half axes and distances in scale. Basis:

(sb/lb) = (18s12p/18s12p4d3f1g).

Figure 3: Intersection between the xy-plane and the charge ellipsoids of the 3s α- and β-

type orbitals of the atoms in the reference cell of a two-dimensional lattice of Na atoms. The

distance between the atoms in the reference cell is the experimental equilibrium distance of

nearest neighbour atoms in bcc solid sodium12. The second atom is at the midpoint of the

reference cell. The number of unit cells in the model and the number of unit cells in the

basis function region are, respectively, Nuc
model = 5 and Nuc

bf = 9. Half axes and distances in

scale. Basis: (sb/lb) = (18s12p/18s12p4d3f1g). Dotted line for ellipsoid of 3s orbital for

isolated atom.

Figure 4: Intersection between the xy-plane and the charge ellipsoids of the selected orbitals

of the atoms of the reference cell of a one-dimensional array of Cr atoms. The selected

3d-type orbital is the one mostly distorted. The number of unit cells in the model and the

number of unit cells in the basis function region are, respectively, Nuc
model = 5 and Nuc

bf = 5.

Half axes and distances in scale. Basis: (sb/lb) = (15s9p6d/15s9p6d4f2g).
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Atoms/Basis β s p d f g

Cr (15s9p5d4f2g) 3.55 0.0153171 0.1930331 0.1930331 0.1930331 0.6852676

Na (18s12p4d3f1g) 2.32 0.0329964 0.0329964 0.0329964 0.0765517 0.177600

Table 1: Lowest exponents of the GTF-family basis sets used in this work (ηk = αβk−1).
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Nuc
model Nuc

bf EUHF,eff
uc (sb/lb) EPATMOS,eff

uc (sb/lb)

(Eh) (Eh)

3 3 −323.720858 −323.759758

5 3 −323.720858 −323.759890

7 3 −323.720858 −323.759893

5 5 −323.720832 −323.759870

Table 2: Effective unit cell energies as a function of model parameters for a one-dimensional

array of Na atoms. Basis: (sb/lb) = (18s12p/18s12p4d3f1g). Correlation model: Nes-

bet hierarchy including 2e-FCI. Electrons correlated: valence-core (intra), valence-valence,

valence-core (inter). Nearest neighbour distance: 7.021922 bohr. Isolated atomic energy

with basis (18s12p4d3f1g): −161.864019 Eh.
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Unit cells ∆dist
Na1 ECoul

Na1,inter Eexch
Na1,inter Ecorr

Na1,inter Ebind
Na1

(Eh) (Eh) (Eh) (Eh) (Eh)

Ref. unit cell −0.008342 −0.000887 −0.006704

1-NN unit cells −0.008770 −0.001260 −0.007205

2-NN unit cells −0.000016 −0.000005 −0.000045

3-NN unit cells −0.000001 −0.000000 −0.000001

Total 0.017323 −0.017129 −0.002152 −0.013955 −0.015913

(1.01) (−1.00) (−0.12) (−0.81) (−0.92)

Table 3: Contribution to the binding energy per atom from atoms in different unit celss for

a one-dimensional array of Na atoms. Basis: (sb/lb) = (18s12p/18s12p4d3f1g). Nuc
model = 7,

Nuc
bf = 3.
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∆lx ∆ly ∆lz V Ekin
orb

(bohr) (bohr) (bohr) (bohr3) (Eh)

1.3493 0.6987 0.6985 2.7589 4.79151

1.0643 0.5934 1.0278 2.7192 4.85968

1.0643 1.0279 0.5934 2.7196 4.85946

0.5860 1.0008 1.0008 2.4585 5.00330

0.5860 1.0007 1.0008 2.4585 5.00328

2.2584 2.2447 2.2447 47.6668 0.84384

Table 4: Half axes of charge ellipsoids, volume of charge ellipsoids and kinetic energy of the

corresponding orbitals for the 3d and 4s orbitals of one of the atoms in the reference cell of a

one-dimensional array of Cr atoms. Basis: (sb/lb) = (15s9p6d/15s9p6d4f2g). The number

of unit cell: Nuc
model = Nuc

bf = 5. Atoms along the x-axis.
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Nuc
model Nuc

bf EUHF,eff
uc (sb/lb) EPATMOS,eff

uc (sb/lb)

(Eh) (Eh)

3 3 −2085.276065 −2086.499799

5 3 −2085.276065 −2086.500485

7 3 −2085.276065 −2086.500491

5 5 −2085.276354 −2086.499692

Table 5: Effective unit cell energies as a function of model parameter for a one-dimensional

array of Cr atoms. Basis: (sb/lb) = (15s9p6d/15s9p6d4f2g). Correlation model: Nesbet hi-

erarchy including 2e-FCI. Electrons correlated: (3s23p64s13d5). Nearest neighbour distance:

4.72089 bohr. Isolated atomic energy with basis (15s9p6d4f2g): −1043.219862 Eh.
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Unit cells ∆dist
Cr1 ECoul

Cr1,inter Eexch
Cr1,inter Ecorr

Cr1,inter Ebind
Cr1

(Eh) (Eh) (Eh) (Eh) (Eh)

Ref. unit cell −0.054251 −0.008833 −0.016607

1-NN unit cells −0.059394 −0.010677 −0.017238

2-NN unit cells −0.000492 −0.000081 −0.000113

3-NN unit cells −0.000004 −0.000001 −0.000000

Total 0.136922 −0.114141 −0.019592 −0.033958 −0.030769

(1.20) (−1.0) (−0.17) (−0.30) (−0.27)

Table 6: Contribution to the binding energy per atom from atoms in different unit cells for

a one-dimensional array of Cr atoms. Basis: (sb/lb) = (15s9p6d/15s9p6d4f2g). Nuc
model = 7,

Nuc
bf = 3.
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Unit cells ∆dist
Cr1 ECoul

Cr1,inter Eexch
Cr1,inter Ecorr

Cr1,inter Ebind
Cr1

(Eh) (Eh) (Eh) (Eh) (Eh)

Ref. unit cell −0.054265 −0.008839 −0.016614

1-NN unit cells −0.059861 −0.010806 −0.017307

2-NN unit cells −0.000999 −0.000117 −0.000132

Total 0.138618 −0.115125 −0.019762 −0.034053 −0.030322

(1.20) (−1.00) (−0.17) (−0.30) (−0.27)

Table 7: Contribution to the binding energy per atom from atoms in different unit cells for

a one-dimensional array of Cr atoms. Basis: (sb/lb) = (15s9p6d/15s9p6d4f2g). Nuc
model =

Nuc
bf = 5.
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