1GB=G. barbadense, Gd=G. darwinii, Gh= G. hirsutum,
Gm= G. mustelinum, Gt= G. tomentosum.
8. Conclusions
Polyploidization offered the tetraploid genome an advantage over its
diploid forebears by allowing genes from the D-genome to be recruited to
improve allopolyploid cotton fiber output and quality. Interspecific
hybridization between an A-genome diploid species that produce spinnable
lint fiber and a D-genome diploid species that does not produced
allopolyploid cotton, which include the two species that provide the
bulk of the world’s natural textile fiber. New genomic methods, such as
whole genome sequencing and re-sequencing, have substantially aided our
understanding of the Gossypium species’ origins, diversity, genome
structure, and influence on human-directed evolution. More
significantly, the genomic technologies combined with traditional cotton
breeding will enable greater interspecific hybridization and gene
introgression to offer the requisite usable genetic variety for the
genetically depleted Upland cotton gene pool to continue to develop. The
use of interspecific gene combinations could help Upland cotton meet
current and future cotton production challenges, such as those posed by
environmental change, disease, and the need for yield stability and
specific combinations of desirable fiber traits to compete favorably
with synthetic textiles made from oil-based products.
Author Contributions: M.Z.I., M.A., and A.A.A. wrote the
manuscript; S.M, L.A.B. and S.A.M revised the article; Y.P. provided
conceptual framework, guided the authors, and provided funds for this
study. All authors have read and agreed to the published version of the
manuscript.
Funding: This article received no external funding
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: The data presented in this study
are available in the article.
Conflicts of Interest: The authors declare no conflict of
interest.
References
- Mensah, R. Travel: International Cotton Advisory Committee
(ICAC) 77th Plenary Meeting, Present ; New South Wales Department of
Primary Industries: Orange, Australia, 2019.
- Townsend, T. World natural fibre production and employment. InHandbook of Natural Fibres ; Elsevier: Amsterdam, The
Netherlands 2020; pp. 15–36.
- Baffes, J. Cotton: Market Setting, Trade Policies, and Issues ;
World Bank: Washington D.C., USA, 2004.
https://doi.org/10.1596/1813-9450-3218.
Bhardwaj, S.; Devkar, V.; Kumar, A.; Alisha, A.; Sharma, S.; Deshmukh,
R.K.; Patil, G.B. Advances and Applicability of Genotyping
Technologies in Cotton Improvement. In Genotyping by Sequencing
for Crop Improvement ; Wiley online library 2022; pp. 250–269; John
Wiley & Sons Ltd, United Kingdom.
https://doi.org/10.1002/9781119745686
- Wendel, J.F.; Cronn, R.C. Polyploidy and the evolutionary history of
cotton. Adv. Agron. 2003 , 78 , 78004–78008.
- Wendel, J.F.; Grover, C.E. Taxonomy and evolution of the cotton genus,
Gossypium. Cotton 2015 , 57 , 25–44.
- Hu, Y.; Chen, J.; Fang, L.; Zhang, Z.; Ma, W.; Niu, Y.; Ju, L.; Deng,
J.; Zhao, T.; Lian, J. Gossypium barbadense and Gossypium hirsutum
genomes provide insights into the origin and evolution of
allotetraploid cotton. Nat. Genet. 2019 , 51 ,
739–748.
- Hu, G.; Grover, C.E.; Yuan, D.; Dong, Y.; Miller, E.; Conover, J.L.;
Wendel, J.F. Evolution and diversity of the cotton genome. InCotton Precision Breeding ; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 25–78.
- Paterson, A.H. Molecular genetic map of cotton. In DNA-Based
Markers in Plants ; Springer: Berlin/Heidelberg, Germany, 2001; pp.
239–253.
- Barroso, P.A.V.; Hoffmann, L.V.; da Costa, N.D.L.
Challenges and Opportunities for in
situ Maintenance of the Native Brazilian Cotton Gossypium mustelinum
Miers. Front. Ecol. Evol. 2021 , 9 , 323.
- Grover, C.; Zhu, X.; Grupp, K.; Jareczek, J.; Gallagher, J.;
Szadkowski, E.; Seijo, J.G.; Wendel, J. Molecular confirmation of
species status for the allopolyploid cotton species, Gossypium
ekmanianum Wittmack. Genet. Resour. Crop Evol. 2015 ,62 , 103–114.
- Krapovickas, A.; SEIJO, G.; Seijo, J.G. Gossypium ekmanianum
(Malvaceae), algodon silvestre de la Republica Dominicana.Bonplandia 2008 , 17 , 55–63.
- Gallagher, J.P.; Grover, C.E.; Rex, K.; Moran, M.; Wendel, J.F. A new
species of cotton from Wake Atoll, Gossypium stephensii (Malvaceae).Syst. Bot. 2017 , 42 , 115–123.
- Senchina, D.S.; Alvarez, I.; Cronn, R.C.; Liu, B.; Rong, J.; Noyes,
R.D.; Paterson, A.H.; Wing, R.A.; Wilkins, T.A.; Wendel, J.F. Rate
variation among nuclear genes and the age of polyploidy in Gossypium.Mol. Biol. Evol. 2003 , 20 , 633–643.
- Reinisch, A.J.; Dong, J.M.; Brubaker, C.L.; Stelly, D.M.; Wendel,
J.F.; Paterson, A.H. A detailed RFLP map of cotton, Gossypium hirsutum
x Gossypium barbadense: Chromosome organization and evolution in a
disomic polyploid genome. Genetics 1994 , 138 ,
829–847. https://doi.org/10.1093/genetics/138.3.829.
- Hendrix, B.; Stewart, J.M. Estimation of the nuclear DNA content of
gossypium species. Ann. Bot. 2005 , 95 ,
789–797. https://doi.org/10.1093/aob/mci078.
