1GB=G. barbadense, Gd=G. darwinii, Gh= G. hirsutum, Gm= G. mustelinum, Gt= G. tomentosum.
8. Conclusions
Polyploidization offered the tetraploid genome an advantage over its diploid forebears by allowing genes from the D-genome to be recruited to improve allopolyploid cotton fiber output and quality. Interspecific hybridization between an A-genome diploid species that produce spinnable lint fiber and a D-genome diploid species that does not produced allopolyploid cotton, which include the two species that provide the bulk of the world’s natural textile fiber. New genomic methods, such as whole genome sequencing and re-sequencing, have substantially aided our understanding of the Gossypium species’ origins, diversity, genome structure, and influence on human-directed evolution. More significantly, the genomic technologies combined with traditional cotton breeding will enable greater interspecific hybridization and gene introgression to offer the requisite usable genetic variety for the genetically depleted Upland cotton gene pool to continue to develop. The use of interspecific gene combinations could help Upland cotton meet current and future cotton production challenges, such as those posed by environmental change, disease, and the need for yield stability and specific combinations of desirable fiber traits to compete favorably with synthetic textiles made from oil-based products.
Author Contributions: M.Z.I., M.A., and A.A.A. wrote the manuscript; S.M, L.A.B. and S.A.M revised the article; Y.P. provided conceptual framework, guided the authors, and provided funds for this study. All authors have read and agreed to the published version of the manuscript.
Funding: This article received no external funding
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: The data presented in this study are available in the article.
Conflicts of Interest: The authors declare no conflict of interest.
References
  1. Mensah, R. Travel: International Cotton Advisory Committee (ICAC) 77th Plenary Meeting, Present ; New South Wales Department of Primary Industries: Orange, Australia, 2019.
  2. Townsend, T. World natural fibre production and employment. InHandbook of Natural Fibres ; Elsevier: Amsterdam, The Netherlands 2020; pp. 15–36.
  3. Baffes, J. Cotton: Market Setting, Trade Policies, and Issues ; World Bank: Washington D.C., USA, 2004. https://doi.org/10.1596/1813-9450-3218.
Bhardwaj, S.; Devkar, V.; Kumar, A.; Alisha, A.; Sharma, S.; Deshmukh, R.K.; Patil, G.B. Advances and Applicability of Genotyping Technologies in Cotton Improvement. In Genotyping by Sequencing for Crop Improvement ; Wiley online library 2022; pp. 250–269; John Wiley & Sons Ltd, United Kingdom. https://doi.org/10.1002/9781119745686
  1. Wendel, J.F.; Cronn, R.C. Polyploidy and the evolutionary history of cotton. Adv. Agron. 2003 , 78 , 78004–78008.
  2. Wendel, J.F.; Grover, C.E. Taxonomy and evolution of the cotton genus, Gossypium. Cotton 2015 , 57 , 25–44.
  3. Hu, Y.; Chen, J.; Fang, L.; Zhang, Z.; Ma, W.; Niu, Y.; Ju, L.; Deng, J.; Zhao, T.; Lian, J. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 2019 , 51 , 739–748.
  4. Hu, G.; Grover, C.E.; Yuan, D.; Dong, Y.; Miller, E.; Conover, J.L.; Wendel, J.F. Evolution and diversity of the cotton genome. InCotton Precision Breeding ; Springer: Berlin/Heidelberg, Germany, 2021; pp. 25–78.
  5. Paterson, A.H. Molecular genetic map of cotton. In DNA-Based Markers in Plants ; Springer: Berlin/Heidelberg, Germany, 2001; pp. 239–253.
  6. Barroso, P.A.V.; Hoffmann, L.V.; da Costa, N.D.L. Challenges and Opportunities for in situ Maintenance of the Native Brazilian Cotton Gossypium mustelinum Miers. Front. Ecol. Evol. 2021 , 9 , 323.
  7. Grover, C.; Zhu, X.; Grupp, K.; Jareczek, J.; Gallagher, J.; Szadkowski, E.; Seijo, J.G.; Wendel, J. Molecular confirmation of species status for the allopolyploid cotton species, Gossypium ekmanianum Wittmack. Genet. Resour. Crop Evol. 2015 ,62 , 103–114.
  8. Krapovickas, A.; SEIJO, G.; Seijo, J.G. Gossypium ekmanianum (Malvaceae), algodon silvestre de la Republica Dominicana.Bonplandia 2008 , 17 , 55–63.
  9. Gallagher, J.P.; Grover, C.E.; Rex, K.; Moran, M.; Wendel, J.F. A new species of cotton from Wake Atoll, Gossypium stephensii (Malvaceae).Syst. Bot. 2017 , 42 , 115–123.
  10. Senchina, D.S.; Alvarez, I.; Cronn, R.C.; Liu, B.; Rong, J.; Noyes, R.D.; Paterson, A.H.; Wing, R.A.; Wilkins, T.A.; Wendel, J.F. Rate variation among nuclear genes and the age of polyploidy in Gossypium.Mol. Biol. Evol. 2003 , 20 , 633–643.
  11. Reinisch, A.J.; Dong, J.M.; Brubaker, C.L.; Stelly, D.M.; Wendel, J.F.; Paterson, A.H. A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense: Chromosome organization and evolution in a disomic polyploid genome. Genetics 1994 , 138 , 829–847. https://doi.org/10.1093/genetics/138.3.829.
  12. Hendrix, B.; Stewart, J.M. Estimation of the nuclear DNA content of gossypium species. Ann. Bot. 2005 , 95 , 789–797. https://doi.org/10.1093/aob/mci078.
