Large-time behavior of solutions to the inflow
problem of the non-isentropic micropolar fluid

model
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Abstract

We investigate the asymptotic behavior of solutions to the initial boundary value problem
for the micropolar fluid model in a half line R4 := (0, 00). Inspired by the relationship between
micropolar fluid and Navier-Stokes, we prove that the composite wave consisting of the transonic
boundary layer solution, the 1-rarefaction wave, the viscous 2-contact wave and the 3-rarefaction
wave for the inflow problem on the micropolar fluid model is time-asymptotically stable under
some smallness conditions. Meanwhile, we obtain the global existence of solutions based on the
basic energy method.
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1 Introduction

The 1-D compressible viscous micropolar fluid model in the half line Ry =: (0, +00) reads in Eulerian
coordinates:

Op+ 0p(pu) =0, >0, t>0,
(pu) + 0 (pu® + p) = pdiu, = >0, t >0,

O (pw) + 0y (puw) + Aw = Ad*w, = >0, t >0, (L.1)
2 2
O¢lp(e + %)} + Oz [pule + u?) + pu] = 0y (udyu) + K020 + (9,w)* + w?, >0, t >0,

where p, u, w and 6 represent the mass density, velocity, microrotation velocity and temperature of
the fluid respectively. Here we assume A, p, k are positive constants. Assuming that the fluid is
perfect and polytropic, for pressure p and internal energy e we have the state equations:

p=Rpl, e= %0, (1.2)
where R and ~ > 1 are positive constants.
We consider the system (1.1) with the initial values
(psu,w, 0)(z,0) = (po, uo, wo, o) (), Iien]g+ po(z) >0, zien]Rf+ Oo(z) > 0. (1.3)
Assume that initial data at the far field x = +oo is constant, namely
Jm (po, uo,wo, 00)(2) = (ps us, w+, 04) (1.4)
and the boundary values for p, u, w and 6 at = 0 are given by
(pyu,w,0)(0,t) = (p—,u_,w_,0_), Vt>0, (1.5)

where p_ > 0, u_ >0, §_ > 0, w_ are constants and the following compatibility conditions hold
p0(0) =p—, w(0)=u_, we(0)=w_, 6y(0)=0_. (1.6)

The boundary conditions to the half-place problem (1.1) can be proposed as one of the following
three cases.
Case 1. Outflow problem(negative velocity on the boundary):

u(0,t) =u_ <0, 6(0,t)=6_. (1.7)
Case 2. Impermeable wall problem(zero velocity on the boundary):
u(0,t) =0, 6(0,t)=0_. (1.8)
Case 3. Inflow problem(positive velocity on the boundary):
p(0,8) =p_, w(0,¢)=u_>0, 6(0,t)=06_. (1.9)

Notice that in case 1 and case 2 the density p_ could not be given, but in case 3, p_ must be
imposed due to the well-posedness theory of the hyperbolic equation (1.1),.

The micropolar fluid model was firstly introduced by Eringen in 1966 ([7]). The micropolar fluid
model enables us to consider some complex fluids such as suspensions, animal blood, liquid crystals
which cannot be described properly by classical Navier-Stokes equation. For more background, please
refer to [19] and references therein. Much attention has been paid to this model by mathematicians.



First, some of them made a series of efforts in [4, 19, 1, 30] studying the existence of strong solutions
and weak solutions for the micropolar fluid model. Second, Mujakovié proved the regularity to an
initial boundary value problem for the micropolar fluid model in [23] and [26]. For the large time
behavior and stability of solutions, Mujakovié¢ and other authors made a series work in [24, 25, 27, 33].
In addition, there are other authors who contribute to the studying of this model, such as for one
dimensional compressible micropolar fluid model, Liu and Yin [15] have obtained the stability of
solution of contact discontinuity for the Cauchy problem. For three-dimensional model, Chen and
Huang [2, 3] obtained the blowup criterion of solutions for this model. Liu and Zhang [16] proved
the optimal time decay of the three dimensional compressible flow. In Liu and Zhang’s recent work
[17], they also obtained the large time behavior of solutions for the compressible micropolar fluid
model with a potential external force in R3. Recently, Duan [6] proved existence and uniqueness of
global strong solution of compressible micropolar fluid model in one dimensional space with density
dependent viscosity and temperature dependent heat conductivity. The stability of rarefaction waves
for one dimensional compressible viscous micropolar fluid model was obtained by Jin and Duan in
[13].

We assume microrotation velocity w = 0 for the large time behavior of solutions to the initial
boundary value problem (1.1), (1.3), (1.4), (1.5), (1.6), then the micropolar fluid model (1.1) can be
reduced to the following single Navier-Stokes system in the form

O¢p + Ox(pu) =0,

i (pu) + 0z (pu® + p) = pdzu, (1.10)
2 2
Oilple + )] + Dalpule + =) + pul = pd (udu) + 2.

Moreover, when the dissipation effects are neglected for the large time behavior, Navier-Stokes system
(1.10) can be reduced to the following Euler system in the form of

Op + 0z (pu) = 0,

U2 ’LL2
Oelp(e + )] + Oslpule + =) +pu] = 0.

Tt is well known that the Euler system (1.11) is a typical example of the hyperbolic conservation
laws. The Riemann solutions for Euler system (1.11) contains three basic wave patterns, that is,
two nonlinear waves, called shock wave and rarefaction wave and one linear wave, called contact
discontinuity and their linear combinations. Later, not only basic wave patterns but also a new
wave, which is called a boundary layer solution(BL-solution for brevity) [20] may appear in the initial
boundary value problem. Because the large time behavior of solutions to the Cauchy problem (on the
isentropic or nonisentropic Navier-Stokes system) are basically described by the viscous versions of
three basic wave patterns. There have been a lot of mathematical studies about basic wave patterns
and BL-solution to the isentropic or nonisentropic Navier-Stokes system, please rereferring to [8, 9,
10, 11, 12, 14, 18, 20, 21, 22, 28, 29, 31]

Now we review some recent work on the inflow and outflow problems of the micropolar fluid model.
Yin [5, 35] respectively obtained the stability of BL-solution to the inflow and outflow problems. In
the previous paper [35], Yin proved the stability of the composite wave consisting of the subsonic BL-
solution, the viscous 2-contact wave and the 3-rarefaction wave under the condition that the amplitude
of the contact wave and the BL-solution is small enough but the 3-rarefaction wave is not necessarily
small for the one dimensional compressible micropolar fluid model.