- Geever, R.F.; Katterman, F.R.; Endrizzi, J.E. DNA hybridization
analyses of a Gossypium allotetmploid and two closely related diploid
species. TAG Theor. Appl. Genetics Theor. Und Angew. Genet.1989 , 77 , 553–559.
https://doi.org/10.1007/bf00274278.
- Rong, J.; Feltus, F.A.; Waghmare, V.N.; Pierce, G.J.; Chee, P.W.;
Draye, X.; Saranga, Y.; Wright, R.J.; Wilkins, T.A.; May, O.L.; et al.
Meta-analysis of polyploid cotton QTL shows unequal contributions of
subgenomes to a complex network of genes and gene clusters implicated
in lint fiber development. Genetics 2007 , 176 ,
2577–2588. https://doi.org/10.1534/genetics.107.074518.
- Wang, Z.; Zhang, D.; Wang, X.; Tan, X.; Guo, H.; Paterson, A.H. A
whole-genome DNA marker map for cotton based on the D-genome sequence
of Gossypium raimondii L. G3 (Bethesda, Md.) 2013 ,3 , 1759–1767. https://doi.org/10.1534/g3.113.006890.
- Smith, C.W. (Ed.) Cotton: Origin, History, Technology and
Production ; J. Wiley & Sons: Hoboken, NJ, USA, 1999.
- Desai, A.; Chee, P.W.; Rong, J.; May, O.L.; Paterson, A.H. Chromosome
structural changes in diploid and tetraploid A genomes of Gossypium.Genome 2006 , 49 , 336–345.
https://doi.org/10.1139/g05-116.
- Hurt, R.D. A Companion to American Agricultural History ; John
Wiley & Sons: Hoboken, NJ, USA, 2022.
- Fryxell, P.A. The Natural History of the Cotton Tribe
(Malvaceae, Tribe Gossypieae) ; Texas A & M University Press.:
College Station, TX, USA, 1979.
- Wendel, J.F.; Brubaker, C.; Alvarez, I.; Cronn, R.; Stewart, J.M.
Evolution and natural history of the cotton genus. In Genetics
and Genomics of Cotton ; Springer: Berlin/Heidelberg, Germany, 2009;
pp. 3–22.
- Stephens, S. Evolution under domestication of the New World cottons
(Gossypium spp.). Cienc Cult 1967 , 19 ,
118–134.
- Applequist, W.L.; Cronn, R.; Wendel, J.F. Comparative development of
fiber in wild and cultivated cotton. Evol. Dev. 2001 ,3 , 3–17. https://doi.org/10.1046/j.1525-142x.2001.00079.x.
- Hovav, R.; Udall, J.A.; Chaudhary, B.; Hovav, E.; Flagel, L.; Hu, G.;
Wendel, J.F. The evolution of spinnable cotton fiber entailed
prolonged development and a novel metabolism. PLoS Genet.2008 , 4 , e25.
https://doi.org/10.1371/journal.pgen.0040025.
- Waghmare, V.N. Cotton Breeding. In Fundamentals of Field Crop
Breeding ; Springer: Berlin/Heidelberg, Germany, 2022; pp. 609–676.
- Wendel, J.F.; Brubaker, C.L.; Percival, A.E. Genetic diversity in
Gossypium hirsutum and the origin of upland cotton. Am. J. Bot.1992 , 79 , 1291–1310.
- Ware, J.O. Origin, Rise and Development of American Upland
Cotton Varieties and Their Status at Present ;
University
of Arkansas College of Agriculture, Agricultural Experiment Station,
Fayetteville, USA: 1951.
- Lubbers, E.L.; Chee, P.W.; Saranga, Y.; Paterson, A.H. Recent advances
and future prospective in molecular breeding of cotton for drought and
salinity stress tolerance. In Advances in Molecular Breeding
toward Drought and Salt Tolerant Crops; Springer: Berlin/Heidelberg,
Germany, 2007, pp. 775–796.
Ware, J.O. Plant breeding and the cotton industry. In U.S. Dept. of
Agriculture Yearbook 1936, 657–744. Washington, DC: GPO, 1936.
- Kulkarni, V.N.; Khadi, B.M.; Maralappanavar, M.S.; Deshapande, L.A.;
Narayanan, S. The worldwide gene pools of Gossypium arboreum L. and G.
herbaceum L. and their improvement. In Genetics and Genomics of
Cotton ; Springer: Berlin/Heidelberg, Germany, 2009; pp. 69–97.
- Zeng, L.; Wu, J.; Bourland, F.M.; Campbell, B.T.; Dever, J.K.; Hague,
S.; Myers, G.O.; Raper, T.B.; Smith, W.; Zhang, J. Comparative study
of transgenic and nontransgenic cotton. Crop Sci.2021 , 61 , 2467–2477.
- Bowman, D.T. Attributes of public and private cotton breeding
programs. J. Cotton Sci. 2000 , 4 , 130–136.
- Mauney, J.R. Cotton. Agronomy Monograph ; 2015; 796.
- Bourland, F.; Myers, G.O. Conventional cotton breeding. Cotton2015 , 57 , 205–228.
- Mason, A.S. Polyploidy and Hybridization for Crop Improvement ;
CRC Press: Boca Raton, FL, USA, 2017.
- Worley, S.; Culp, T.; Harrell, D. The relative contributions of yield
components to lint yield of upland cotton, Gossypium hirsutum L.Euphytica 1974 , 23 , 399–403.
- Culp, T.; Harrell, D.; Kerr, T. Some genetic implications in the
transfer of high fiber strength genes to upland cotton 1. Crop
Sci. 1979 , 19 , 481–484.
- Zeng, L.; Stetina, S.R.; Erpelding, J.E.; Bechere, E.; Turley, R.B.;
Scheffler, J. History and current research in the USDA-ARS cotton
breeding program at Stoneville, MS. J. Cotton Sci.2018 , 22 , 24–35.