  13. Geever, R.F.; Katterman, F.R.; Endrizzi, J.E. DNA hybridization analyses of a Gossypium allotetmploid and two closely related diploid species. TAG Theor. Appl. Genetics Theor. Und Angew. Genet.1989 , 77 , 553–559. https://doi.org/10.1007/bf00274278.
  14. Rong, J.; Feltus, F.A.; Waghmare, V.N.; Pierce, G.J.; Chee, P.W.; Draye, X.; Saranga, Y.; Wright, R.J.; Wilkins, T.A.; May, O.L.; et al. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 2007 , 176 , 2577–2588. https://doi.org/10.1534/genetics.107.074518.
  15. Wang, Z.; Zhang, D.; Wang, X.; Tan, X.; Guo, H.; Paterson, A.H. A whole-genome DNA marker map for cotton based on the D-genome sequence of Gossypium raimondii L. G3 (Bethesda, Md.) 2013 ,3 , 1759–1767. https://doi.org/10.1534/g3.113.006890.
  16. Smith, C.W. (Ed.) Cotton: Origin, History, Technology and Production ; J. Wiley & Sons: Hoboken, NJ, USA, 1999.
  17. Desai, A.; Chee, P.W.; Rong, J.; May, O.L.; Paterson, A.H. Chromosome structural changes in diploid and tetraploid A genomes of Gossypium.Genome 2006 , 49 , 336–345. https://doi.org/10.1139/g05-116.
  18. Hurt, R.D. A Companion to American Agricultural History ; John Wiley & Sons: Hoboken, NJ, USA, 2022.
  19. Fryxell, P.A. The Natural History of the Cotton Tribe (Malvaceae, Tribe Gossypieae) ; Texas A & M University Press.: College Station, TX, USA, 1979.
  20. Wendel, J.F.; Brubaker, C.; Alvarez, I.; Cronn, R.; Stewart, J.M. Evolution and natural history of the cotton genus. In Genetics and Genomics of Cotton ; Springer: Berlin/Heidelberg, Germany, 2009; pp. 3–22.
  21. Stephens, S. Evolution under domestication of the New World cottons (Gossypium spp.). Cienc Cult 1967 , 19 , 118–134.
  22. Applequist, W.L.; Cronn, R.; Wendel, J.F. Comparative development of fiber in wild and cultivated cotton. Evol. Dev. 2001 ,3 , 3–17. https://doi.org/10.1046/j.1525-142x.2001.00079.x.
  23. Hovav, R.; Udall, J.A.; Chaudhary, B.; Hovav, E.; Flagel, L.; Hu, G.; Wendel, J.F. The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism. PLoS Genet.2008 , 4 , e25. https://doi.org/10.1371/journal.pgen.0040025.
  24. Waghmare, V.N. Cotton Breeding. In Fundamentals of Field Crop Breeding ; Springer: Berlin/Heidelberg, Germany, 2022; pp. 609–676.
  25. Wendel, J.F.; Brubaker, C.L.; Percival, A.E. Genetic diversity in Gossypium hirsutum and the origin of upland cotton. Am. J. Bot.1992 , 79 , 1291–1310.
  26. Ware, J.O. Origin, Rise and Development of American Upland Cotton Varieties and Their Status at Present ; University of Arkansas College of Agriculture, Agricultural Experiment Station, Fayetteville, USA: 1951.
  27. Lubbers, E.L.; Chee, P.W.; Saranga, Y.; Paterson, A.H. Recent advances and future prospective in molecular breeding of cotton for drought and salinity stress tolerance. In Advances in Molecular Breeding toward Drought and Salt Tolerant Crops; Springer: Berlin/Heidelberg, Germany, 2007, pp. 775–796.
Ware, J.O. Plant breeding and the cotton industry. In U.S. Dept. of Agriculture Yearbook 1936, 657–744. Washington, DC: GPO, 1936.
  1. Kulkarni, V.N.; Khadi, B.M.; Maralappanavar, M.S.; Deshapande, L.A.; Narayanan, S. The worldwide gene pools of Gossypium arboreum L. and G. herbaceum L. and their improvement. In Genetics and Genomics of Cotton ; Springer: Berlin/Heidelberg, Germany, 2009; pp. 69–97.
  2. Zeng, L.; Wu, J.; Bourland, F.M.; Campbell, B.T.; Dever, J.K.; Hague, S.; Myers, G.O.; Raper, T.B.; Smith, W.; Zhang, J. Comparative study of transgenic and nontransgenic cotton. Crop Sci.2021 , 61 , 2467–2477.
  3. Bowman, D.T. Attributes of public and private cotton breeding programs. J. Cotton Sci. 2000 , 4 , 130–136.
  4. Mauney, J.R. Cotton. Agronomy Monograph ; 2015; 796.
  5. Bourland, F.; Myers, G.O. Conventional cotton breeding. Cotton2015 , 57 , 205–228.
  6. Mason, A.S. Polyploidy and Hybridization for Crop Improvement ; CRC Press: Boca Raton, FL, USA, 2017.
  7. Worley, S.; Culp, T.; Harrell, D. The relative contributions of yield components to lint yield of upland cotton, Gossypium hirsutum L.Euphytica 1974 , 23 , 399–403.
  8. Culp, T.; Harrell, D.; Kerr, T. Some genetic implications in the transfer of high fiber strength genes to upland cotton 1. Crop Sci. 1979 , 19 , 481–484.