Therefore,there is a natural question: How is the asymptotic stability of the composite wave
consisting of the transonic BL-solution, the l-rarefaction wave, the viscous 2-contact wave and the



3-rarefaction wave for the inflow problem on micropolar fluid model (1.1) to the Riemann problem
on Euler system (1.11) in the setting of w(z,¢) = 0 under the condition that wy = 0 7 We will give
the positive answer on this problem in this paper. As far as we know, this is the first work on the
stability of composite wave of the transonic BL-solution, the 1-rarefaction wave, the viscous 2-contact
wave and 3-rarefaction wave for the compressible micropolar fluid model. It is worthwhile to point
out that the four wave patterns are different from the Cauchy problem due to the boundary effect.
Correspondingly, some new mathematical difficulties occur due to the degeneracy of the transonic
BL-solution and its interactions with other wave patterns in the composite wave.
In order to study the large time behavior of solutions to (1.1), (1.3), (1.4), (1.5) and (1.6), it is
more convenient to use the following Lagrangian coordinate transformation:
(z,t)
x = ply, 7)dy — pu(y, 7)dr, t=t.
(0,0)
Thus the system (1.1) can be transformed into the following moving boundary problem of micropolar
fluid model in the Lagrangian coordinates:

ov—0u=0, z>o0_t, t>0,

Oz
Oy + Opp = 0y (u) , r>0_t, t>0,

v
Opw
Oyw + Avw = A0, < ” >, x>o_t, t>0, (1.12)
2 2
(e + %) + 0, (pu) = u@x(uavmu) + H@m(%) + @ +ow?, x>0 t, t>0,

(IU’ u’w’ 0)('/1; = U_t’t) = (v_7u_707 0_)’ U— > O’

(v,u,w, 0)(x,0) = (vo, uo, wo, b0) () = (v4,uy,0,604), as = — +oo,

where v(z,t) = ﬁ represents the specific volume of the fluid, and the boundary moves with the

constant speed o_ = f:f—: < 0. Now we have that for the perfect gas,
RO
p=—. (1.13)
v

In order to fix the moving boundary x = o_t, we introduce a new variable £ =z — o_t. Then we
have the half-space problem

O —0_0gv —0gu=0, £>0,1>0,

Opu — 0_0cu + Ogp = poe <81§]’LL> , £€>0,t>0,

Ocw
Ow — 0_0cw + Avw = A0 (f}) , £€>0,t>0, (1.14)
2 2 P 90, (Dew)?
Bu(e + %) — o e+ “3) + e (pu) = uag(“j“) + ROe(5) + % Fow?, €30, t>0,

(U7u7w70)(§ = O’t) = (U—’u—7070—)7 u— > 07

(v,u,w,@)({,()) - (U(),anwOagO)(E) - (U+7u+70>9+)3 as g — +00.

We next assume, as usual in thermodynamics, that by any given two of the five thermodynam-
ical variables, v, p, e, the temperature 6 (> 0) and entropy s, the remaining three variables can be
expressed. Without lose of generality, we define the entropy s as follows

R11n9+1, (1.15)

s=Rlnv+



which obeys the second law of thermodynamics
0ds = de + pdv.

Then due to (1.15), the initial data s(vo(z),8o(z)) is expressed by (vo(x),00(x)) as follows

s(vo(x),00(z)) = RInwvy(z) + P In Oy (z) + 1. (1.16)
Thus sy = ET s(vo(z), 0 (x)) satisfying
5+:s(v+,9+):Rlnv++7_11n9+—|—1. (1.17)

The rest of the paper is arranged as follows. In the Section 2, we give some preliminaries of the
Navier-Stokes system, then we reformulate the original system (1.1) and introduce our main theorem
concerning the global existence and asymptotic stability of solutions. The proof of Theorem 2.1 is
concluded in Section 3. In the Appendix, we present the details which are left in the proofs of the
previous sections for completeness of the paper.

Notation: Throughout the paper, we denote positive constants (generally large) and (generally
small) independent of ¢ by C' and c¢, respectively. And the character “C” and “¢” may take different
values in different places. LP = LP(R,) (1 < p < o0) denotes the usual Lebesgue space on [0, c0) with
its norm || - ||», and when p = 2, we write || - ||z2r,) = || - |. H® = H*(R) denotes the usual s-th

S

order Sobolev space with its norm || f|| gs@® ) = (> 10 f]12)=.
i=0

2 Some preliminaries of the Navier-Stokes system

Since we expect the large time behavior of micropolar fluid model (1.14) behaves as the same as that
of Navier-Stokes system, we assume w(x,t) = 0 for the large time behavior. Therefore, when time
t — +00, the micropolar fluid model (1.12) and (1.14) respectively become the following Navier-Stokes

system
ov—0u=0, ©>o0_t, t>0,
Ot + Opp = 10y (8:}u) , T>o0_t, t>0,
Dh(e + “;) 0, (pu) = 0 (M) 4 m@w(%), v o0t 150, 21)
(v,u,0)(x =0_t,t) = (v_,u_,0_), u_ >0,
(v,u,0)(x,0) = (vo,ug, 00)(x) = (v, uy,04), as z — +oo,
and
0w —0_0gv —Ogu=0, £>0,1t>0,
Opu — 0_0cu + Ogp = p0g (851)u> , £€>0,1>0,
Oi(e+ u;) —o_O¢(e+ u;) + O¢(pu) = Mag(“‘%ﬁ“) + nﬁg(?), £>0,t>0, (22)
(v,u,0)(€ =0,t) = (v_,u_,0_), u_ >0,
(v,u,0) (£, 0) = (vo, uo,00)(§) = (v, us,04), as §— +oc.

Since Navier-Stokes system (2.1) and (2.2) have been studied by Qin and Wang in [31] which
obtained the existence (or nonexistence) of the boundary layer solution (BL-solution) for the inflow



problem when the right end state (vy,uy,6y) belonged to the subsonic, transonic, and supersonic
regions, respectively, and proved the asymptotic stability of not only the single contact wave but
also the composite wave consisting of the subsonic BL-solution, the contact wave, and the rarefaction
wave. From now on, in order to prove the composite wave consisting of the transonic BL-solution, the
1-rarefaction wave, the viscous 2-contact wave, and the 3-rarefaction wave for the inflow problem on
the micropolar fluid model (1.14) is time-asymptotically stable, we firstly review some known results
about Navier-Stokes system in [32] which will be used repeatedly in this paper.

For any given right state (vy, u4,04), we can define wave curves (BL-solution curve, 1-rarefaction
wave curve, viscous 2-contact wave curve and 3-rarefaction wave curve) in terms of (v, u,8) with v > 0
and 6 > 0 in the phase space as follows:

* Transonic boundary layer curve:

BL(v4,uy,01) = {(U,Uﬁ) ERy xRxRy | 2= —0_ =T (u0) ¢ 2(U+79+)}7
() V4

where (vy,uy,04) € Tf s = {(u,0)|u = /R70 > 0} is the transonic region defined in Section 2.1
with positive gas velocity and ¥(uy,64) is the trajectory at the point (u,6;) defined in Case II of
Proposition 2.1 below.

* Contact wave curve:
CD(vy,uq,04) = {(Uvuaa) eERL xR xRy ‘ P=p4, u=uq, vF U+},

RO,
V4 :
* j-rarefaction wave curve (i=1,3):

where p; =

Ri(’l}+,u+,9+) = {(U,U,a) € R+ x R x R+

v
s(v,0) =s4, u=uy 7/ )\i(z,s+)dz},

vy
and \; = A\;(v, s) (i=1, 3) is respectively the first and third characteristic speed given in (2.3).

In this paper, we expect to prove that if the left state (v_,u_,0_) € BL—R1—CD—R3(v4,u,04),
then there exist a unique state (v.,us,0.) € T}, and a unique state (v, um, Om) and (v*, u*, 6%)
such that (v_,u_,0_) € BL(vs, us, 04), (Vs, Us, 0:) € R1 (U, Um, Om), (Um, Um, Om) € CD(v*,u*,0%),
and (v*,u*,0*) € R3(v4,uy, 64 ) and the superposition of the BL-solution, 1-rarefaction wave, viscous
2-contact wave and 3-rarefaction wave for the inflow problem on the micropolar fluid model (1.14) is
asymptotically stable provided that the wave strength 6 =| (vy —v_,us —u_,04 — 6_) | is suitably
small and the conditions in Theorem 2.1 hold.