- Kearney, T. Lint index and lint percentage in cotton breeding.J. Hered. 1912 , os-7 , 25–29.
- Culp, T.; Harrell, D. Influence of Lint Percentage, Boll Size, and
Seed Size on Lint Yield of Upland Cotton with High Fiber Strength 1.Crop Sci. 1975 , 15 , 741–746.
- Niu, H.; Ge, Q.; Shang, H.; Yuan, Y. Inheritance, QTLs, and Candidate
Genes of Lint Percentage in Upland Cotton. Front. Genet.2022 , 13 , 855574.
- Chen, Y.; Gao, Y.; Chen, P.; Zhou, J.; Zhang, C.; Song, Z.; Huo, X.;
Du, Z.; Gong, J.; Zhao, C. Genome-wide association study reveals novel
quantitative trait loci and candidate genes of lint percentage in
upland cotton based on the CottonSNP80K array. Theor. Appl.
Genet. 2022 , 135 , 1–17.
- Zhao, N.; Wang, W.; Grover, C.E.; Jiang, K.; Pan, Z.; Guo, B.; Zhu,
J.; Su, Y.; Wang, M.; Nie, H. Genomic and GWAS analyses demonstrate
phylogenomic relationships of Gossypium barbadense in China and
selection for fibre length, lint percentage and Fusarium wilt
resistance. Plant Biotechnol. J. 2022 , 20 , 691.
- Peng, R.; Jones, D.C.; Liu, F.; Zhang, B. From sequencing to genome
editing for cotton improvement. Trends Biotechnol.2021 , 39 , 221–224.
- Majeed, S.; Rana, I.A.; Mubarik, M.S.; Atif, R.M.; Yang, S.-H.; Chung,
G.; Jia, Y.; Du, X.; Hinze, L.; Azhar, M.T. Heat stress in cotton: A
review on predicted and unpredicted growth-yield anomalies and
mitigating breeding strategies. Agronomy 2021 ,11 , 1825.
- Li, C.; Fu, Y.; Liu, Q.; Du, L.; Trotsenko, V. A review of genetic
mechanisms of early maturity in cotton (Gossypium hirsutum L.).Euphytica 2020 , 216 , 1–15.
- Negm, M. Cotton breeding. In Handbook of Natural Fibres ;
Elsevier: Amsterdam, The Netherlands, 2020; pp. 579–603.
- Gwathmey, C.O.; Bange, M.P.; Brodrick, R. Cotton crop maturity: A
compendium of measures and predictors. Field Crops Res.2016 , 191 , 41–53.
- Ren, X.; Zhang, L.; Du, M.; Evers, J.B.; van der Werf, W.; Tian, X.;
Li, Z. Managing mepiquat chloride and plant density for optimal yield
and quality of cotton. Field Crops Res. 2013 ,149 , 1–10.
- Constable, G.; Llewellyn, D.; Walford, S.A.; Clement, J.D. Cotton
breeding for fiber quality improvement. In Industrial Crops ;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 191–232.
- Culp, T.; Harrell, D. Breeding methods for improving yield and fiber
quality of upland cotton (Gossypium hirsutum L.) 1. Crop Sci.1973 , 13 , 686–689.
- Geng, X.; Sun, G.; Qu, Y.; Sarfraz, Z.; Jia, Y.; He, S.; Pan, Z.; Sun,
J.; Iqbal, M.S.; Wang, Q. Genome‐wide dissection of hybridization for
fiber quality‐and yield‐related traits in upland cotton. Plant
J. 2020 , 104 , 1285–1300.
- Chee, P.W.; Campbell, B.T. Bridging classical and molecular genetics
of cotton fiber quality and development. In Genetics and
Genomics of Cotton ; Springer: Berlin/Heidelberg, Germany, 2009; pp.
283–311.
- Campbell, B.T. Examining the relationship between agronomic
performance and fiber quality in ten cotton breeding populations.Crop Sci. 2021 , 61 , 989–1001.
- Campbell, B.; Chee, P.; Lubbers, E.; Bowman, D.; Meredith, W., Jr.;
Johnson, J.; Fraser, D.; Bridges, W.; Jones, D. Dissecting genotype×
environment interactions and trait correlations present in the Pee Dee
cotton germplasm collection following seventy years of plant breeding.Crop Sci. 2012 , 52 , 690–699.
- Meredith, W.R., Jr.; Bridge, R. Yield, Yield Component and Fiber
Property Variation of Cotton (Gossypium hirsutum L.) Within and Among
Environments 1. Crop Sci. 1973 , 13 , 307–312.
- Meredith, W.R., Jr.; Bridge, R. Recurrent Selection for Lint Percent
within a Cultivar of Cotton (Gossypium hirsutum L.) 1. Crop
Sci. 1973 , 13 , 698–701.
- Chandnani, R.; Zhang, Z.; Patel, J.D.; Adhikari, J.; Khanal, S.; He,
D.; Brown, N.; Chee, P.W.; Paterson, A.H. Comparative genetic
variation of fiber quality traits in reciprocal advanced backcross
populations. Euphytica 2017 , 213 , 1–9.
- Wang, L.; He, S.; Dia, S.; Sun, G.; Liu, X.; Wang, X.; Pan, Z.; Jia,
Y.; Wang, L.; Pang, B. Alien genomic introgressions enhanced fiber
strength in upland cotton (Gossypium hirsutum L.). Ind. Crops
Prod. 2021 , 159 , 113028.
- Konan, N.; Baudoin, J.-P.; Mergeai, G. Potential of ten wild diploid
cotton species for the improvement of fiber fineness of upland cotton
through interspecific hybridisation. J. Plant Breed. Crop Sci.2020 , 12 , 97–105.
