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1 Introduction

If f(x),9(y) > 0, satisfies 0 < fooo f?(z)dr < 00,0 < fooo g*(y)dy < oo, then the famous Hilbert’s integral

inequality (cf. [1]) o . . . )
[ [ iy <o { [7 o} { [T ) (BY

holds, and the constant 7 is the best possible. Besides, we have the following some basic Hilbert integral

inequalities(cf. [1,2]):

/ / max{x y}dxdy<4 / P dx};{/ooogQ(y)dy}é, (1.2)
/ /OO !Ty' Vg(y)dady < co / e dx}é{/ooof(y)dy}%, (1.3)

/ / mlzjly}f(x)g(y)dxdy<8{ /OOO fz(x)dx}%{/ooogf(y)dy}é, (1.4)

where these constants 4, co = 8catalan = 7.327724754", and 8 are the best possible of (1.2), (1.3) and (1.4),
the constant ‘catalan’ is called catalan number.
In 2004, (1.1) and (1.2) are extended introducing the independent parameter A(> 0) by Yang, as follows

(cf. [3,4]) N o 1
/ / T@0) tray < B3] / 1 P )i} ] / vy} (15)

/OO" /0°° mdﬁdy < %{ /Om xl_AfQ(x)dx}% { /Ooo yl‘AQQ(y)dy}%, (1.6)

where these constants B(%, 3) are the best possible of (1.5), (1.6), fo yerttr=Ldt (u,v > 0) is

called Beta function.

oFund Project : Scientific research project of Hunan provincial education department(No: 19A455);
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In 2014, Liu et al. obtained a Hilbert-type integral inequality with independent parameter A > 0, as
follows(cf. [5])

/OOO /000 min{z*, y*} f(2)g(y)dady < ;{ /OOO UCH)‘fQ(:c)dx}%{ /oo y1+’\92(y)dy}%, w7

0
where these constant % is the best possible.
The research of Hilbert-type integral inequalities with hybrid kernels is one of the important contents.
The so-called hybrid kernel research is to combine some basic kernels into new integral kernels and do the

corresponding research works, which began in 2008 and has yielded a lot of results(see [6-9]). In this paper,
the parameters A1, A2, A3, A4 are introduced, and the basic kernels ky (z,y) = $7 ka(z,y) = ‘i]jril Jks(z,y) =

_ I 2 (minfw,y})*2
~ (aty)s (max{z,y}) M-
By using the way of weight function and some techniques of real analysis, the structural properties of a

max{z,y}, ks(x,y) = min{x, y} are parametric combined to a mixed kernel as k(z,y) :

Hilbert-type integral inequality with the above mixed kernel k(z,y) are considered. The obtained results not
only formulas (1.1) to (1.7) are integrated, but also some new and beautiful Hilbert-type integral inequalities
are obtained by selecting the parameter values that meet the conditions. At the same time, the operator

expression of the obtained inequalities with norm are discussed.

2 Some Lemmas

In this paper, to avoid subsequent repetition, we always assume that p > 17% + % =1, og,01,\(1 =
1,2,3,4) € R , which meet the conditions \; > —1,—Xy < o(01) < A3 + A\g. f(2),g(y) are two non-negative

measurable functions on R, satisfying

0< / PP () dr < 00, 0 < / Y=o =1ga(y)dy < co.
0 0

Let m > —1,n > —1, then we have integral formula (cf. [10])

/1 tm(lnl)ndt: Lt (2.1)

t (m + 1)nt+1’

where I'(s) = [~ e "t*!dt is called Gamma function

Let a € R, |z| < 1, we have the following series expansion (cf. [11])

(1+a)% = i (Z)x" (2.2)

n=0

where () = %ﬁa—nﬂ)

Lemma 2.1 Calculating the following integral, we have

* |Int A1 in{1.¢ )\zta—l
K(U’ )‘17)‘27)‘37)\4) ::/ | n | (mln{ ’ }) S dt
0 (1+t)s(max{1,t})™

o0 (_)\3)
—T(\ +1 n : 2.3
Gu+ );(n+)\2+0)>‘1+1+(n+/\3+)\470)>‘1+1 (2:3)

Proof. By (2.1) and (2.2), we find

% | n¢|M inf1.t) 201
K(O—a/\la)\%)\&)\él)::/ | In¢|™ (min{1, }) -
0 (14t)*s(max{1,t})™