2.1 BL-solutions

The characteristic speeds of the hyperbolic part of (2.1) are

M=y /22 =0, A =4/2L (2.3)
v v

The first and the third characteristic field is genuinely nonlinear, which may have nonlinear waves,

shock wave and rarefaction wave, while the second characteristic field is linearly degenerate, where

contact discontinuity may occur. See [34].

The sound speed C(v,0) and the Mach number M (v, u, #) are defined by

va_v\ﬁ NI



and ]
u
M(v,u,l) = —.
(w0 = 5
Let Cy = C(v4,04) = /Ry0; and M, = % be the sound speed and the Mach number at the
far field © = 400, respectively. The phase plane Ry x R x Ry of (v, u,8) can be divided into three
subsets:
Qoup :={(v,u,0) e Ry xRxRy; M(v,u,0) <1},
Cirans = {(v,u,0) e Ry xR xRy; M(v,u,0) =1},
Qouper = {(v,u,0) e Ry xRxRy; M(v,u,0) > 1},

where Qgup, I'irans and Qgyper are called the subsonic, transonic and supersonic regions, respectively.

If we add the alternative condition v > 0 or u < 0, then we have six connected subsets Q;tub, I‘ti,,(mS
and QF, .
When (v_,u_,0_) € T}, UQL,, we have A\j(v_,0_) < o_ < 0, hence the existence of the

traveling wave solution

{(VB,UB,eB)@ E=x—0_t,

(VBvUngB)(O) = (U—’u—’e—)v (VB7UBv®B)(+OO) = (’L)+,U+,0+). (24)

to (2.1) or the stationary solution (BL-solution) to (2.2) is expected. From (2.4), BL-solution
(VB UB,08)(¢) satisfies the following ODE system:

—0_0VP - 9:UP =0, ¢>0,

B ) f > 3

—0_0¢ (7_1@ + 5 + 0¢(PPU”) = puoe VB + KO¢ VB ) £>0,

(VB’UBv(aB)(O) = (U,,U,,Q,), (VB,UB’®B>(+OO> = (U+,U+,9+),

where PP = p(VB 08) = %@BB. Integrating the system (2.5), over (§,400), and then taking £ = 0

in the resulting equality, it is easy to get
o =——=—"F=——. (2.6)

Then the existence and uniqueness for the ODE system (2.5) are given as follows. For later use,
we only list some useful properties of solutions for (2.5).

Proposition 2.1. (See [31].) Assume that vy >0, u— >0, 0+ > 0 and define 6% = |(uy —u_, 04 —
0_)|. If uy <0, then there is no solution to (2.5). If uy > 0, then there exists a suitable small
constant 6y > 0 such that if 0 < 68 < g, then note the following cases.

Case I. Supersonic case: My > 1. Then there is no solution to (2.5).

Case II. Transonic case: My = 1. Then there exists a unique trajectory 3 tangent to the line

puy (UP —uy) = k(y = 1)(0F —01) =0

at the point (uy,0.). For each (u_,0_) € S(uy,0y), there exists a unique solution (UB,08) satis-
fying
uf >0, ©F>0,
and
dn
dgr

(5B)n+1

(UB —uy,08 -0, <C n=0,1,2,.... (2.7)



Case III. Subsonic case: My < 1. Then there exists a center-stable manifold M tangent to the
line
B B _
(14 agcouy )(U” —uy) —a2(0” —04)=0
on the opposite directions at the point (uy,04), where ay and ¢y are some positive constants, see [31]
for their definitions. Only when (u_,0_) € M(uy,0,), does there exist a unique solution (UZ,08) C
M(uy,04) satisfying
dn

@(UB—U+79B—9+) <CsBem*, n=0,1,2,.... (2.8)

2.2 Viscous contact wave

If (v_,u_,0_) € CD(vy,uq,04), ie.,
U— = Uy, P— =D+, (29)
then the following Riemann problem of the Euler system

0w —0u=0, t>0, z€R,

Ou+0,p=0, t>0, x€R,

2

ﬁt(e+%)+8z(pu) =0, t>0, z€eR, (2.10)

(v, u,0)(x,0) = {

(U—au—79—)7 I<O7

(’U+,U+,0+), T >07
admits a single contact discontinuity solution
(v_,u_,0_), <0, t>0,
(v,u,0) (z,t) = (2.11)

(4 ug,0y), >0, t>0.

From [11], we know that the viscous version of the above contact discontinuity, called viscous contact
wave (VCD, Uucb, @CD) (z,t), could be defined by

@CD ot :@Sim €T ,
(@.1) = 05 ()
ROCP (. ¢

P+
(v =1) 2:0P(a,1)
Ry 0P (x,t) ’

UL (2,t) = uy + —

where ©%™(n) (n = \/%) is the unique self-similar solution of the nonlinear diffusion equation

k(y—1)ps 0.0
= == . .1
010 72y O0x 5 ) O(xo00,t) = 04 (2.13)

Thus the viscous contact wave defined in (2.13) satisfies the following property:

(1+1)2 20D | + (1 +1) [920°P| + (1 + )% |0,0°P| + |0°P — 4| —0(1)6Pe BT as 2 — +oo,
(2.14)



where 6P = |0, — 0_| is the amplitude of the viscous contact wave and ¢y is some positive constant.
Note that & = x — o_t, then the viscous contact wave (VCD, Uucp, @CD) (&,t) satisfies

WP —g_0veP — .U =,

) CD ) CD ) PCD = ud 8§UCD A

WUTT = 00U +0¢P77 = pd | ~7op | +Qu, (2.15)
R K) UCD 2 b @CD _

——7(0:0%7 —0_8:6°7) + PEPRUP = #“}W) + K <f/cp> o

where PCP .= p(VEP QD) = RVGCCDD and the error terms Q1, Qs are given by

8§UCD

Ql :E)tUCD — O'_agUCD - /,&85 (‘/C’D

) =0(1) (10:0°P > + |920°P| + |0:0°P|[9:0°P])

3 coléto_v)?

=0(1)6“P(1 + 1) 2e W as [€+o_t| = 4oo,

(2.16)
_ ) UCD 2
Q2 =- Ni( £VCD s - O(1) (|0:0°P|* + |020°"?)
co(éto_t)2
=0(1)6°P(1 +1t)" 2%~ 5, as |E+o_t] = +oo. (2.17)

2.3 Rarefaction wave

If (v_,u_,0_) € Ri(vy,uy,0,)(i = 1,3), then there exists a i-rarefaction wave (v",u", 67) (¥) which
is the global (in time) weak solution of the following Riemann problem

Ow—0u=0, t>0, z€R,

O+ Opp(v,0) =0, t>0, x€R,

o 1@9 +p(v,0)0,u=0, t>0, z€R, (2.18)

(v,u,0)(z,0) = {

(U_,U_,e_)7 $<0,

(v, uy,04), x> 0.

In order to construct the smooth approximated rarefaction wave, we consider the Riemann problem
on the Burgers equation

3tﬁ) + u?am’u? == 0,

(2,0 = wo(x) = {w, z <0, (2.19)

wg, >0

for w_ < wy. It is well-known that the Riemann problem (2.19) admits a continuous weak solution
w(7) connecting w_ and w, taking the form of

w_, < w-_t,
x
w (7> = . w_t <z < wqt, (2.20)
Wy, wit < T
Moreover, w(%) is approximated by a smooth function w(x,t) satisfying

Ow + woyw = 0,

w-, z <0, (2.21)
w(z,0) = wo(x) = ro
wo + Cy(wy —w_) [ yle ¥dy, x>0,
0



o0
where ¢ > 14 is a constant, C, is a constant such that Cq/ yle™Ydy = 1. The solution to the
0

Burgers equation can be expressed by

w(z, t) = wo(zo(z,t)), x = xo(x,t) + wo(zo(2,1))t.