- Mergeai, G. Forty years of genetic improvement orty years of genetic
improvement of cotton through interspecific hybridization at Gembloux
Agricultural University: Achievement and prospects.
- Chen, Z.J.; Sreedasyam, A.; Ando, A.; Song, Q.; De Santiago, L.M.;
Hulse-Kemp, A.M.; Ding, M.; Ye, W.; Kirkbride, R.C.; Jenkins, J.
Genomic diversifications of five Gossypium allopolyploid species and
their impact on cotton improvement. Nat. Genet. 2020 ,52 , 525–533.
- Patel, G.; Thakar, B. Cotton improvement through interspecific
hybridization. Indian Cotton Grow. Rev. 1950 ,4 , 185–198.
- Thiyagu, K.; Nadarajan, N.; Rajarathinam, S.; Sudhakar, D.; Rajendran,
K. Association and path analysis for seed cotton yield improvement in
interspecific crosses of cotton (Gossypium spp). Electron. J.
Plant Breed. 2010 , 1 , 1001–1005.
- Choudki, V.; Sangannavar, P.; Savita, S.; Khadi, B.; Vamadevaiah, H.;
Katageri, I. Genetic improvement of fibre traits in diploid cotton (G.
herbaceum L.) through interspecific hybridization using G. barbadense
tetraploid species. Electron. J. Plant Breed. 2012 ,3 , 686–691.
- Paterson, A.H.; Wendel, J.F.; Gundlach, H.; Guo, H.; Jenkins, J.; Jin,
D.; Llewellyn, D.; Showmaker, K.C.; Shu, S.; Udall, J. Repeated
polyploidization of Gossypium genomes and the evolution of spinnable
cotton fibres. Nature 2012 , 492 , 423–427.
- Jiang, C.; Wright, R.J.; El-Zik, K.M.; Paterson, A.H. Polyploid
formation created unique avenues for response to selection in
Gossypium (cotton). Proc. Natl. Acad. Sci. USA 1998 ,95 , 4419–4424. https://doi.org/10.1073/pnas.95.8.4419.
- Lynch, M.; Conery, J.S. The evolutionary fate and consequences of
duplicate genes. Science (New York NY) 2000 ,290 , 1151–1155. https://doi.org/10.1126/science.290.5494.1151.
- Zhao, X.P.; Si, Y.; Hanson, R.E.; Crane, C.F.; Price, H.J.; Stelly,
D.M.; Wendel, J.F.; Paterson, A.H. Dispersed repetitive DNA has spread
to new genomes since polyploid formation in cotton. Genome Res.1998 , 8 , 479–492. https://doi.org/10.1101/gr.8.5.479.
- Hanson, R.E.; Zhao, X.p.; Islam‐Faridi, M.N.; Paterson, A.H.; Zwick,
M.S.; Crane, C.F.; McKnight, T.D.; Stelly, D.M.; Price, H.J. Evolution
of interspersed repetitive elements in Gossypium (Malvaceae).Am. J. Bot. 1998 , 85 , 1364–1368.
- Small, R.L.; Ryburn, J.A.; Wendel, J.F. Low levels of nucleotide
diversity at homoeologous Adh loci in allotetraploid cotton
(Gossypium, L.). Mol. Biol. Evol. 1999 , 16 ,
491–501. https://doi.org/10.1093/oxfordjournals.molbev.a026131.
- Zhang, Z.; Rong, J.; Waghmare, V.N.; Chee, P.W.; May, O.L.; Wright,
R.J.; Gannaway, J.R.; Paterson, A.H. QTL alleles for improved fiber
quality from a wild Hawaiian cotton, Gossypium tomentosum. TAG
Theor. Appl. Genetics Theor. Und Angew. Genet. 2011 ,123 , 1075–1088. https://doi.org/10.1007/s00122-011-1649-x.
- Guo, H.; Wang, X.; Gundlach, H.; Mayer, K.F.X.; Peterson, D.G.;
Scheffler, B.E.; Chee, P.W.; Paterson, A.H. Extensive and biased
intergenomic nonreciprocal DNA exchanges shaped a nascent polyploid
genome, Gossypium (cotton). Genetics 2014 , 197 ,
1153–1163. https://doi.org/10.1534/genetics.114.166124.
- Hutchinson, J. Intra-specific differentiation in Gossypium hirsutum.Heredity 1951 , 5 , 161–193.
- Tyagi, P.; Gore, M.A.; Bowman, D.T.; Campbell, B.T.; Udall, J.A.;
Kuraparthy, V. Genetic diversity and population structure in the US
Upland cotton (Gossypium hirsutum L.). TAG Theor. Appl. Genetics
Theor. Und Angew. Genet. 2014 , 127 , 283–295.
https://doi.org/10.1007/s00122-013-2217-3.
- Fang, D.D.; Hinze, L.L.; Percy, R.G.; Li, P.; Deng, D.; Thyssen, G. A
microsatellite-based genome-wide analysis of genetic diversity and
linkage disequilibrium in Upland cotton (Gossypium hirsutum L.)
cultivars from major cotton-growing countries. Euphytica2013 , 191 , 391–401.
- Aslam, S.; Khan, S.H.; Ahmed, A.; Dandekar, A.M. The tale of cotton
plant: From wild type to domestication, leading to its improvement by
genetic transformation. Am. J. Mol. Biol. 2020 ,10 , 91–127.
- Lubbers, E.L.; Chee, P.W. The worldwide gene pool of G. hirsutum and
its improvement. In Genetics and Genomics of Cotton ; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 23–52.
- Zhao, Y.; Wang, H.; Chen, W.; Li, Y.; Gong, H.; Sang, X.; Huo, F.;
Zeng, F. Genetic diversity and population structure of elite cotton
(Gossypium hirsutum L.) germplasm revealed by SSR markers. Plant
Syst. Evol. 2015 , 301 , 327–336.