  9. Zeng, L.; Stetina, S.R.; Erpelding, J.E.; Bechere, E.; Turley, R.B.; Scheffler, J. History and current research in the USDA-ARS cotton breeding program at Stoneville, MS. J. Cotton Sci.2018 , 22 , 24–35.
  10. Kearney, T. Lint index and lint percentage in cotton breeding.J. Hered. 1912 , os-7 , 25–29.
  11. Culp, T.; Harrell, D. Influence of Lint Percentage, Boll Size, and Seed Size on Lint Yield of Upland Cotton with High Fiber Strength 1.Crop Sci. 1975 , 15 , 741–746.
  12. Niu, H.; Ge, Q.; Shang, H.; Yuan, Y. Inheritance, QTLs, and Candidate Genes of Lint Percentage in Upland Cotton. Front. Genet.2022 , 13 , 855574.
  13. Chen, Y.; Gao, Y.; Chen, P.; Zhou, J.; Zhang, C.; Song, Z.; Huo, X.; Du, Z.; Gong, J.; Zhao, C. Genome-wide association study reveals novel quantitative trait loci and candidate genes of lint percentage in upland cotton based on the CottonSNP80K array. Theor. Appl. Genet. 2022 , 135 , 1–17.
  14. Zhao, N.; Wang, W.; Grover, C.E.; Jiang, K.; Pan, Z.; Guo, B.; Zhu, J.; Su, Y.; Wang, M.; Nie, H. Genomic and GWAS analyses demonstrate phylogenomic relationships of Gossypium barbadense in China and selection for fibre length, lint percentage and Fusarium wilt resistance. Plant Biotechnol. J. 2022 , 20 , 691.
  15. Peng, R.; Jones, D.C.; Liu, F.; Zhang, B. From sequencing to genome editing for cotton improvement. Trends Biotechnol.2021 , 39 , 221–224.
  16. Majeed, S.; Rana, I.A.; Mubarik, M.S.; Atif, R.M.; Yang, S.-H.; Chung, G.; Jia, Y.; Du, X.; Hinze, L.; Azhar, M.T. Heat stress in cotton: A review on predicted and unpredicted growth-yield anomalies and mitigating breeding strategies. Agronomy 2021 ,11 , 1825.
  17. Li, C.; Fu, Y.; Liu, Q.; Du, L.; Trotsenko, V. A review of genetic mechanisms of early maturity in cotton (Gossypium hirsutum L.).Euphytica 2020 , 216 , 1–15.
  18. Negm, M. Cotton breeding. In Handbook of Natural Fibres ; Elsevier: Amsterdam, The Netherlands, 2020; pp. 579–603.
  19. Gwathmey, C.O.; Bange, M.P.; Brodrick, R. Cotton crop maturity: A compendium of measures and predictors. Field Crops Res.2016 , 191 , 41–53.
  20. Ren, X.; Zhang, L.; Du, M.; Evers, J.B.; van der Werf, W.; Tian, X.; Li, Z. Managing mepiquat chloride and plant density for optimal yield and quality of cotton. Field Crops Res. 2013 ,149 , 1–10.
  21. Constable, G.; Llewellyn, D.; Walford, S.A.; Clement, J.D. Cotton breeding for fiber quality improvement. In Industrial Crops ; Springer: Berlin/Heidelberg, Germany, 2015; pp. 191–232.
  22. Culp, T.; Harrell, D. Breeding methods for improving yield and fiber quality of upland cotton (Gossypium hirsutum L.) 1. Crop Sci.1973 , 13 , 686–689.
  23. Geng, X.; Sun, G.; Qu, Y.; Sarfraz, Z.; Jia, Y.; He, S.; Pan, Z.; Sun, J.; Iqbal, M.S.; Wang, Q. Genome‐wide dissection of hybridization for fiber quality‐and yield‐related traits in upland cotton. Plant J. 2020 , 104 , 1285–1300.
  24. Chee, P.W.; Campbell, B.T. Bridging classical and molecular genetics of cotton fiber quality and development. In Genetics and Genomics of Cotton ; Springer: Berlin/Heidelberg, Germany, 2009; pp. 283–311.
  25. Campbell, B.T. Examining the relationship between agronomic performance and fiber quality in ten cotton breeding populations.Crop Sci. 2021 , 61 , 989–1001.
  26. Campbell, B.; Chee, P.; Lubbers, E.; Bowman, D.; Meredith, W., Jr.; Johnson, J.; Fraser, D.; Bridges, W.; Jones, D. Dissecting genotype× environment interactions and trait correlations present in the Pee Dee cotton germplasm collection following seventy years of plant breeding.Crop Sci. 2012 , 52 , 690–699.
  27. Meredith, W.R., Jr.; Bridge, R. Yield, Yield Component and Fiber Property Variation of Cotton (Gossypium hirsutum L.) Within and Among Environments 1. Crop Sci. 1973 , 13 , 307–312.
  28. Meredith, W.R., Jr.; Bridge, R. Recurrent Selection for Lint Percent within a Cultivar of Cotton (Gossypium hirsutum L.) 1. Crop Sci. 1973 , 13 , 698–701.
  29. Chandnani, R.; Zhang, Z.; Patel, J.D.; Adhikari, J.; Khanal, S.; He, D.; Brown, N.; Chee, P.W.; Paterson, A.H. Comparative genetic variation of fiber quality traits in reciprocal advanced backcross populations. Euphytica 2017 , 213 , 1–9.
  30. Wang, L.; He, S.; Dia, S.; Sun, G.; Liu, X.; Wang, X.; Pan, Z.; Jia, Y.; Wang, L.; Pang, B. Alien genomic introgressions enhanced fiber strength in upland cotton (Gossypium hirsutum L.). Ind. Crops Prod. 2021 , 159 , 113028.