And from [32] we know for any positive constant og > 0 and for z > 0

| w(z,t) —wy | =| wolxo(z,t)) —wy |
—Cylws—w) [ yreay
a:ooga:,t)
= Oq(w+ - w—)/ yqeiydy (222)

z—wo (xo(z,t))t

< Cqlwy — wf)/ yle Vdy

rT—w4t

< Cylwy —w_)e % x> (200 + w4 )t.

Then the solution w(x,t) of the Burgers equation (2.21) have the following properties:

Lemma 2.1. Let 0 < w_ < wy, 0" := wy — w_, then Burgers equation (2.21) has a unique smooth
solution w(x,t) which satisfies the following properties:

(1) w- <w(z,t) <wy, Op,w >0 forx €R and t > 0.

(13) For any p (1 < p < o), there exists a positive constant Cy 4 such that fort >0

||azw(t)||Lp S Cp_’q min{ér, (5T);t_1+;}7

02w (t)]| ,, < Cpqmin{”, (47)7 7 (14 £)""Fa}.
(#i7) When x <w_t, w(z,t) =w_.

(i) i sup [u(e, 1) - w(5)| =0.

Thus we construct the smooth approximated rarefaction wave (V% Ui ©Fi) (2,t)(i = 1,3) by

SEi(z,t) = s(VEi(x,t), 0 (2,1)) = 54,

/\z(VR7(x7t)’3+) :w(az,1+t), (223)

V Vi (z,t)
Uli(z,t) = uy —/ Ai(z, s4)dz.

v
Note that £ = x—o_t, then the smoothed i-rarefaction wave (VRi LU @Ri) (&,t)(i = 1,3) defined
above satisfies
O VE — o 0V — 9. UM =0, £€>0,t>0,
U — o 9:UR +9:PR =0, €>0,t>0,

R 2.24
ﬁ(at@& —0_0:0%) + PRig. U =0, ¢>0,t>0, (2:24)
(VRbaUR17®R1)(f:07t) = (/1)77’“7797)7 (VR17URZJ(~)RZ)(§:+OO7I(;) = (U+,u+,9+)7

where PEi .= p(VEi @F) = RV@R?.

Lemma 2.2. Let 6% = |(vy,uy,0,) — (v_,u_,0_)|. Then the smooth approzimate rarefaction wave

(VRi, URi,@Ri) (&, t)(i = 1,3) satisfies the following properties [32]:
(i) OcUR >0 for £ € Ry and t > 0.
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(13) For any 1 < p < +oo0, there exists a constant Cp, , such that fort >0,

g (v, 0™, ©) < Cpgmin{d™, (57)F (141743},

’L"(R+)
108 (VU™ 05| w, ) < Cpgmin{s™, (6%)7 (1 L),
(ti3) For Voo >0, if £ > [—o_ + A (v, 04) + 200](1 + 1), then
| ag{(VRlv UR17®R1) - (1)+,U+,0+,)} |§ C(sRleiUOtan = Oa 172’ .

(i) If E+ ot < A3(v—,0_)(1 +1t), then (Vs Uls ©F) (&t) = (v_,u_,6_).
(v) lim sup ‘(VRi,URi,GRi) (&t) — (v,u,0) (L)‘ =0.

1+t
t—o0 f€R+ +

2.4 Composite waves and main results

Define the composite wave (V,U, ©)(¢,t) by

Vv VB 4V 4 yCD 4 s Vs + Uy + V*
UlEt)=|UP+UR +UP+UR [ (&t) = | we+um+u* |, (2.25)
© 0F 4+ efr 1 P 4 eft 0, +6,, +6*

where (VB ,UB ©8)(£,t) is the transonic BL-solution (Case II) defined in Proposition 2.1 with the
right state (vy,uy,0y) replaced by (vs, us, 0,), (VI UF ©F1)(£,t) is the 1-rarefaction wave defined
in (2.12) with the end states (v_,u_,0_) and (v4, u4, 0 ) replaced by (v, ts, 0,) and (v, U, Om ), TE-
spectively, (VP UCP @¢P)(¢, 1) is the smoothed viscous 2-contact wave defined in (2.23) with the s-
tates (v_,u_,0_) and (vy,uy, 0 ) replaced by (Vpm, Um, 0y,) and (v*, u*, 0%), and (VB URs 0Fs)(¢,¢)
is the 3-rarefaction wave defined in (2.12) with the end states (v_,u_,6_) and (vy,uy,0y) replaced
by (v*,u*,0%) and (vy,us,04).
Now we state the main result of our paper as follows.

Theorem 2.1. For any given [vy,ut,wy,04] with vy > 0, u_ > 0 and 6+ > 0, we suppose that
ug >0, wy =0and (v_,u_,0_) € BL—Ry—CD—R3(vy,us,04). Let [V,U, 0] (§,t) be the composite
wave consisting of the transonic BL-solution, 1-rarefaction wave, the viscous 2-contact wave, and the
3-rarefaction wave defined in (2.25). There exist positive constants 69 > 0 and Cy > 0, such that if

[v0(€) = V(€,0),u0(€) = U(£,0),wo(€) — 0,00(€) — O£, 0)](€) € H'(Ry)

and the wave strength § =| (v —v_,uy —u_,04 —0_) | satisfy

[00(€) = V(€,0),(€) — U (€, 0), wo(€) — 0,60(&) — O, 0I(E) 3z, + 6 < b0, (2.26)

then the micropolar fluid model to the inflow problem (1.12) or to the half-space problem (1.14) admits
a unique global solution [v,u,w,0](&,t) satisfying

[v—V,u—U,w,0—06] e C(0,+o00; H(R,))

and )
sup [[[v — V,u — U,w, 0 — O]|[ 19 100y < Codg - (2.27)

t>0
Moreover, it holds that

lim sup |[v—V,u—U,w,0 —06]| =0. (2.28)

t——+oo zeRy

Remark 2.1. In Theorem 2.1, we assume that 6 =| (vy —v_,uy —u_,04 —0_) | is suitably small.
This assumption is equivalent to one that the amplitudes of the four waves are all suitably small.

Remark 2.2. This model can also be generalized to general gases.
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3 Global existence and large time behavior
3.1 Wave interaction estimates

From (2.5), (2.15), (2.24) and (2.25), by a careful calculation, we have
OV —0_0:V—-0:U=0, £>0,t>0,

OU —0_0:U + 0¢ P = po: ((95‘}]) +Q1, £€>0,t>0,
(0:U)? 20
v + k0 v +Qa, £€>0,t>0,
(V,U,0)(¢=0,t) = (vo + VP —v,u_ + UL —up, 0 +0%P —0,,)(€ =0,1),
(‘/a U7@)(§ = +OO,t) = (U+7u+79+)a

9:0 (3.1)

where P :=p(V,0) = R—‘? and the error terms @)1, Q2 are given by

0eU o:UB o:UCP -
Q1:85(P—PB—PR1—PCD—PRS)—M[ag (f)—85< 3 >—(9§< ;CD )} +Q1,

v VE

Q2 = (POU — PPo.UP — Pfo UM — PCPoUYP — PR3g UMs)
O:U)?  (0UP)2 (0:UCP)? 90 9:0° 9:0°P -
_”[(E)_(f ) (O )}_K[&(f)_a&(i >_3§(£ )]+Q2,

Vv VB VCD Vv VB VCD

where Q1 and Qs are the error terms defined in (2.16) and (2.17) to the viscous contact wave.
In order to control the interaction terms coming from different wave patterns, we give the following
lemma which will be important in the energy estimate.