- Bowman, D.T.; Gutiérrez, O.A. Sources of fiber strength in the US
upland cotton crop from 1980 to 2000. J. Cotton Sci.2003 , 7 , 164–169.
- Zhang, J.; Fang, H.; Zhou, H.; Hughs, S.; Jones, D.C. Inheritance and
transfer of thrips resistance from Pima cotton to Upland cotton.J. Cotton Sci 2013 , 17 , 163–169.
- Islam, M.S.; Fang, D.D.; Jenkins, J.N.; Guo, J.; McCarty, J.C.; Jones,
D.C. Evaluation of genomic selection methods for predicting fiber
quality traits in Upland cotton. Mol. Genet. Genom. MGG2020 , 295 , 67–79.
https://doi.org/10.1007/s00438-019-01599-z.
- Saha, S.; Raska, D.A.; Stelly, D.M. Upland Cotton (Gossypium hirsutum
L.) x Hawaiian Cotton (G. tomentosum Nutt. Ex. Seem.) F1 hybrid
hypoaneuploid chromosome substitution series. J. Cotton Sci.2006 , 10 , 263–272.
- Muthuraj, M.; Mahalingam, L.; Premalatha, N.; Senguttuvan, K.; Kumar,
M. F1 Interspecific hybridity confirmation in cotton through
morphological, cytological and molecular analysis. Electron. J.
Plant Breed. 2019 , 10 , 862–873.
- Newaskar, G.S.; Chimote, V.P.; Mehetre, S.S.; Jadhav, A.S.
Interspecific hybridization in G ossypium L.: Characterization of
progenies with different ploidy‐confirmed multigenomic backgrounds.Plant Breed. 2013 , 132 , 211–216.
- Draye, X.; Chee, P.; Jiang, C.-X.; Decanini, L.; Delmonte, T.A.;
Bredhauer, R.; Smith, C.W.; Paterson, A.H. Molecular dissection of
interspecific variation between Gossypium hirsutum and G. barbadense
(cotton) by a backcross-self approach: II. Fiber fineness.Theor. Appl. Genet. 2005 , 111 , 764–771.
- Zhang, J.; Wu, M.; Yu, J.; Li, X.; Pei, W. Breeding potential of
introgression lines developed from interspecific crossing between
upland cotton (Gossypium hirsutum) and Gossypium barbadense:
Heterosis, combining ability and genetic effects. PLoS ONE2016 , 11 , e0143646.
- Hulse-Kemp, A.M.; Lemm, J.; Plieske, J.; Ashrafi, H.; Buyyarapu, R.;
Fang, D.D.; Frelichowski, J.; Giband, M.; Hague, S.; Hinze, L.L.
Development of a 63K SNP array for cotton and high-density mapping of
intraspecific and interspecific populations of Gossypium spp. G3
Genes Genomes Genet. 2015 , 5 , 1187–1209.
- Hinze, L.L.; Hulse-Kemp, A.M.; Wilson, I.W.; Zhu, Q.-H.; Llewellyn,
D.J.; Taylor, J.M.; Spriggs, A.; Fang, D.D.; Ulloa, M.; Burke, J.J.
Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using
the CottonSNP63K Array. BMC Plant Biol. 2017 ,17 , 1–20.
- Zhu, D.; Li, X.; Wang, Z.; You, C.; Nie, X.; Sun, J.; Zhang, X.;
Zhang, D.; Lin, Z. Genetic dissection of an allotetraploid
interspecific CSSLs guides interspecific genetics and breeding in
cotton. BMC Genom. 2020 , 21 , 1–16.
- Desalegn, Z.; Ratanadilok, N.; Kaveeta, R. Correlation and
heritability for yield and fiber quality parameters of Ethiopian
cotton (Gossypium hirsutum L.) estimated from 15 (diallel) crosses.Agric. Nat. Resour. 2009 , 43 , 1–11.
- Ulloa, M. Heritability and correlations of agronomic and fiber traits
in an okra‐leaf upland cotton population. Crop Sci.2006 , 46 , 1508–1514.
- Ulloa, M.; De Santiago, L.M.; Hulse-Kemp, A.M.; Stelly, D.M.; Burke,
J.J. Enhancing Upland cotton for drought resilience, productivity, and
fiber quality: Comparative evaluation and genetic dissection.Mol. Genet. Genom. 2020 , 295 , 155–176.
- Shim, J.; Mangat, P.K.; Angeles-Shim, R. Natural variation in wild
Gossypium species as a tool to broaden the genetic base of cultivated
cotton. J. Plant Sci. Curr. Res 2018 , 2 , 9.
- Yin, X.; Zhan, R.; He, Y.; Song, S.; Wang, L.; Ge, Y.; Chen, D.
Morphological description of a novel synthetic allotetraploid
(A1A1G3G3) of Gossypium herbaceum L. and G. nelsonii Fryx. suitable
for disease-resistant breeding applications. PLoS ONE2020 , 15 , e0242620.
- Huang, G.; Huang, J.-Q.; Chen, X.-Y.; Zhu, Y.-X. Recent advances and
future perspectives in cotton research. Annu. Rev. Plant Biol.2021 , 72 , 437–462.
- Meredith, W., Jr. Use of insect resistant germplasm in reducing the
cost of production in the 1980s. In Proceedings of the Proceedings.
Beltwide Cotton Conference, St. Louis, MO, USA, 1980 Jan 6; pp. 4–8.
- Levin, D.A. Somatic Cell Hybridization: Application in Plant
Systematics. Taxon 1975 , 24 , 261–270.
- Jiang, C.X.; Chee, P.W.; Draye, X.; Morrell, P.L.; Smith, C.W.;
Paterson, A.H. Multilocus interactions restrict gene introgression in
interspecific populations of polyploid Gossypium (cotton). Evol.