  31. Konan, N.; Baudoin, J.-P.; Mergeai, G. Potential of ten wild diploid cotton species for the improvement of fiber fineness of upland cotton through interspecific hybridisation. J. Plant Breed. Crop Sci.2020 , 12 , 97–105.
  32. Mergeai, G. Forty years of genetic improvement orty years of genetic improvement of cotton through interspecific hybridization at Gembloux Agricultural University: Achievement and prospects.
  33. Chen, Z.J.; Sreedasyam, A.; Ando, A.; Song, Q.; De Santiago, L.M.; Hulse-Kemp, A.M.; Ding, M.; Ye, W.; Kirkbride, R.C.; Jenkins, J. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat. Genet. 2020 ,52 , 525–533.
  34. Patel, G.; Thakar, B. Cotton improvement through interspecific hybridization. Indian Cotton Grow. Rev. 1950 ,4 , 185–198.
  35. Thiyagu, K.; Nadarajan, N.; Rajarathinam, S.; Sudhakar, D.; Rajendran, K. Association and path analysis for seed cotton yield improvement in interspecific crosses of cotton (Gossypium spp). Electron. J. Plant Breed. 2010 , 1 , 1001–1005.
  36. Choudki, V.; Sangannavar, P.; Savita, S.; Khadi, B.; Vamadevaiah, H.; Katageri, I. Genetic improvement of fibre traits in diploid cotton (G. herbaceum L.) through interspecific hybridization using G. barbadense tetraploid species. Electron. J. Plant Breed. 2012 ,3 , 686–691.
  37. Paterson, A.H.; Wendel, J.F.; Gundlach, H.; Guo, H.; Jenkins, J.; Jin, D.; Llewellyn, D.; Showmaker, K.C.; Shu, S.; Udall, J. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 2012 , 492 , 423–427.
  38. Jiang, C.; Wright, R.J.; El-Zik, K.M.; Paterson, A.H. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc. Natl. Acad. Sci. USA 1998 ,95 , 4419–4424. https://doi.org/10.1073/pnas.95.8.4419.
  39. Lynch, M.; Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science (New York NY) 2000 ,290 , 1151–1155. https://doi.org/10.1126/science.290.5494.1151.
  40. Zhao, X.P.; Si, Y.; Hanson, R.E.; Crane, C.F.; Price, H.J.; Stelly, D.M.; Wendel, J.F.; Paterson, A.H. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res.1998 , 8 , 479–492. https://doi.org/10.1101/gr.8.5.479.
  41. Hanson, R.E.; Zhao, X.p.; Islam‐Faridi, M.N.; Paterson, A.H.; Zwick, M.S.; Crane, C.F.; McKnight, T.D.; Stelly, D.M.; Price, H.J. Evolution of interspersed repetitive elements in Gossypium (Malvaceae).Am. J. Bot. 1998 , 85 , 1364–1368.
  42. Small, R.L.; Ryburn, J.A.; Wendel, J.F. Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium, L.). Mol. Biol. Evol. 1999 , 16 , 491–501. https://doi.org/10.1093/oxfordjournals.molbev.a026131.
  43. Zhang, Z.; Rong, J.; Waghmare, V.N.; Chee, P.W.; May, O.L.; Wright, R.J.; Gannaway, J.R.; Paterson, A.H. QTL alleles for improved fiber quality from a wild Hawaiian cotton, Gossypium tomentosum. TAG Theor. Appl. Genetics Theor. Und Angew. Genet. 2011 ,123 , 1075–1088. https://doi.org/10.1007/s00122-011-1649-x.
  44. Guo, H.; Wang, X.; Gundlach, H.; Mayer, K.F.X.; Peterson, D.G.; Scheffler, B.E.; Chee, P.W.; Paterson, A.H. Extensive and biased intergenomic nonreciprocal DNA exchanges shaped a nascent polyploid genome, Gossypium (cotton). Genetics 2014 , 197 , 1153–1163. https://doi.org/10.1534/genetics.114.166124.
  45. Hutchinson, J. Intra-specific differentiation in Gossypium hirsutum.Heredity 1951 , 5 , 161–193.
  46. Tyagi, P.; Gore, M.A.; Bowman, D.T.; Campbell, B.T.; Udall, J.A.; Kuraparthy, V. Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.). TAG Theor. Appl. Genetics Theor. Und Angew. Genet. 2014 , 127 , 283–295. https://doi.org/10.1007/s00122-013-2217-3.
  47. Fang, D.D.; Hinze, L.L.; Percy, R.G.; Li, P.; Deng, D.; Thyssen, G. A microsatellite-based genome-wide analysis of genetic diversity and linkage disequilibrium in Upland cotton (Gossypium hirsutum L.) cultivars from major cotton-growing countries. Euphytica2013 , 191 , 391–401.
  48. Aslam, S.; Khan, S.H.; Ahmed, A.; Dandekar, A.M. The tale of cotton plant: From wild type to domestication, leading to its improvement by genetic transformation. Am. J. Mol. Biol. 2020 ,10 , 91–127.
  49. Lubbers, E.L.; Chee, P.W. The worldwide gene pool of G. hirsutum and its improvement. In Genetics and Genomics of Cotton ; Springer: Berlin/Heidelberg, Germany, 2009; pp. 23–52.