Lemma 3.1. (wave interaction estimates)[32].

13
6

/R | VEWR =) |+ VE(VE —v,) | de = 0(1)85 (1 +1)7 7,
.
a VEWVOP — ) |+ | VEP(VE —v,) | dE = O(1)3(1+ 1)1,
.
| VW =) |+ VW -0 g = 0mat 1+ 07E,
.
| VEPWVI —v,) |+ | VB (VEP —0y) | dE = O(1)de,
.
| IVEPQ =) |4 | VIO~ g = o
.
|V =) [+ VR =0, | de = 0,
.
/ IVEVEP g = 00+ / VS g = 0ms 07,
/ IV de = 0t / IVEPVE | dg = 0ae,

/R | VEPVEs | dg = O(1)de, /R | VEVEs | dg = O(1)de .
.

+

3.2 Reformulation of the problem

We first define the perturbation as

[¢7¢7w7<](£7t) = [U—MU—U,W—O,G—@] (é-vt)

12



Then from (2.2) and (3.1), it is easy to obtain that [y, ¥, w, (](§,t) satisfies

8,5(,0—0765(,0—851/):0, £E>0,t>0,

Oeu _ 09U

8tw—08§¢+85(p—P):u85(U )—Ql, £E>0,t>0,

v
85w
Ow — 0_0cw + Avw = A0k —~ ) E>0,t>0,
R ¢ 0:O
——7 (0 = 7-0eQ) + (pOeu — POLU) = rde <i — ;) (3.2)
2 2 2
+p <(85:) - (afg) ) + (85;") +ww? —Qa, €>0,t>0,

[¢7w7wad(§70) = [80071/)0,w07C0](§)
= [UO(g) - V(f,O),Uo(f) - U(f,()),u)o(f) - 0790(5) - @(570)] - (0,0,0,0), as 5 — +00,
(o, 1, w,(](0,t) = (v = V,u_ —U,0,0_ — ©)(0,1).

The key to the proof of the global existence part of Theorem 2.1 is to derive the uniform a priori
estimates of solutions to the half-space problem (3.2). Our a priori assumption is defined as follows:

sup “[9071/)7‘*}74](7—)”H1(]R+) < e, (33)
0<r<t

where 1 is a small positive constant.

Proposition 3.1. (A priori estimates). Assume all the conditions listed in Theorem 2.1 hold. Let
[o, 1, w,C](&,t) be a solution to the half-space problem (3.2) on 0 <t < T for some positive constant
T. There are constants 5o > 0 and C > 0, such that if [p, ¥, w,¢] € C(0,T; H'(R,)) and

10, %o, w0, G0l (€)1 711 k., + 8 < Do, (34)

then for all t € [0,T)], the solution [p,¥,w,C](,t) satisfies

t
2 2 2 2
sl e, + / (16l + 19¢ [ ¢ sy + Iz, ) d7

<C|lpo, o, w0, ol =, ) + €3 (3.5)

From a priori assumption (3.3), it is easy to get
e, v, w, (o < V2e1, (3.6)
where the following Sobolev inequality
1R(E) e < V2|[R|2(|he||V/? for h(€) € H' (Ry) (3.7)
is used.
3.3 Energy estimates

Lemma 3.2. (boundary estimates)[31]. There exists a positive constant C such that for any t > 0,

/O (.10, 0)(0,7)|2dr < C6, (3.8)

/0 (190t | + | CO:C )(0, 7)dr < 06/0 (Il Oc[w, L 1I* + 1l [, ¢] |I*)dr + C, (3.9)
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t t t
/ (| 0o | +(9e)?)(0,7)dr < C3 + v/ | 2 |2 dr + cu/ | Dep || dr, (3.10)
0 0 0
t t t
/ (| -0t | +(910)?)(0, 7)dr < CF + u/ | 0z ||” dr + C,,/ | D¢t |12 dr, (3.11)
0 0 0

t t t
[ Gococ) voewponar<cso [ Parvc, [ o IPan @12
0 0 0

where v is a positive small constant to be determined later, and C, is a positive constant depending
on v.

Lemma 3.3. Assume the conditions in Proposition 3.1 hold, then we have the following energy esti-
mate for t € [0,T],

t t
s Gl + / (196 [,¢, ] I + ) dr + / I\ 10eURs, 0U s, 9P [, ) P
t
<C (|, Gos w0 wol | + C6% + €% / locpl2dr
0

t _1 _Co(§+u_7)2 9 9
+Co / / (14 7) e S (02 4 ()dedr. (3.13)
o Jry

Proof. Multiplying (3.2),, (3.2),, (3.2); and (3.2), by —RO© (% — %) ¥, wand § 5> respectively, then
taking the summation of the resulting equations, we obtain

1 RO 2 00)? O
0, <2¢2+R®<I> (%) 7_1<1><@>+2>+a§Hl+,J ( :’) i3 (0c0) + Avw® + — (agw)

P (9:UM™ + 9:UMs + 9.UP) [<I> (ig) + <1>( )} Qs — Q1Y — gQ 16 [@:) +vw2} :

(3.14)
where
P(s)=s—1—1Ins,
2
Hi=-0_ (1¢2+R@<I> (%) +7R7_@1<I> (®> +2> +(p—P)y
(95’& 85U C 859 856 wagw
‘“(U )“" 9<v_v) A=
B c A% v
Qs = — POUCP [<I> (1}@) D (V)}
(agU) 559 v S}
e () e [o-v (7)o (5)
O¢0 DeU)? d:U
+ nigagu “p 5<a§@ — C‘” 7 (0:0)% + LV Aerp — (;av) o¢ + 2u5—9<ag¢.
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Then integrating the resulting identity (3.14) over Ry x [0,t], we thus arrive at

/R+(w;+R@q>(V)+R®1 ( )+>d§+ //]R+ a“/’ DY) dedr + w // fof dedr
+/t/R [AUMQ‘*‘I:}(@&W)Q} dng—'—/o/R P(@gURl +85UR3+85UB) {(I) (f}‘é)—i—'y@ (V)] dédr
:/R+ (f+R@<I>(V)+R_®1<I> (g) +w;> (§,O)d§+/0tH1(0,T)dT+/0t | Qucdr

[ B ¢ ' <[<agw>2 }
/0 [ Qupacar /0 [ Gauacir /0 /}w O 4 12 agar.

(3.15)
From the definition of ®(-) and the smallness of perturbation solutions [¢, 1, w, ], we have
P? RO 0 w? 2 2 2 2
ke o~ )+< =00 1
2+R@¢>(V)+7_1 5 )+ =0+t +uw?+ (), (3.16)
A%
1) (? + ¢?). .
<I><v®>+ 1@ () = 0()(@* + ¢ (3.17)
Since (r“)gUR1 >0, 85UR3 >0, 35UB > 0, we have
t oV v
P (0:UM +9.U" 4+ 9:UP) |® | — O ()| ded
;[ ptoar soumvown s (G + 00 ()] acr
t
>c / (90U 40U + 0:UP) (9 + (?)dédr, (3.18)
Ry

where we have used (3.17).