Int. J. Org. Evol. 2000 , 54 , 798–814.
https://doi.org/10.1111/j.0014-3820.2000.tb00081.x.
- Brown, H.; Ware, J. Cotton ; Mc Graw, Hill, Book Company
Inc.: New York, NY, USA, 1958.
- Brubaker, C.L.; Wendel, J.F. Reevaluating the origin of domesticated
cotton (Gossypium hirsutum; Malvaceae) using nuclear restriction
fragment length polymorphisms (RFLPs). Am. J. Bot.1994 , 81 , 1309–1326.
- Percy, R.G. The worldwide gene pool of Gossypium barbadense L. and its
improvement. In Genetics and Genomics of Cotton ; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 53–68.
- Wang, G.L.; Dong, J.M.; Paterson, A.H. The distribution of Gossypium
hirsutum chromatin in G. barbadense germ plasm: Molecular analysis of
introgressive plant breeding. TAG Theor. Appl. Genetics Theor.
Und Angew. Genet. 1995 , 91 , 1153–1161.
https://doi.org/10.1007/bf00223934.
- Wang, S.; Chen, J.; Zhang, W.; Hu, Y.; Chang, L.; Fang, L.; Wang, Q.;
Lv, F.; Wu, H.; Si, Z.; et al. Sequence-based ultra-dense genetic and
physical maps reveal structural variations of allopolyploid cotton
genomes. Genome Biol. 2015 , 16 , 108.
https://doi.org/10.1186/s13059-015-0678-1.
- Cao, Z.; Zhu, X.; Chen, H.; Zhang, T. Fine mapping of clustered
quantitative trait loci for fiber quality on chromosome 7 using a
Gossypium barbadense introgressed line. Mol. Breed.2015 , 35 , 215.
- Kumar, P.; Singh, R.; Lubbers, E.L.; Shen, X.; Paterson, A.H.;
Campbell, B.T.; Jones, D.C.; Chee, P.W. Mapping and validation of
fiber strength quantitative trait loci on chromosome 24 in upland
cotton. Crop Sci. 2012 , 52 , 1115–1122.
- Paterson, A.H.; Boman, R.K.; Brown, S.M.; Chee, P.W.; Gannaway, J.R.;
Gingle, A.R.; May, O.L.; Smith, C.W. Reducing the genetic
vulnerability of cotton. Crop Sci 2004 , 44 ,
1900–1901.
- Tanksley, S.D.; Nelson, J.C. Advanced backcross QTL analysis: A method
for the simultaneous discovery and transfer of valuable QTLs from
unadapted germplasm into elite breeding lines. TAG Theor. Appl.
Genetics Theor. Und Angew. Genet. 1996 , 92 , 191–203.
https://doi.org/10.1007/bf00223376.
- Baohua, W.; Peng, W.C. Application of advanced backcross QTL analysis
in crop improvement. J. Plant Breed. Crop Sci. 2010 ,2 , 221–232.
- Chee, P.W.; Draye, X.; Jiang, C.-X.; Decanini, L.; Delmonte, T.A.;
Bredhauer, R.; Smith, C.W.; Paterson, A.H. Molecular dissection of
phenotypic variation between Gossypium hirsutum and Gossypium
barbadense (cotton) by a backcross-self approach: III. Fiber length.Theor. Appl. Genet. 2005 , 111 , 772–781.
- Chee, P.; Draye, X.; Jiang, C.-X.; Decanini, L.; Delmonte, T.A.;
Bredhauer, R.; Smith, C.W.; Paterson, A.H. Molecular dissection of
interspecific variation between Gossypium hirsutum and Gossypium
barbadense (cotton) by a backcross-self approach: I. Fiber elongation.Theor. Appl. Genet. 2005 , 111 , 757–763.
- Shen, X.; Guo, W.; Zhu, X.; Yuan, Y.; Yu, J.Z.; Kohel, R.J.; Zhang, T.
Molecular mapping of QTLs for fiber qualities in three diverse lines
in Upland cotton using SSR markers. Mol. Breed. 2005 ,15 , 169–181.
- Zhang, T.; Yuan, Y.; Yu, J.; Guo, W.; Kohel, R.J. Molecular tagging of
a major QTL for fiber strength in Upland cotton and its
marker-assisted selection. TAG Theor. Appl. Genetics Theor. Und
Angew. Genet. 2003 , 106 , 262–268.
https://doi.org/10.1007/s00122-002-1101-3.
- Chandnani, R.; Kim, C.; Guo, H.; Shehzad, T.; Wallace, J.G.; He, D.;
Zhang, Z.; Patel, J.D.; Adhikari, J.; Khanal, S. Genetic analysis of
gossypium fiber quality traits in reciprocal advanced backcross
populations. Plant Genome 2018 , 11 , 170057.
- Chandnani, R.; Wang, B.; Draye, X.; Rainville, L.K.; Auckland, S.;
Zhuang, Z.; Lubbers, E.L.; May, O.L.; Chee, P.W.; Paterson, A.H.
Segregation distortion and genome-wide digenic interactions affect
transmission of introgressed chromatin from wild cotton species.Theor. Appl. Genet. 2017 , 130 , 2219–2230.
- Wang, B.; Draye, X.; Zhuang, Z.; Zhang, Z.; Liu, M.; Lubbers, E.L.;
Jones, D.; May, O.L.; Paterson, A.H.; Chee, P.W. QTL analysis of
cotton fiber length in advanced backcross populations derived from a
cross between Gossypium hirsutum and G. mustelinum. Theor. Appl.
Genet. 2017 , 130 , 1297–1308.