  50. Zhao, Y.; Wang, H.; Chen, W.; Li, Y.; Gong, H.; Sang, X.; Huo, F.; Zeng, F. Genetic diversity and population structure of elite cotton (Gossypium hirsutum L.) germplasm revealed by SSR markers. Plant Syst. Evol. 2015 , 301 , 327–336.
  51. Bowman, D.T.; Gutiérrez, O.A. Sources of fiber strength in the US upland cotton crop from 1980 to 2000. J. Cotton Sci.2003 , 7 , 164–169.
  52. Zhang, J.; Fang, H.; Zhou, H.; Hughs, S.; Jones, D.C. Inheritance and transfer of thrips resistance from Pima cotton to Upland cotton.J. Cotton Sci 2013 , 17 , 163–169.
  53. Islam, M.S.; Fang, D.D.; Jenkins, J.N.; Guo, J.; McCarty, J.C.; Jones, D.C. Evaluation of genomic selection methods for predicting fiber quality traits in Upland cotton. Mol. Genet. Genom. MGG2020 , 295 , 67–79. https://doi.org/10.1007/s00438-019-01599-z.
  54. Saha, S.; Raska, D.A.; Stelly, D.M. Upland Cotton (Gossypium hirsutum L.) x Hawaiian Cotton (G. tomentosum Nutt. Ex. Seem.) F1 hybrid hypoaneuploid chromosome substitution series. J. Cotton Sci.2006 , 10 , 263–272.
  55. Muthuraj, M.; Mahalingam, L.; Premalatha, N.; Senguttuvan, K.; Kumar, M. F1 Interspecific hybridity confirmation in cotton through morphological, cytological and molecular analysis. Electron. J. Plant Breed. 2019 , 10 , 862–873.
  56. Newaskar, G.S.; Chimote, V.P.; Mehetre, S.S.; Jadhav, A.S. Interspecific hybridization in G ossypium L.: Characterization of progenies with different ploidy‐confirmed multigenomic backgrounds.Plant Breed. 2013 , 132 , 211–216.
  57. Draye, X.; Chee, P.; Jiang, C.-X.; Decanini, L.; Delmonte, T.A.; Bredhauer, R.; Smith, C.W.; Paterson, A.H. Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: II. Fiber fineness.Theor. Appl. Genet. 2005 , 111 , 764–771.
  58. Zhang, J.; Wu, M.; Yu, J.; Li, X.; Pei, W. Breeding potential of introgression lines developed from interspecific crossing between upland cotton (Gossypium hirsutum) and Gossypium barbadense: Heterosis, combining ability and genetic effects. PLoS ONE2016 , 11 , e0143646.
  59. Hulse-Kemp, A.M.; Lemm, J.; Plieske, J.; Ashrafi, H.; Buyyarapu, R.; Fang, D.D.; Frelichowski, J.; Giband, M.; Hague, S.; Hinze, L.L. Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3 Genes Genomes Genet. 2015 , 5 , 1187–1209.
  60. Hinze, L.L.; Hulse-Kemp, A.M.; Wilson, I.W.; Zhu, Q.-H.; Llewellyn, D.J.; Taylor, J.M.; Spriggs, A.; Fang, D.D.; Ulloa, M.; Burke, J.J. Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array. BMC Plant Biol. 2017 ,17 , 1–20.
  61. Zhu, D.; Li, X.; Wang, Z.; You, C.; Nie, X.; Sun, J.; Zhang, X.; Zhang, D.; Lin, Z. Genetic dissection of an allotetraploid interspecific CSSLs guides interspecific genetics and breeding in cotton. BMC Genom. 2020 , 21 , 1–16.
  62. Desalegn, Z.; Ratanadilok, N.; Kaveeta, R. Correlation and heritability for yield and fiber quality parameters of Ethiopian cotton (Gossypium hirsutum L.) estimated from 15 (diallel) crosses.Agric. Nat. Resour. 2009 , 43 , 1–11.
  63. Ulloa, M. Heritability and correlations of agronomic and fiber traits in an okra‐leaf upland cotton population. Crop Sci.2006 , 46 , 1508–1514.
  64. Ulloa, M.; De Santiago, L.M.; Hulse-Kemp, A.M.; Stelly, D.M.; Burke, J.J. Enhancing Upland cotton for drought resilience, productivity, and fiber quality: Comparative evaluation and genetic dissection.Mol. Genet. Genom. 2020 , 295 , 155–176.
  65. Shim, J.; Mangat, P.K.; Angeles-Shim, R. Natural variation in wild Gossypium species as a tool to broaden the genetic base of cultivated cotton. J. Plant Sci. Curr. Res 2018 , 2 , 9.
  66. Yin, X.; Zhan, R.; He, Y.; Song, S.; Wang, L.; Ge, Y.; Chen, D. Morphological description of a novel synthetic allotetraploid (A1A1G3G3) of Gossypium herbaceum L. and G. nelsonii Fryx. suitable for disease-resistant breeding applications. PLoS ONE2020 , 15 , e0242620.
  67. Huang, G.; Huang, J.-Q.; Chen, X.-Y.; Zhu, Y.-X. Recent advances and future perspectives in cotton research. Annu. Rev. Plant Biol.2021 , 72 , 437–462.
  68. Meredith, W., Jr. Use of insect resistant germplasm in reducing the cost of production in the 1980s. In Proceedings of the Proceedings. Beltwide Cotton Conference, St. Louis, MO, USA, 1980 Jan 6; pp. 4–8.