By applying the a priori assumption (3.3), (3.2)4, (2.16), (2.17), Cauchy-Schwarz’s inequality with
0<v<1,(3.16), (3.17), (3.6), Sobolev’s inequality (3.7) and Lemma 3.2, we obtain the estimates for
the right hand side of (3.15) as follows:

2 (G 0
/R+ (”2 +ROw () ¢ %q» (@) T ) (£,0)d¢ < clllgo, o, w0, Gl (3.19)
/0 H,(0,7)dr < v / (I Bel <] I + 1| 920, ¢] |1P)dr + G, (3.20)

t t t
[ 5[ ] acir < € [ 1cletlogal? + holPhar < Cev [ (1ocol? + )i
(3.21)
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and

/t . QsdédT

<y/ 10¢ [, C]||2dT + (C,, + O) // (0207, (9:07)%, (0:VP)?, (0eUP)?)| (¢* + ¢P)dédr

I

+(C, +O) //]R > (0207, (9:0%)%, (9: V)2, (0eUT)?)| (92 + ¢*)dEdr

+4=1,3

P

t t
200CD CD\2 2 2 2 2
+(C”+C)/o /]R+ [(020°7, (0:0°P))| (¢* +¢ )d5d7+0/0 /]R+ |Q2|(¢” + ¢*)d&dr .

13 I4
For I;, we have

4

h <C/ /R+( 0, O12(0,7) + €[|0e [0, <11 | TEYRL )dde

<C5/|<P, OTdT+C§// 10¢ [, ¢]||Pdedr
<C6+Co / 10eli, C)|[2dr,
0

where we have used (2.7), (3.8) and the fact that

¢
[F(O)] = |f(0)+/0 Oefdy| < |£(0)] + V/EOef ).

From Lemma 2.2, we have

Iy < / Y (I0elvi, U @112 + 920 |1 ) N, JlIF~dr

1=1,3

t
<ost [+ R ile.llode.dlar < 05t + st [ o, dliPar
0 0

From the properties of the viscous 2-contact wave, we can get

co(é+o_7)?

t
fo = 05/ / (L+7)"lem ™ 7 (9 + (P)dedr.
0 JR,
Similar to the estimates of Iy , we have
1 1 t
I < Cst 408t [ ol Par,
0

Thus substituting (3.23)-(3.27) into (3.22), we have

t t
/ Qudédr < [v+C, +05%]/ 19c 0, b, ]| 2dr + C5%
o Jr, 0

co(6+o_7)?2

+(C”+C>5/o /R (14 1)l 25 (P 4 )dedr.
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Now we estimate the last two terms as follows:

t t
/ Q1ydédr SC’/ 10| Lo |Q1 || 2 dT
0 JRy 0
t
<C [ o1 1oevl3at 1+ 0 Har
0
t
<cst+cot [ |oevlfar, 529
0
and
t C ¢
/ Qggdde gc/ ¢l Lo |Q2 || L2 dT
0 JRy o
t
<C [ el 1oeclBat 0+t ar
0
t
0

Substituting the above estimates into (3.15), letting v, and § be suitably small, we obtain (3.13)
and thus complete the proof of Lemma 3.3. O

Lemma 3.4. Assume the conditions in Proposition 3.1 hold, then we have the following energy esti-
mate for t € [0,T],

t
101 +/0 19cpl*dr < C [0, Gos wollI* + CllpollFs + C5%

_cg(gto_m)?

t t
+v / |02 |2 + C6 / / e e 0 i
(3.31)

Proof. We first differentiate (3.2), with respect to { and then obtain
00 p — 0_65230 — 8?1& =0. (3.32)

Then multiplying (3.2), and (3.32) by —vd¢p and udeyp, respectively, and integrating the resulting
equalities over Ry x [0,¢], one has

t t
—/ Opv0epdédT + o / / Ocpv0¢pd€dr
0 JR, 0 JR,
t t
— / O¢ (p — P) v0¢pdédr + u/ / 321/)85@615(17
0 JR, 0 JR,
=— ,u/ D¢ (v 1) Oguvdg pdédr +/ / u@?U(V - ;)v@gpdde
0 Jr,

0o Jry
t t
+/ / uﬁgUﬁg(Vfl)vﬁgpddeJr/ Q1v0spdédr, (3.33)
0o Jry 0o JRry

and

t
,u/ / (010 — ou@?cp — 8521/)) Ogpdédr = 0. (3.34)
0o JRry
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The summation of (3.33) and (3.34) further implies

¢
_ Jad 2 2
. Yoo pd€ + 5 /R+ (Oep) df—i—/o /]R+ P(O¢p)°dédr

t t
= [ vt + 5 [ @een@ras 15 [ aeero.nir- [ ponoepair

Is

—/Ot wvatagwdédﬂr/ / ROg [ ]andde—/ /]R+ R0 [ ° } vOgpdEdr

I7

Is

Ig 19

t ¢ t
—a,/ / O0c v pd€dr —u/ 8§(v_1)85u1)85g0d£d7+/ / 10U (V™ woe pdédr
0o Jry 0o Jry 0o Jry

I,

Io
+/ / uagU(— — f)vaggodde—l—/ Q1v0:pdédr .
0 JR, Vo 0 JRy

I3

Ii2

Iy

(3.35)

By applying the a priori assumption (3.3), Cauchy-Schwarz’s inequality with 0 < v < 1, Sobolev’s
inequality (3.7) and Lemma 3.2, we turn to estimate I;(5 <14 < 14) as follows

t t
L) < v / |020|Pdr + C, / eyl Pdr + O,
0 0

t t
1| <C / / e | dedr + C / / 00 Udep| dedr
o Jry o Jry

t t
2
+C/0 /R+ |1(Bep) |d§d7+0/0 /R+ |10V D¢ p| dEdT

t
<C, 5% +C(sl+u+5%)/ 10e [, @] ||2dr
0
t co(&+o_7)2
+Cy5/ / (L+7)" e w7 yPdédr,
R+
|17 </ |(pv0e) (0, 7) + o— (Yvoep)(0, T \dTJrC/ / (0e) dng

déd déd
+c/0 A+|wagvag[w,w}| “*O/O /R+|awagw| cdr

t t
<G5t v / 10c, 0, el [2dr + (C, + C) / e |2dr
0 0

t co(eto_m)2
- C’,,é/ / (1+7)"tem ™ 7 ¢%dedr,
o Jry

t t t
[Ts] + o] + [Tio] <(v + Ce) / 10egl?dr + C, / l0cl¢. vl 2dr + C, / / (% + (*)(0:0)2dédr
0 0 o Jr,
t t
<C8% + v+ Cey + CB4) / locle,IPdr +C, [ 0dc. vlPdr
0

_co(Eto_ )2
+ 05/ / (147 T (9% 4 ¢P)dedr,
Ry
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t t
[I11 + Ti2 + L3 SC// (8£<P)2|85¢|d§d7+0// (O¢0)*|0cUdedr
0o Jry o Jr,
t t
e [ [ (oevo) + opuligoecldsar + [ [ locvacuocedear
0o Jr, o Jr,

t
<Cler+8%) [ 10elu,0c0.¢l|Pdr +C,
0

and
t t t
Ll < v / |egldr + C, / 1Qu|2dr < v / |0eg]2dr + ..
0 0 0

Substituting the above estimates for I; (5 < i < 14) and (3.13) into (3.35), letting v, ¢ and €1 be

suitably small, and using Cauchy-Schwarz’s inequality, we obtain (3.31). Thus we complete the proof

of Lemma 3.4. O

Lemma 3.5. Assume the conditions in Proposition 3.1 hold, then we have the following energy esti-

mate for t € [0,T],
t
10 [, w, ]I +/O 1023, w, ¢Jl1%dr < Clllo, Yo, Cos woll 1 g, + C%