- Wang, B.; Zhuang, Z.; Zhang, Z.; Draye, X.; Shuang, L.-S.; Shehzad,
T.; Lubbers, E.L.; Jones, D.; May, O.L.; Paterson, A.H. Advanced
backcross QTL analysis of fiber strength and fineness in a cross
between Gossypium hirsutum and G. mustelinum. Front. Plant Sci.2017 , 8 , 1848.
- Chen, Q.; Wang, W.; Khanal, S.; Han, J.; Zhang, M.; Chen, Y.; Li, Z.;
Wang, K.; Paterson, A.H.; Yu, J. Transcriptome analysis reveals genes
potentially related to high fiber strength in a Gossypium hirsutum
line IL9 with Gossypium mustelinum introgression. Genome2021 , 64 , 985–995.
- Wang, H.; Zhang, R.; Shen, C.; Li, X.; Zhu, D.; Lin, Z. Transcriptome
and QTL analyses reveal candidate genes for fiber quality in Upland
cotton. Crop J. 2020 , 8 , 98–106.
- Lu, Q.; Xiao, X.; Gong, J.; Li, P.; Zhao, Y.; Feng, J.; Peng, R.; Shi,
Y.; Yuan, Y. Identification of candidate cotton genes associated with
fiber length through quantitative trait loci mapping and
RNA-sequencing using a chromosome segment substitution line.Front. Plant Sci. 2021 , 12 , 796722.
- Wang, F.; Zhang, J.; Chen, Y.; Zhang, C.; Gong, J.; Song, Z.; Zhou,
J.; Wang, J.; Zhao, C.; Jiao, M. Identification of candidate genes for
key fibre‐related QTL s and derivation of favourable alleles in
Gossypium hirsutum recombinant inbred lines with G. barbadense
introgressions. Plant Biotechnol. J. 2020 , 18 ,
707–720.
- Shen, X.; Cao, Z.; Singh, R.; Lubbers, E.L.; Xu, P.; Smith, C.W.;
Paterson, A.H.; Chee, P.W. Efficacy of qFL‐chr1, a quantitative trait
locus for fiber length in cotton (Gossypium spp.). Crop Sci.2011 , 51 , 2005–2010.
- Blanco-Montenegro, I.; De Ritis, R.; Chiappini, M. Imaging and
modelling the subsurface structure of volcanic calderas with
high-resolution aeromagnetic data at Vulcano (Aeolian Islands, Italy).Bull. Volcanol. 2007 , 69 , 643–659.
- Knight, R. The Genetics Of Blackarm Resistance Ix The Gene B6M From
Gossypium Arboreum; J. Genetics. 1953, 51, 270-275.
- Knight, R. The genetics of blackarm resistance XII. Transference of
resistance fromGossypium herbaceum toG. barbadense. J. Genet.1963 , 58 , 328–346.
- Zhang, J.; Bourland, F.; Wheeler, T.; Wallace, T. Bacterial blight
resistance in cotton: Genetic basis and molecular mapping.Euphytica 2020 , 216 , 1–19.
- Delannoy, E.; Lyon, B.; Marmey, P.; Jalloul, A. Resistance of cotton
towards Xanthomonas campestris pv. malvacearum. Annu. Rev.
Phytopathol. 2005 , 43 , 63.
- Wang, C.; Roberts, P. A Fusarium wilt resistance gene in Gossypium
barbadense and its effect on root-knot nematode-wilt disease complex.Phytopathology 2006 , 96 , 727–734.
- Zhang, J.; Idowu, J.; Flynn, R.; Wedegaertner, T. Progress in breeding
for glandless cotton in New Mexico. In Proceedings of the
Beltwide Cotton Conference, 2018
January 3–5; pp. 566–572.
- Zhang, J. Fighting Fusarium wilt through breeding in cotton: A
successful story in China. In Proceedings of the Proceedings of the
Beltwide Cotton Conference, San Antonio, TX, USA, 3-5 January, 2018;
pp. 877–879.
- Ulloa, M.; Hutmacher, R.B.; Roberts, P.A.; Wright, S.D.; Nichols,
R.L.; Michael Davis, R. Inheritance and QTL mapping of Fusarium wilt
race 4 resistance in cotton. Theor. Appl. Genet. 2013 ,126 , 1405–1418.
- Zaidi, S.S.e.A.; Naqvi, R.Z.; Asif, M.; Strickler, S.; Shakir, S.;
Shafiq, M.; Khan, A.M.; Amin, I.; Mishra, B.; Mukhtar, M.S. Molecular
insight into cotton leaf curl geminivirus disease resistance in
cultivated cotton (Gossypium hirsutum). Plant Biotechnol. J.2020 , 18 , 691–706.
- Vij, S.; Pathak, D.; Rathore, P.; Kumar, H.; Sekhon, P.; Bhatia, D.;
Chhuneja, P.; Singh, K. Molecular mapping of CLCuD resistance
introgressed from synthetic cotton polyploid in upland cotton.J. Genet. 2022 , 101 , 1–8.
- Nazeer, W.; Ahmad, S.; Mahmood, K.; Tipu, A.; Mahmood, A.; Zhou, B.
Introgression of genes for cotton leaf curl virus resistance and
increased fiber strength from Gossypium stocksii into upland cotton
(G. hirsutum). Genet. Mol. Res. 2014 , 13 ,
1133–1143.
- Ahmad, S.; Mahmood, K.; Hanif, M.; Nazeer, W.; Malik, W.; Qayyum, A.;
Hanif, K.; Mahmood, A.; Islam, N. Introgression of cotton leaf curl
virus-resistant genes from Asiatic cotton (Gossypium arboreum) into
upland cotton (G. hirsutum). Genet. Mol. Res. 2011 ,10 , 2404–2414.
- Brown, J.K.; Khan, Z. Breeding Cotton for Cotton Leaf Curl Disease
Resistance. In Cotton Breeding and Biotechnology ; CRC Press:
Boca Raton, FL, USA, 2022; pp. 171–197.