1 lnl Alt)\2+a'71 e o] 1 t Alto'—)\4—1
:/ (n )27 dt+/ ()2
0 (L42)* 1 (L42)rs
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1 (lnl))‘lt)‘ﬁ'g_l (ln )A1u>\3+>\4—0 1
:/ t—/\dt—k/ 5 du
0 (1+1)s 0 (1+u)?s
S ()
=T\ 1 n .
( 1+ )nzzo(n+/\2+0))\1+1+(n+>\3+/\4,(7)>\1+1

Commentary 1: If o + 01 = A3 + Ay — A9, replacing o in (2.3) with 01 = A3 + Ay — Ay — o, we obtain

K(o, A1, A2, A3, A1) = K(01, A1, A2, A3, Ag) (2.4)

Commentary 2: letting 0 = 01,= 0 = W, we have

- )
K(A A2, Ag, M) =20 +1) ) - >\2+>\7;+>\4)>\1+1' (2.5)
n=0 2
Lemma 2.2 Let 0 + 01 = A3 + Ay — Ao, we defined two weight functions by
[ In 2[M (min{z,y})*>  y7 !
A1, A2, A3, A = d 0
w(0—70—13 1, N2y, A3, 45‘T) /0 (x—i—y)’\S(maX{a: y})>\4 g(g 1) y,xE( 700)7
[In 2 (minfo,y}) ™z
A1, Ag, Az, A = L d 0
U.}(O'»O'Ia 1y N2y N3, 4ay) /(; (as+y)/\3(max{x,y})/\4 y%(ﬂl—l) CC,?JE( 700)
then holds the relations
w(0,01, M1, A2, A3, A, ) = K (0, A1, A, Ag, Ag)a? =771,
LU(O'7 01, )‘17 )\27 )\3; )‘47 y) = K(U7 >\1a )‘Qa )‘37 Ale)y(](l_o-l)_l' (26)
Proof Setting £ = ¢, by Lemma 2.1 and (2.4), we have
| In 2|M (min{z,y})*2  y7 !
A1, Ao, A, A = L d
W(Ja 01y Aly A2, A3, 4,.’E) A (J? +y)A3(maX{x,y})A4 I%(U_l) Y
_ mp(l—a')—l /00 |1nt|Al (mil’l{17t}))\2tal_1dt
0 (1+)»(max{1,1})™
= ﬂip(lig)ilK(O'l, )\1, )\2, /\3, /\4) = I(((’)’7 /\1, )\2, )\3, /\4)33‘0(176)71.
Similarly, we easily get w(o, o1, A1, A2, A3, Aa, y) = K (0, A1, Ao, Az, Ag)yd(t—o0) -1,
Lemma 2.3 If there exists a constant M > 0, such that the inequality
> |In 2N (min{z, y})* f(2)g(y)
dxdy
(2 + y)*s (max{z, y})*
[e'e] 1
< M{ / w=o agan} {7y gy (27)
0 0
holds true, then we have
o+ 01 =A3+ Xg — Aa. (28)

Proof. Letting v = 0 + 01 + A2 — A3 — A4, we discussed the situation as follows:
1° If v < 0, for 0 < € < —7, setting the following two functions

{x v, x€(0,1] y ey e (0,1

0, 2 € (1,00) 9:(0) = { 0, ye(l,00)
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Then, we find
Jy = {/ 2P0 2 (@) de | [/ y? T gl (y)dy | =~ (2.9)
0 0 €
Besides, note the facts that oy + Ao > 0, setting £ = ¢, and Fubini’s theorem (cf. [11]), we find
|In 22 (min{z, y})*2
dzd
/ / (z + y)*s (max{z, y}) Je(@)ge(y)dicy
f/ o—1+% v dx / |1n |)\1 mln{x,y}))‘Q o1—1+% d
o (¢ +y)*(max{z,y})t
/ ite g, / [t (minf1, ) e
(14 t)*s (max{1,t})
o1+X2—1+=
>/ v 1+de/ (In §) e +th
- (141t)rs
() Lot
=T(A 1 n T . 2.10
(i + )Z(n+01+>\2+ )MH/OQj ! (2.10)

By (2.10), (2.7) and (2.9), we deduce that

e} (—>\3) 1
n —1+4e€
()\1+1)Z(n+01+)\2+ ))‘1+1/0 v dr=h

[ [ s

(z +y)ts (max{:v yhM

dxdy
o0 1
p —oq)— q 1
<m] [Tty [ [Ty tgay] = vl < o
0 0

In view of v+ ¢ < 0, we get fol 27714 dx = 0o. Then, we get a contradictory expression as co < I; < oo.