  69. Levin, D.A. Somatic Cell Hybridization: Application in Plant Systematics. Taxon 1975 , 24 , 261–270.
  70. Jiang, C.X.; Chee, P.W.; Draye, X.; Morrell, P.L.; Smith, C.W.; Paterson, A.H. Multilocus interactions restrict gene introgression in interspecific populations of polyploid Gossypium (cotton). Evol. Int. J. Org. Evol. 2000 , 54 , 798–814. https://doi.org/10.1111/j.0014-3820.2000.tb00081.x.
  71. Brown, H.; Ware, J. Cotton ; Mc Graw, Hill, Book Company Inc.: New York, NY, USA, 1958.
  72. Brubaker, C.L.; Wendel, J.F. Reevaluating the origin of domesticated cotton (Gossypium hirsutum; Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). Am. J. Bot.1994 , 81 , 1309–1326.
  73. Percy, R.G. The worldwide gene pool of Gossypium barbadense L. and its improvement. In Genetics and Genomics of Cotton ; Springer: Berlin/Heidelberg, Germany, 2009; pp. 53–68.
  74. Wang, G.L.; Dong, J.M.; Paterson, A.H. The distribution of Gossypium hirsutum chromatin in G. barbadense germ plasm: Molecular analysis of introgressive plant breeding. TAG Theor. Appl. Genetics Theor. Und Angew. Genet. 1995 , 91 , 1153–1161. https://doi.org/10.1007/bf00223934.
  75. Wang, S.; Chen, J.; Zhang, W.; Hu, Y.; Chang, L.; Fang, L.; Wang, Q.; Lv, F.; Wu, H.; Si, Z.; et al. Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes. Genome Biol. 2015 , 16 , 108. https://doi.org/10.1186/s13059-015-0678-1.
  76. Cao, Z.; Zhu, X.; Chen, H.; Zhang, T. Fine mapping of clustered quantitative trait loci for fiber quality on chromosome 7 using a Gossypium barbadense introgressed line. Mol. Breed.2015 , 35 , 215.
  77. Kumar, P.; Singh, R.; Lubbers, E.L.; Shen, X.; Paterson, A.H.; Campbell, B.T.; Jones, D.C.; Chee, P.W. Mapping and validation of fiber strength quantitative trait loci on chromosome 24 in upland cotton. Crop Sci. 2012 , 52 , 1115–1122.
  78. Paterson, A.H.; Boman, R.K.; Brown, S.M.; Chee, P.W.; Gannaway, J.R.; Gingle, A.R.; May, O.L.; Smith, C.W. Reducing the genetic vulnerability of cotton. Crop Sci 2004 , 44 , 1900–1901.
  79. Tanksley, S.D.; Nelson, J.C. Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. TAG Theor. Appl. Genetics Theor. Und Angew. Genet. 1996 , 92 , 191–203. https://doi.org/10.1007/bf00223376.
  80. Baohua, W.; Peng, W.C. Application of advanced backcross QTL analysis in crop improvement. J. Plant Breed. Crop Sci. 2010 ,2 , 221–232.
  81. Chee, P.W.; Draye, X.; Jiang, C.-X.; Decanini, L.; Delmonte, T.A.; Bredhauer, R.; Smith, C.W.; Paterson, A.H. Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length.Theor. Appl. Genet. 2005 , 111 , 772–781.
  82. Chee, P.; Draye, X.; Jiang, C.-X.; Decanini, L.; Delmonte, T.A.; Bredhauer, R.; Smith, C.W.; Paterson, A.H. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation.Theor. Appl. Genet. 2005 , 111 , 757–763.
  83. Shen, X.; Guo, W.; Zhu, X.; Yuan, Y.; Yu, J.Z.; Kohel, R.J.; Zhang, T. Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers. Mol. Breed. 2005 ,15 , 169–181.
  84. Zhang, T.; Yuan, Y.; Yu, J.; Guo, W.; Kohel, R.J. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. TAG Theor. Appl. Genetics Theor. Und Angew. Genet. 2003 , 106 , 262–268. https://doi.org/10.1007/s00122-002-1101-3.
  85. Chandnani, R.; Kim, C.; Guo, H.; Shehzad, T.; Wallace, J.G.; He, D.; Zhang, Z.; Patel, J.D.; Adhikari, J.; Khanal, S. Genetic analysis of gossypium fiber quality traits in reciprocal advanced backcross populations. Plant Genome 2018 , 11 , 170057.
  86. Chandnani, R.; Wang, B.; Draye, X.; Rainville, L.K.; Auckland, S.; Zhuang, Z.; Lubbers, E.L.; May, O.L.; Chee, P.W.; Paterson, A.H. Segregation distortion and genome-wide digenic interactions affect transmission of introgressed chromatin from wild cotton species.Theor. Appl. Genet. 2017 , 130 , 2219–2230.
  87. Wang, B.; Draye, X.; Zhuang, Z.; Zhang, Z.; Liu, M.; Lubbers, E.L.; Jones, D.; May, O.L.; Paterson, A.H.; Chee, P.W. QTL analysis of cotton fiber length in advanced backcross populations derived from a cross between Gossypium hirsutum and G. mustelinum. Theor. Appl. Genet. 2017 , 130 , 1297–1308.
  88. Wang, B.; Zhuang, Z.; Zhang, Z.; Draye, X.; Shuang, L.-S.; Shehzad, T.; Lubbers, E.L.; Jones, D.; May, O.L.; Paterson, A.H. Advanced backcross QTL analysis of fiber strength and fineness in a cross between Gossypium hirsutum and G. mustelinum. Front. Plant Sci.2017 , 8 , 1848.