+05// (14 7) e S (2 4 9% + P)dedr.  (3.36)
o JRr,

Proof. Multiplying (3.2), by —8521/J7 and integrating the resulting equality over Ry x [0, ], one has

1 ) b (92)?
2/R+(65w) d€+u/0 /R dédr

1 t o [t
:2/Dg+(a£w())2d£_A (ag¢87w)(077)dT+7A (85,(/))2(0’7_)(17_

Iis Iis

t t 8 a
+ / O¢ (p — P) Opdedr +p / / Lﬁ”agwdgdr
0 JRry o Jr, VU

Iis

I
Pr 0oV ! U U t
+“// 5iifafzwd’f‘”‘“// % (i—é)afwdﬁdﬂr// Q102pdedr . (3.37)
0 JR, o Jr, o Je,
I

19 Iz Iz

We now turn to compute I; (15 < i < 21) term by term. For brevity, we directly give the following

computations:

t t
Lis| + [Te| < v / |02 |2dr + C, / ey |dr + O,
0 0

t t
L] <C /0 /R o6l glog i + € /0 /R I ploce, Viogs| dsds
1 t 1 t
<O5% 1 (Cey +v) / 10clip, Betl|Pdr + (C, + C64) / l0elc, |2
0 0

t co(é+o_ )2
+05// (14 7)o S (2 1 ()dedr,
0 JR,
t
| + || < C(6% 4 1) / 0e 0, Bev) |2,
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¢ t
|120\§C// \agwagw\dfdﬁtC// |0:U0e 00| dedr
0 Jr, 0 JR,

t
<5t + ot / 10¢ 0, D] |2dr,
0

and
t t t

| < v / |02 |2dr + C, / 1Qu|2dr < v / |02 |2dr + C,6.
0 0 0

Plug the above estimations for I; (15 < i < 21) into (3.37), and recall (3.31) and (3.13), then

choose § > 0 and v > 0 suitably small, to derive
t ) )
101 +/0 102y )12 dr < C'||[¢o,wolll” + Cll[wo, volllzp e, ) + C%

¢ 1 _cgléto_m)? 2 2 2
4+ 06 / / (14+7)Le 255 (02 4 0% + ()dedr. (3.38)
Ry

Multiplying (3.2), by —852w7 and integrating the resulting equality over Ry X [0, ], we obtain

1/R (35w)2d§+A/t/R @dfd’r |”‘|/ (Dew)2(0,7)d

2
:% / (ewo)2de +A / / afwaf‘paQ dedr +A / / af“’aﬁvﬁ%udfdwfl / / vwdgwddr,

Ioy

Iz3

(3.39)

where we have used o_ < 0 to deal with the boundary term.
To obtain the estimates for I; (22 < i < 24), we use Cauchy-Schwarz’s inequality with 0 < v < 1,

Sobolev’s inequlity (3.7) and the a priori assumption (3.3) to obtain
[a2| + [T23] + | I24]
¢ , ) ¢ , to
<0 [ ol el 0Fwllar + (3% + ) [ o deslPar +C, [ olPar

t t t
SC/O (el + loZw )l l|0fw|dr + C (7 +V)/O ||3s[w735w]ll2dT+Cu/O leol*dr

t t
<Cle1+v—+ 5%)/ [|0¢[w, Oew]||PdT + C’,,/ l|w||d.
0 0
Plug the above estimations into (3.39), and recall (3.13), (3.31), (3.38), then choose €1 > 0, § > 0

and v > 0 suitably small, to derive

t
10w +A 102w]*dr < C 1 Col* + Clllwo, o, wol 1 (g, ) + C6%

t 1 co(e+o_7)2 9 9 9
+Cs / /R (14 7) e T (02 4 4 + (2)dedr. (3.40)
+

Multiplying (3.2), by —92¢, almost similar to the estimate of ||D¢1)[|?(¢), we can obtain

t
10eC]® + / 102¢12dr < [0, o, wor Coll%1 g, + C%

' IR e L S S
+05/ / (L+7) e 2T (2 19?4 (Odedr. (341)
R

Summing up (3.41), (3.40) and (3.38), we get the desired estimate (3.36). Thus we complete the proof
O

of Lemma 3.5.
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Proof of Proposition 3.1. Now, we are ready to prove Proposition 3.1. Combining Lemma 3.3-3.5 with
Lemma 4.2 in the appendix, and if the wave strength § and the constants £; are small enough, then
for all ¢ € [0,T], we have

t
e, 0, O3z, + / (106l + 10 19, U 3 gy + I l3raqey ) )
<C|l[o, %0, wo, Col 31 (g, ) + CO%, (3.42)
which gives desired estimate (3.5). O

Proof of Theorem 2.1. We are now in a position to complete the proof of Theorem 2.1. In view of the
energy estimates obtained in Proposition 3.1, one sees that

sup iy e, sy = Cllivo, Yo, wo, Golllin e + C3° (3.43)

Notice that § are parameters independent of ;. By letting § be small enough, the global existence of
solution of the half-space problem (3.2) then follows from the standard continuation argument based
on the local existence and the a priori estimate (3.5). Moreover, (3.43) and (2.26) imply (2.27). Our
intention next is to prove the large time behavior as (2.28). For this, we first justify the following
limits:

tllinoo ”aﬁ[@vwvwvd(t)”iﬂ =0. (3.44)

To prove (3.44), we get from (3.2), (3.5), (2.14), Lemma 2.2 and (2.8) that

+o0 d 9 +o0o
| oo i e =2 [ @i0elor 6Ol o D
0 0

+oo
<c+C / 10 [, .0, €. B [, Gl e < +oo. (345

Consequently, (3.45) together with (3.5) gives (3.44). Then (2.28) follows from (3.44) and Sobolev’s
inequality (3.7). This ends the proof of Theorem 2.1.

O
4 Appendix

In this appendix, we will give some basic results used in the paper. Lemma 4.1 and Lemma 4.2 are
borrowed from [10] and [31], and we omit some details here.

Lemma 4.1. Suppose that h(§,t) satisfies
h e L*>(0,T; L*(Ry)), 0ch € L*(0,T; LA(Ry)), 0O:h—o_0ch € L*(0,T; H*(Ry)),

then the following estimate holds:

t (x(£+077)2 t t
// 1+ 1)l "S5 R2agar gCa[h(§,0)||2+/ hQ(O,T)d7-+/ 19ch|2dr
o Jry 0 0

t
+/ <8th—0'_agh,hg2>H1><H1dT:|, (4.1)
0

where oo
g6 =-+nt [
13

and o > 0 is the constant to be determined later.
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_co(éto_m)?

¢
We now give the following estimates concerning the delicate term / / (1471)" e T (VL
0o JRy
? 4 ¢?)dédr by using Lemma 4.1.