2° If v > 0, for 0 < € < v, setting the following two functions

o—1-=% o1—1-%

. a7 7r, we(loo) | y' e, y€[l,00)

Jw) = { () = { .
0, x € (0,1) 0, y€(0,1)

Then, we find
e’} 1 [ee} 1
= [/ 207 2 () da] | / Y= 1ga(y)ay] = 1. (2.11)

0 0 €

Setting £ = t, we find

[ I gy
h.—/o /0 o [y ()8 )y

:/ooxo_ 1_*d / |1n |/\1 mln{w y}) yo’l—l—%dy
1 x + y)*s (max{z,y})

_ / T tmeqy [ |1nt|M<mm{1,t}>*2t”l T
: o (L 0% (max(L, 1))

[e'e] [e'e] 1 A1 0’17)\4717%
2/ :L»’Y—l—edm/ (nt> t v dt
1 1 (L41)*

0o A1, Astra—o1—1+%
B y1e ' (ln 1)y
= T dx du
1 0

(14 u)rs
=T\ +1) i ) /Oo 27 (2.12)
nt A+ —or+ Nt ' '
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By (2.12), (2.7) and (2.11), we deduce that

S (")

o0
(A +1 / / Tl < T
s )Z(n+)\3+>\4—01+ Syl ) v r=a

[ 4P (minfe y ) f@50)

(z +y)*s (max{z, y})*
gM[/O 2PU=o) =1 fp (g )dm}p[/ooo a(1—o1)—1g ()dy}%:M§<oo.

In view of vy —e > 0, we get floo 27 17¢dx = co. Then, we get a contradictory expression as co < I < co.
To sum up the above discussions, only v = 0, that is o + 01 = A3 + Ay — Ao.

Lemma 2.4 If 0 + 01 = A3 + Ay — g, then we have M > K (o, A1, A2, A3, Ag).

Proof. Taking the functions fe(x) and g.(y) of Lemma 2.3, and setting £ = ¢, we find

e [T [In 2] (i, y})2 . ()3 (9)

(2 + y)*s (max{z, y})*

[ s [

1 1 (2 + y)*s (max{z, y})*

< © | n ¢ (min{1, t}) 271G
[ [ I il

1 ==t (14 ¢)*s(max{1,¢})™

00 1 (Ini )‘1t01+)\2—1—% o0 (I )Mo ra—1-4
5/ x_l_adx[/ (In ) 5 dt+/ (nt) v dt]—

1 0 (1+1¢)rs 1 (1+1¢)rs

-1 A P

o z Inl 1t01+)\2 1-5

9 l‘ilisdx ( nt) dt:Hl —H2 (213)
1 0 (141)rs

dxdy

By the proof of lemma 2.1, we have

e 1 1 1 )\1t01+)\2—1—§ © (Int Altol—)\4—1—§
leg/ x_l_adx[/ (In7) dt+/ In?) dt]
1 0 1

(1+1t)rs (1+4t)s

YORRIDY ) ()
+1 n N .
1 n=0 n+01+>\27§))‘1+1 (n+)\3+)\4701+%)/\1+1

VE N VE
Noticing the fact 0 <t <L <1=t"a < (i)« =270

, we have

00 z7! Int /\1t01+/\2—1—%
Hy; = 8/ x_l_gdx/ ( t) dt
1 0

(141t)*s
oo . z7! (ln%))‘lt01+)\2—1—§—§+§
<e€ x”dx T dt
1 0
oo /\1t01+/\2 1—%—%
<e x T a dx/ dt
/1 0 (141t)s
oo 1 ln /\1t01+/\2 1—%—%
Ss/l T~ Qd:c/o L dt
)
:qﬁF(1+>\1)Z =

o (n +o14 XA — %\/‘g))\ﬁj .