  89. Chen, Q.; Wang, W.; Khanal, S.; Han, J.; Zhang, M.; Chen, Y.; Li, Z.; Wang, K.; Paterson, A.H.; Yu, J. Transcriptome analysis reveals genes potentially related to high fiber strength in a Gossypium hirsutum line IL9 with Gossypium mustelinum introgression. Genome2021 , 64 , 985–995.
  90. Wang, H.; Zhang, R.; Shen, C.; Li, X.; Zhu, D.; Lin, Z. Transcriptome and QTL analyses reveal candidate genes for fiber quality in Upland cotton. Crop J. 2020 , 8 , 98–106.
  91. Lu, Q.; Xiao, X.; Gong, J.; Li, P.; Zhao, Y.; Feng, J.; Peng, R.; Shi, Y.; Yuan, Y. Identification of candidate cotton genes associated with fiber length through quantitative trait loci mapping and RNA-sequencing using a chromosome segment substitution line.Front. Plant Sci. 2021 , 12 , 796722.
  92. Wang, F.; Zhang, J.; Chen, Y.; Zhang, C.; Gong, J.; Song, Z.; Zhou, J.; Wang, J.; Zhao, C.; Jiao, M. Identification of candidate genes for key fibre‐related QTL s and derivation of favourable alleles in Gossypium hirsutum recombinant inbred lines with G. barbadense introgressions. Plant Biotechnol. J. 2020 , 18 , 707–720.
  93. Shen, X.; Cao, Z.; Singh, R.; Lubbers, E.L.; Xu, P.; Smith, C.W.; Paterson, A.H.; Chee, P.W. Efficacy of qFL‐chr1, a quantitative trait locus for fiber length in cotton (Gossypium spp.). Crop Sci.2011 , 51 , 2005–2010.
  94. Blanco-Montenegro, I.; De Ritis, R.; Chiappini, M. Imaging and modelling the subsurface structure of volcanic calderas with high-resolution aeromagnetic data at Vulcano (Aeolian Islands, Italy).Bull. Volcanol. 2007 , 69 , 643–659.
  95. Knight, R. The Genetics Of Blackarm Resistance Ix The Gene B6M From Gossypium Arboreum; J. Genetics. 1953, 51, 270-275.
  96. Knight, R. The genetics of blackarm resistance XII. Transference of resistance fromGossypium herbaceum toG. barbadense. J. Genet.1963 , 58 , 328–346.
  97. Zhang, J.; Bourland, F.; Wheeler, T.; Wallace, T. Bacterial blight resistance in cotton: Genetic basis and molecular mapping.Euphytica 2020 , 216 , 1–19.
  98. Delannoy, E.; Lyon, B.; Marmey, P.; Jalloul, A. Resistance of cotton towards Xanthomonas campestris pv. malvacearum. Annu. Rev. Phytopathol. 2005 , 43 , 63.
  99. Wang, C.; Roberts, P. A Fusarium wilt resistance gene in Gossypium barbadense and its effect on root-knot nematode-wilt disease complex.Phytopathology 2006 , 96 , 727–734.
  100. Zhang, J.; Idowu, J.; Flynn, R.; Wedegaertner, T. Progress in breeding for glandless cotton in New Mexico. In Proceedings of the Beltwide Cotton Conference, 2018 January 3–5; pp. 566–572.
  101. Zhang, J. Fighting Fusarium wilt through breeding in cotton: A successful story in China. In Proceedings of the Proceedings of the Beltwide Cotton Conference, San Antonio, TX, USA, 3-5 January, 2018; pp. 877–879.
  102. Ulloa, M.; Hutmacher, R.B.; Roberts, P.A.; Wright, S.D.; Nichols, R.L.; Michael Davis, R. Inheritance and QTL mapping of Fusarium wilt race 4 resistance in cotton. Theor. Appl. Genet. 2013 ,126 , 1405–1418.
  103. Zaidi, S.S.e.A.; Naqvi, R.Z.; Asif, M.; Strickler, S.; Shakir, S.; Shafiq, M.; Khan, A.M.; Amin, I.; Mishra, B.; Mukhtar, M.S. Molecular insight into cotton leaf curl geminivirus disease resistance in cultivated cotton (Gossypium hirsutum). Plant Biotechnol. J.2020 , 18 , 691–706.
  104. Vij, S.; Pathak, D.; Rathore, P.; Kumar, H.; Sekhon, P.; Bhatia, D.; Chhuneja, P.; Singh, K. Molecular mapping of CLCuD resistance introgressed from synthetic cotton polyploid in upland cotton.J. Genet. 2022 , 101 , 1–8.
  105. Nazeer, W.; Ahmad, S.; Mahmood, K.; Tipu, A.; Mahmood, A.; Zhou, B. Introgression of genes for cotton leaf curl virus resistance and increased fiber strength from Gossypium stocksii into upland cotton (G. hirsutum). Genet. Mol. Res. 2014 , 13 , 1133–1143.
  106. Ahmad, S.; Mahmood, K.; Hanif, M.; Nazeer, W.; Malik, W.; Qayyum, A.; Hanif, K.; Mahmood, A.; Islam, N. Introgression of cotton leaf curl virus-resistant genes from Asiatic cotton (Gossypium arboreum) into upland cotton (G. hirsutum). Genet. Mol. Res. 2011 ,10 , 2404–2414.
  107. Brown, J.K.; Khan, Z. Breeding Cotton for Cotton Leaf Curl Disease Resistance. In Cotton Breeding and Biotechnology ; CRC Press: Boca Raton, FL, USA, 2022; pp. 171–197.