- Cai, Y.; Cai, X.; Wang, Q.; Wang, P.; Zhang, Y.; Cai, C.; Xu, Y.;
Wang, K.; Zhou, Z.; Wang, C. Genome sequencing of the Australian wild
diploid species Gossypium australe highlights disease resistance and
delayed gland morphogenesis. Plant Biotechnol. J.2020 , 18 , 814–828.
- Bolek, Y.; Bell, A.; El‐Zik, K.; Thaxton, P.; Magill, C. Reaction of
cotton cultivars and an F2 population to stem inoculation with
isolates Verticillium dahliae. J. Phytopathol. 2005 ,153 , 269–273.
- Abdelraheem, A.; Elassbli, H.; Zhu, Y.; Kuraparthy, V.; Hinze, L.;
Stelly, D.; Wedegaertner, T.; Zhang, J. A genome-wide association
study uncovers consistent quantitative trait loci for resistance to
Verticillium wilt and Fusarium wilt race 4 in the US Upland cotton.Theor. Appl. Genet. 2020 , 133 , 563–577.
- Dong, Q.; Magwanga, R.O.; Cai, X.; Lu, P.; Nyangasi Kirungu, J.; Zhou,
Z.; Wang, X.; Wang, X.; Xu, Y.; Hou, Y. RNA-sequencing, physiological
and RNAi analyses provide insights into the response mechanism of the
ABC-mediated resistance to Verticillium dahliae infection in cotton.Genes 2019 , 10 , 110.
- Grover, C.E.; Pan, M.; Yuan, D.; Arick, M.A.; Hu, G.; Brase, L.;
Stelly, D.M.; Lu, Z.; Schmitz, R.J.; Peterson, D.G. The Gossypium
longicalyx genome as a resource for cotton breeding and evolution.G3 Genes Genomes Genet. 2020 , 10 , 1457–1467.
- Gutiérrez, O.A.; Jenkins, J.N.; McCarty, J.C.; Wubben, M.J.; Hayes,
R.W.; Callahan, F.E. SSR markers closely associated with genes for
resistance to root-knot nematode on chromosomes 11 and 14 of Upland
cotton. Theor. Appl. Genet. 2010 , 121 ,
1323–1337.
Turcotte, E.; Harold, W.; O’Bannon, J.; Feaster, C. Evaluation of
cotton root knot nematode resistance of a strain of G. barbadense.
var. darwinni. In: 15th cotton improvement conference. January 8–9
1963 Dallas, TX, USA. National Cotton Council of America, Memphis, pp
36–44; pp. 36–44.
- He, Y.; Kumar, P.; Shen, X.; Davis, R.F.; Van Becelaere, G.; May,
O.L.; Nichols, R.L.; Chee, P.W. Re-evaluation of the inheritance for
root-knot nematode resistance in the Upland cotton germplasm line
M-120 RNR revealed two epistatic QTLs conferring resistance.Theor. Appl. Genet. 2014 , 127 , 1343–1351.
- Romano, G.B.; Sacks, E.J.; Stetina, S.R.; Robinson, A.; Fang, D.D.;
Gutierrez, O.A.; Scheffler, J.A. Identification and genomic location
of a reniform nematode (Rotylenchulus reniformis) resistance locus
(Ren ari) introgressed from Gossypium aridum into upland cotton (G.
hirsutum). Theor. Appl. Genet. 2009 , 120 ,
139–150.
- Sacks, E.J.; Robinson, A.F. Introgression of resistance to reniform
nematode (Rotylenchulus reniformis) into upland cotton (Gossypium
hirsutum) from Gossypium arboreum and a G. hirsutum/Gossypium aridum
bridging line. Field Crops Res. 2009 , 112 ,
1–6.
- Fang, D.D.; Xiao, J.; Canci, P.C.; Cantrell, R.G. A new SNP haplotype
associated with blue disease resistance gene in cotton (Gossypium
hirsutum L.). Theor. Appl. Genet. 2010 , 120 ,
943–953.
- Zhang, J.; Sun, J.; Liu, J.; Wu, Z. Genetic analysis of cotton
resistance to spider mites. J Huazhong Agric Univ1992 , 11 , 127–133.
- Meyer, V.G. Interspecific cotton breeding. Econ. Bot.1974 , 28 , 56–60.
- Hossain, A.; Maitra, S.; Pramanick, B.; Bhutia, K.L.; Ahmad, Z.;
Moulik, D.; Syed, M.A.; Shankar, T.; Adeel, M.; Hassan, M.M. Wild
relatives of plants as sources for the development of abiotic stress
tolerance in plants. In Plant Perspectives to Global Climate
Changes ; Elsevier: Amsterdam, The Netherlands, 2022; pp. 471–518.
- Stanton, M.; Stewart, J.M.; Tugwell, N. Evaluation of Gossypium
arboreum L. germplasm for resistance to thrips. Genet. Resour.
Crop Evol. 1992 , 39 , 89–95.
- Bowman, D.T.; McCarty, J.C., Jr. Thrips (Thysanoptera: Thripidae)
tolerance in cotton: Sources and heritability. J. Entomol. Sci.1997 , 32 , 460–471.
- Monga, D.; Sheo, R. Screening of germplasm lines against root rot of
cotton (G. hirsutum). Adv. Plant Sci. 2000 , 13 ,
603–607.
- Wilson, I.W.; Moncuquet, P.; Ellis, M.; White, R.G.; Zhu, Q.-H.;
Stiller, W.; Llewellyn, D. Characterization and genetic mapping of
black root rot resistance in Gossypium arboreum L. Int. J. Mol.
Sci. 2021 , 22 , 2642.
- Bodah, E.T. Root rot diseases in plants: A review of common causal
agents and management strategies. Agric. Res. Tech. Open Access
J. 2017 , 5 , 555661.