Returning Hy and Hs to (2.13), and letting e — 0. By (2.4) we obtain

flE > K(O’,/\h)\g,)\g, )\4)(1 — 0(1)) (E — 0+).
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Moreover, we have
M = Mj1€ > I~1€ > K(O’,)\l,)\g,/\g,/\4)(1 — 0(1)).

Letting € — 07, it follows that M > K(o, A1, A2, A3, Aq).

3 Main results

Theorem 3.1 Assuming M > 0, the following conditions(i)-(iv) are equivalent:
(i) The following inequality holds

o[ R ]

< M{/OOO aP1=0) =1 P (1) dx % (3.1)

(ii) The following inequality holds

/ /oo |In 2|2 (minf{z, y})*2 f(z)g(y)

(x +y)*s (max{z, y} )M

dxdy

1

<M{/0 pP(=o)= lfp(x)d:v}p{/ooo yQ(l_"l)_lgq(y)dy}%. (3.2)

(iii) The constants o, 01 meet the following condition:
o+ 01=A3+ X — Ao (3.3)
(iv) When o 4+ 01 = A3 + Ay — A\a, we have
K(o,A1,A2, A3, A1) = K(01, A1, A2, A3, \g)
and
M > K(0, A1, Aoy Mgy M), (3.4)
Proof. (i) = (ii). By the weighted Holder’s inequality (cf. [12]), we have

o [t [ ) )

(z + y)*s (max{z, y} )

< J[/OO yq“’“l)’lgq(y)dy]é
0

Then by (3.1), We derive (3.2).

(ii) = (iii). By Lemma2.3, we have equation (3.3).

(iii) = (iv). We have proved that K (o, A1, A2, A3, A1) = K (01, A1, A2, A3, Ag) in Lemma 2.1. By Lemma
2.4, we have (3.4).

(iv) = (i). By Holder inequality, and Lemma 2.2, we have

| In 2™ (minfz, y})* f(z)
(/o FESTITT )

| In LM (min{z, y})*e ry 7 i :
- {/ (@ +y>A3<max{x?y}>A4 [16;1 f@) [yal;}dﬂf}
8 [In 2 (minfa, y})* (@) 57!

(x +y)*s (max{z, y}) 2=

dxx
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ya
aq

[In 2 (min{z, y})*2 - 27!
1 :

7+ y) (max{z, y} )™ 45D

z oo | In LM (minf{a, y )2 fP(x) yor—t
= {w(0701,/\17)\2,>\3)\4,y)} / [In o™ (mindz, y}) /() y dz
0

(x +y)*s (max{z, y})r 2=

o | p ¥|M : A2 £p o1 —1
:Kg(a, /\17)\27)\3,)\4)y1_p01/ [In [ (min{z, y)) /7(z) y

o (zHy)(max{z,ypr 2

dx}

da. (3.5)

We first certify that (3.5) takes the form of a strict inequality. Suppose that (3.5) takes the form of
equality for a y € (0,00), then by the condition that Hélder inequality holds the equation , there exist
constants A and B, which are not all zero, such that

o1—1 xafl

A y(g 5 fP(@) = B———g'(y) a.c.in(0,00) x (0,00).
T y P

We might as well assume A # 0, it follows that

a(A3+Ag—X2)
2

:Cp(lfa)flfp(x) — [y gq(y)} AE;‘ a.e.in(0, 00).

For the generalized integral fooo[ 1 +;47A2)g‘1( )]%dm is divergent, which contradicts the fact that 0 <
IS z)dx < oo.

Further, by (3.5), Lemma 2.2 and Fubini’s theorem, we have

X 1 o0 ‘ln%P‘l(min{x’ N f(2) » 5
- l/o ! (/0 (x—i—y)/\a(maxix Yy dx) dy‘|

| In M (min{z, y})*2 f7(x) yor? v
Kq
< (0, A1, A2, A3, Ag) / / z+ y)(max{z,y) ) HeD dxdy

q

S H

K%(U >\la )‘27 )‘37 )‘4) |:/ CU(O', 01, )\17 )‘27 >\3)\4ax)fp(x)dx:|
0

= K (o, At Ao, A A / 2=~ 2 () 4|
0

For 0 < K (0,1, A2, A3, A\q) < M, so (3.1) is established. O
By Theorem 3.1 and (3.5), we easily get the following conclusion:
Corollary 1 If 0 + 01 = A3 + A4 — A2, then we have the following equivalent inequalities:

/ /oo |In 2121 (min{z, y})*2 f(z)g(y)

4 y)* (max{z, y})M

dxdy

Q=

< K(o, )\1,)\27)\3,)\4){/00 xp(l_“)_lfp(x)dw};{/ooo a(l=o1)=1ga(, )dy} , (3.6)

0

and

/OOO ypol—r{/ooo |lIl%P‘l(min{x,y})hf(z)dx}pdy

(x +y)*s (max{z, y})M

< KP(01, A1, A2, Mg, Aa) / a?=0) =L fP(3)d, (3.7)
0

where the constant factors K (o, A1, A2, A3, A\y) and KP (o, A1, A2, A3, \4) appearing on the right-hand side of
(3.6) and (3.7) are the best possible.

Taking ¢ = o7 in Theorem 3.1, 0 = o1 = %#)‘2 are derived from o + 01 = A3 + Ay — Ao and
A2+ A3+ A >0 from —Ao < 0,01 < A3+ Ag, K(0, A1, A2, A3, Aa) = K (A1, A2, A3, Ag). Then, we obtain the

following simple and more applicable conclusions which excluding parameter variables o, 0.
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Corollary 2 Tf Ay > —1, Ao+ A3+ Aa > 0, f(x), g(y) > 0, satisfying 0 < [*° zP(0—" =2 =1 £p(1) 4y <
9(y ying 0 < [

00,0 < fooo ya(1= Fatip )=144(y)dy < co. Then, we have the following equivalent inequalities:

/ /°° [In 2|2 (min{x, y})*2 f (x)g(y)dxdy

(z + y)*s (max{z, y} )

os} _ 1 os} 1
<K()\1,)\2,)\3,)\4){/ $p(1_A3+A244 m)_lfp(x)dl’}p{A yq(l atdgdg) g7(y )dy}q, (3.8)

0

and

< _ X |In% A1 1 , A2 P
/ y (>\3+;4 A2) _1{ / | n g;| (mln{x y}) f(x) dx} dy
0 0

(x +y)*s (max{z, y})M

< KP(A1, Aoy Mg M) / Y L EO (3.9)
0

where the constant factors K (A1, A2, A3, A4) and KP (A1, A2, A3, \4) appearing on the right-hand side of (3.8)
and (3.9) are the best possible.
4 Operator expressions and some particular inequalities

Setting functions as p(z) := zP0=)=1 4)(y) := y9(=o)=1 (2,9 > 0), apparently, '~ P(y) := yP71~ L.
We also set the following linear spaces with norm:

Lyo®s) = {F = fa)o € Reilf o = [ [ (@l @)lPaa]? < o0},

Luo(®s) = {9 = 900 € Rl = [ | vlalras]? < oo},

Ly »®4) = {h =)y € Reillllr = [ [~ 0 Pas] < o).

p1 = flp-
If f e L, ,(Ry), asingular Hilbert-type integral operator is defined as T": L, ,(Ry) — Ly, y1-»(R4),

T(f)( ) R /00 |1n%‘>\1(min{l’,y})>\2f($)
DT @ty maxde, g
For f € Ly o(Ry),g € Lgy(Ry), the formal inner product of T'f and g and the norm of operator T are
defined as: | |>\ e
In |t (minf{z, y
(T
1,9) / / (z + y)*s (max{z,y}) f(@)g(y)dzdy,

Tf|l s
HTH = sup M.
FE0eL, o®y) I fllpge

Specially, when ¢(x) = 1, we write that || f

f(CC)dI,y € R-i-'

When o + 01 = A3 + Ay — A2, the constant factor K (o, A1, A2, Az, Ay) of (3.6) is the best possible, so we
obtain ||T|| = K (o, A1, A2, A3, Ag). By Corollary 1, we have

Corollary 3 If 0 + 01 = A3 + My — Ao, p(z) = 2P 71 ap(y) = y?I=o0)=1 #(5 0) € L, ,(Ry), g(>
0) € Lg4(R4), we have the following equivalent operator inequalities with norm:

(Tt.9) (4.1)

1T 1 < ITIPNSIG - (4.2)

Specially, when o = oy, we get p(z) = pp(1— 23522 A2)—171/}(31) - yQ(l—ikﬁkzrkz)—l, IT| = K(A1, A2, A, Ag).
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Theoretically, many equivalence inequalities can be obtained by using (3.6) and (3.7), however, the values
of 0,01 in (3.6) and (3.7) are difficult to control. In practical application, it is simple and easy to obtain
inequalities by selecting the appropriate parameter values in (3.8) and (3.9).