Lemma 4.2. Under the conditions of Proposition 3.1, then there exists a constant C' > 0 such that
' B (G P e ST ' 2 2
| [ aenie S ¢ v utidear <C 0 [ (10 b CallP + ) dr
o JRy 0

t
e / 102, P dr (4.2)

provided that the wave strength § is small enough.
Proof. For any v > 0, the proof of inequality (4.2) consists of the following two parts:

_cg(eto_m)?

t
/0 /R [(R¢ — Pp)® + 92 (1 + 1) le™™ =7 dédr

_cgléto_m)?

t
§c+caé// P+ +7) e T dedr
0 JRy

t t
e / 10k, 6, & WP + w]]?) dr + v / 102k, |12, (4.3)
0 0

and

_ co(to_7)2

/O t / (RC+ (v — )Pg)? (14 7)o~ "5 dedr

_ co(é+o_m)?

t
§C+05%// P+ )1 +7) e T dédr
0o JR,

t t
+Cy [ (oo C.wll? + i) dr +v [ 02| (1.4
0 0

In fact, multiplying inequality (4.3) by v — 1 and adding the resulting inequality to (4.4) and taking
d suitably small thus implies (4.2) easily.
We firstly prove (4.3). Define

+oo o2
n(f,t):—(l-l—t)*l/ e~ ¥t dx.
E+o_t
We rewrite (3.2), as follows:
R(—-P 0 0:U
Ot~ 0-0c0) + 0 (F72 ) = o (% - 2 — (45)
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Multiplying (4.5) by (R¢ — Py) vn, integrating the resulting equation over Ry x [0, ¢] leads to

t
3| [ =Py oacar

S %/O'[(Rg - P(p)2n](077')d7‘+u/0/ [(af}u - 857(]) (R¢ — Po) vn] (0,7)dr

+ o:/o [ (RC — Pyp) vn] (0, 7)dT + 1/) (RC — Pyp) vnd§ — / Yo (RCo — P(€,0)¢0) von(§,0)dE

/ [0 (RC — Py) — 00 (RC — Pyp)] rundédr — / VARG P) (00— 0O
R

K1

/ & (RC — Pi) v(@rm — o_en)dedr — / /R 0V 22N (e py? nagar

Ry
+;L/ /R+ ( U 3§U> O¢ [(R¢ — Py) vn] dédr +/O - Q1 (RC — Py) vndédr.

For the delicate term Ky, it can be rewritten as
t
- / (RO, — Ro_0¢C) — (0P — 0_0cP)p — P(dhp — o_0co)] ondédr
0 JR
I ) 1/t 1/
= _ 7/ ('vam/)Z) (0, 7)dr — f/ / ’va@gm/JQdde — f/ / Vag(Pv)mfdng
2 Jo 2J)o Jr, 2J)o Jr,

t t 90 0:0
+ /0 . (0:P — 00 P)pyrundédr — (v — 1)/O /]R+ {— (p — P)Ocu+ ke (i - é)

+M ((85u)2 _ (85[])2) n (851(:1)2 +’UW2 _ Q2:| wvndng

) Vv
t P1/0:0 0.0
:_%/0 (’YP’U’ITL/J)(O T)dT + k(Y 1)/ {(Z 5) z/wn] (0, 7)dr
- = Poden?dedr — = Oc (Pv)np?dédr P—0_0:P dedr
//ﬂhﬂ’vgmﬁf //Rngvnwé +//  P)unde
U )
S O A e o (2 IR s

C L0 90
k(Y — 1)/0 /R+ (U - V) e (Yun)dédr,

where in the second identity we have used (3.2); and (3.2),.

(4.7)

Since
co(E+o_t)2

Oen(§,t) = (1+1)"le”
combining (4.6) and (4.7), we have

e+o_1)2

1t , , L e t
7/ [((R¢C — Pp)” + yPuy?](1+7)""e T dédT = / Hy(0,7)dr + Qs, (4.8)
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where

agu 85U

Ha0,7) = = 51(RC = P n)0.7) 4 | (5 = 262 (g — Py 0.7)

+o [ (RC= Po)nl(0.7) 5 (rPons?) 0.7) + w6y = 1) | (%2 = 2 pun] 0.7,
(4.9)

and
Qs = w(RC Py)vndé — / Yo (R — P(&,0)90) von(€,0)dE — / w (RC — Py) Ogundédr
Oc(V
/ b (RC — Pp) (e — o 0en)dédr — / / wmc Pe)? ndedr
R4 Ry
0, O:U ¢
+M/ / ( v _ % )35 [(R¢ — Py) vn) dde-i—/ Q1 (R¢ — Py) vnd&dr
R, 0 JRy

_1 / /R 0P yRdedr + / / — o_8 P)ppundedr

C(y— 1)/0 /]R+ [(p — P)deu+ p <(af:) - (an)2> + (8’55)2 +ow? — Qs Yundedr

Vv
+r(y — 1)/0 /R (620 - 85‘/6) O¢ (om)dedr.

From Lemma 3.2(boundary estimates), we have

(4.10)

t t
0.y < / 19l, Q17 + 1826, CII)dr + Cu. (4.11)

Note that [|7(-,£)]lsc < C(1 +t)~2 and by applying (2.8), (2.14), Cauchy-Schwarz’s inequality,
Sobolev’s inequality (3.7) and Young’s inequality, we can successfully estimate Q3. Then combining
this with (4.11) and (4.8), we obtain (4.3).

Next we prove inequality (4.4) by using Lemma 4.1. Let h = R( + (v — 1) Py, then from (3.2),
and (3.2),, we have

t
/ <(9th — 0,85h, h92>H*1><H1 dr
0

=—(y-1) /0 /]R<+ (p — P) Ogphgdédr +(v — 1) /O /R+ (0P — 0_0:P) p — (p — P) 9:U] hg*dédr

K2 Ks
—(y—1) /Ot {/{ (aio - 35‘/@) hgz} (0, 7)dr —(v — 1) /Ot /R+ K (85)‘9 - 85‘/@> de(hg?)dedr
Ka Ks
(y—1) /Ot /R+ 7 (wfvu)Q - (35‘?)2) hg*dédr +(y — 1) /Ot /R+ (wi;”)E + vw2) hg?dédr
Ke Kr

t
—(’y—l)/o A Q2hg’dédr .

Ks
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Noticing that ||g(-,t)||p= < C4, we can directly estimate &C;(3 < i < 8). In order to estimate Kz, by
the mass equation (3.2), and p — P = @7 we have

Y[ h—~P
Ke=—(v- 1)/ /R #hﬂ@tw — 0 Ogp)dédr
t h2 2 Ph 2
— -0 [ [ {0 om0 - P00 - 0-04(6)]  deir

2h22 _ Ph2 2 2h22 _ PhQ 2
— - [ P e oy [ PRI (6 oy
+ +

2v v
t 2.9 2 2 t 2 2
—(7—1)0,/ [2h 90 —1Phg"y } (07T)d7—(7—1)/ / WP 0P — o0, P)dcdr
0 2’U 0 Ry 2’U
t Phy? — 2h?
~a-n [ TR oy — o deg)icar
Ry

_op2
v—1) // w 20w — o_0ev)dédr

2
_ _1// 1Pg*¢ 49 "2 (o — o_0ch)dedr.
Ry

(4.12)

Now each term in (4.12) can be estimated directly, and the detailed proof can be seen in [10]. Note

that here we need to compute the boundary terms. Hence after taking o = ¢, estimate (4.4) thus
easily follows from Lemma 4.1 and Lemma 3.2(boundary estimates).

O
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