  108. Cai, Y.; Cai, X.; Wang, Q.; Wang, P.; Zhang, Y.; Cai, C.; Xu, Y.; Wang, K.; Zhou, Z.; Wang, C. Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis. Plant Biotechnol. J.2020 , 18 , 814–828.
  109. Bolek, Y.; Bell, A.; El‐Zik, K.; Thaxton, P.; Magill, C. Reaction of cotton cultivars and an F2 population to stem inoculation with isolates Verticillium dahliae. J. Phytopathol. 2005 ,153 , 269–273.
  110. Abdelraheem, A.; Elassbli, H.; Zhu, Y.; Kuraparthy, V.; Hinze, L.; Stelly, D.; Wedegaertner, T.; Zhang, J. A genome-wide association study uncovers consistent quantitative trait loci for resistance to Verticillium wilt and Fusarium wilt race 4 in the US Upland cotton.Theor. Appl. Genet. 2020 , 133 , 563–577.
  111. Dong, Q.; Magwanga, R.O.; Cai, X.; Lu, P.; Nyangasi Kirungu, J.; Zhou, Z.; Wang, X.; Wang, X.; Xu, Y.; Hou, Y. RNA-sequencing, physiological and RNAi analyses provide insights into the response mechanism of the ABC-mediated resistance to Verticillium dahliae infection in cotton.Genes 2019 , 10 , 110.
  112. Grover, C.E.; Pan, M.; Yuan, D.; Arick, M.A.; Hu, G.; Brase, L.; Stelly, D.M.; Lu, Z.; Schmitz, R.J.; Peterson, D.G. The Gossypium longicalyx genome as a resource for cotton breeding and evolution.G3 Genes Genomes Genet. 2020 , 10 , 1457–1467.
  113. Gutiérrez, O.A.; Jenkins, J.N.; McCarty, J.C.; Wubben, M.J.; Hayes, R.W.; Callahan, F.E. SSR markers closely associated with genes for resistance to root-knot nematode on chromosomes 11 and 14 of Upland cotton. Theor. Appl. Genet. 2010 , 121 , 1323–1337.
Turcotte, E.; Harold, W.; O’Bannon, J.; Feaster, C. Evaluation of cotton root knot nematode resistance of a strain of G. barbadense. var. darwinni. In: 15th cotton improvement conference. January 8–9 1963 Dallas, TX, USA. National Cotton Council of America, Memphis, pp 36–44; pp. 36–44.
  1. He, Y.; Kumar, P.; Shen, X.; Davis, R.F.; Van Becelaere, G.; May, O.L.; Nichols, R.L.; Chee, P.W. Re-evaluation of the inheritance for root-knot nematode resistance in the Upland cotton germplasm line M-120 RNR revealed two epistatic QTLs conferring resistance.Theor. Appl. Genet. 2014 , 127 , 1343–1351.
  2. Romano, G.B.; Sacks, E.J.; Stetina, S.R.; Robinson, A.; Fang, D.D.; Gutierrez, O.A.; Scheffler, J.A. Identification and genomic location of a reniform nematode (Rotylenchulus reniformis) resistance locus (Ren ari) introgressed from Gossypium aridum into upland cotton (G. hirsutum). Theor. Appl. Genet. 2009 , 120 , 139–150.
  3. Sacks, E.J.; Robinson, A.F. Introgression of resistance to reniform nematode (Rotylenchulus reniformis) into upland cotton (Gossypium hirsutum) from Gossypium arboreum and a G. hirsutum/Gossypium aridum bridging line. Field Crops Res. 2009 , 112 , 1–6.
  4. Fang, D.D.; Xiao, J.; Canci, P.C.; Cantrell, R.G. A new SNP haplotype associated with blue disease resistance gene in cotton (Gossypium hirsutum L.). Theor. Appl. Genet. 2010 , 120 , 943–953.
  5. Zhang, J.; Sun, J.; Liu, J.; Wu, Z. Genetic analysis of cotton resistance to spider mites. J Huazhong Agric Univ1992 , 11 , 127–133.
  6. Meyer, V.G. Interspecific cotton breeding. Econ. Bot.1974 , 28 , 56–60.
  7. Hossain, A.; Maitra, S.; Pramanick, B.; Bhutia, K.L.; Ahmad, Z.; Moulik, D.; Syed, M.A.; Shankar, T.; Adeel, M.; Hassan, M.M. Wild relatives of plants as sources for the development of abiotic stress tolerance in plants. In Plant Perspectives to Global Climate Changes ; Elsevier: Amsterdam, The Netherlands, 2022; pp. 471–518.
  8. Stanton, M.; Stewart, J.M.; Tugwell, N. Evaluation of Gossypium arboreum L. germplasm for resistance to thrips. Genet. Resour. Crop Evol. 1992 , 39 , 89–95.
  9. Bowman, D.T.; McCarty, J.C., Jr. Thrips (Thysanoptera: Thripidae) tolerance in cotton: Sources and heritability. J. Entomol. Sci.1997 , 32 , 460–471.
  10. Monga, D.; Sheo, R. Screening of germplasm lines against root rot of cotton (G. hirsutum). Adv. Plant Sci. 2000 , 13 , 603–607.
  11. Wilson, I.W.; Moncuquet, P.; Ellis, M.; White, R.G.; Zhu, Q.-H.; Stiller, W.; Llewellyn, D. Characterization and genetic mapping of black root rot resistance in Gossypium arboreum L. Int. J. Mol. Sci. 2021 , 22 , 2642.
  12. Bodah, E.T. Root rot diseases in plants: A review of common causal agents and management strategies. Agric. Res. Tech. Open Access J. 2017 , 5 , 555661.