Example 1 1° Letting A\; = Ao = Ay = 0,A3 = A\(> 0),p = ¢ = 2, we get o(z) = o', ¥(y) = y' =,
K(0,0,),0) = B(3,3) by calculating (2.5). Then by (3.8) and (3.9), we have (1.5) and its equivalent form.
Continue to letting A = 1, we have (1.1) and its equivalent form.

2° Letting A\; = Ao = A3 = 0,\s = A(> 0),p = ¢ =2, we get p(x) = 217, ¢(y) = y*~*, K(0,0,0,\) = %
by calculating (2.5). Then by (3.8) and (3.9), we have (1.6) and its equivalent form. Continue to letting
A =1, we have (1.2) and its equivalent form.

3° Letting A\; = A3 = Ay = 0, \a = A\(> 0),p = q = 2, we get p(z) = 21 w(y) = y*+*, K(0,1,0,0) = §
by calculating (2.5). Then by (3.8) and (3.9), we have (1.7) and its equivalent form.

4° Letting \y = A3 = L,da = Ay = 0,p = ¢ = 2, we get () = ¢¥(y) = 1, K(1,0,1,0) = ¢o =
7.327724754" by calculating (2.5). Then by (3.8) and (3.9), we have (1.3) and its equivalent form. Letting
AM=M=LXA=X=0,p=qg=2, we get p(z) =v(y) =1, K(1,0,0,1) = 8 by calculating (2.5). Then by
(3.8) and (3.9), we have (1.4) and its equivalent form.

This example illustrates that (3.8) and (3.9) integrate the results of some references. In addition, we can
obtain some new Hilbert-type integral inequalities with simple form by choosing suitable parameter values
n (3.8) and (3.9).

Example 2 Letting \; = A\3 = Ay = 1Ay = 0,p = ¢ = 2, we get o(z) = 271, K(1,0,1,1) = %2 by

calculating (2.5). If f, llgll2,, < oo, Then we have the following equivalent inequalities:
In 21 (2)g(y) 72
dedy < = 7 43
[ ot dady < gl (13)
= [ln|f(x) I
d } dy < = , 44
[ ol [ et ity el < 5l (44)

where the constant factors %2 and g—g are the best possible.

Example 3 Letting Ay = AoA3 = 1,4 = 0,p = ¢ = 2, we get p(z) =z, K(1,1,1,0) = %2 by calculating
(2.5). If f,

llgll2,, < oo, Then we have the following equivalent inequalities:

| ln ¥| min{z, 2
P R 1 (45)
1y (*°|In [ min{z,y}f(z)
/0 5{/0 Tty dI} dy < *Ilflbq,, (4.6)

where the constant factors %2 and g—; are the best possible.
Example 4 Letting A\; = 0,A2 = A3 = Ay = 1,p = ¢ = 2, we get p(x) =1, K(0,1,1,1) =4 — 7 by

calculating (2.5). If f,g > 0,]|fll2,|l¢ll2 < oo, Then we have the following equivalent inequalities:

mm{fc ytf(@)g(y)

/ (z + y) max{z,y} dady < (4 =) fll2llqll2, (4.7)
* min{x, y} f(z) 2 e

/0 [/o (x+y) maX{x,y}dx} dy < (4 =m)7|[fll2, (4.8)

where the constant factors 4 — 7 and (4 — 7)? are the best possible.
Example 5 Letting Ay = Ay =X 3 =M =1,p=¢q =2, we get p(z) =1, K(1,1,1,1) = 8(1 — catalan) =
0.672275246" by calculating (2.5). If f,g > 0,|fll2,|lgll2 < oo, Then we have the following equivalent

inequalities:

/ /OO [ p|min{e, y}F@)9G) )00 < 81 - catatan) | la]alle, (4.9)

(z + y) max{z,y}



% Y min{z,y} f(z) 12
/o [/0 (ot g manle,y] @) v < 0401 — catalan)?| fI; (4.10)

where the constant factors 8(1 — catalan) and 64(1 — catalan)? are the best possible.
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