EXISTENCE OF POSITIVE SOLUTIONS OF SECOND-ORDER
DELAYED DIFFERENTIAL SYSTEM ON INFINITE INTERVAL
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ABSTRACT. The present paper is focused on the analysis on the existence of
positive solutions of a second order differential system with two delays
z] () —a1(t)x1(t) + ma(t) f1(t, x(t),z-(t)) =0, t>0,
zy (t) — az(t)z2(t) + ma(t) f2(t, z(t), 2-(t)) =0, t >0,
z1(t) =0, —71 <t<0, and lim¢soo z1(t) =
z2(t) =0, —7m2 <t<0, and lim¢—co 22(t) =

by using two well-known fixed point theorems.

1. Introduction

In this paper, we study the existence of positive solutions for the second-order
two-delay differential system on the positive half line:

o (t) — a1 (t) 1 (t) +ma(t) fr(t, 2(t), 2, (1)) =0, ¢ >0,
(1.1) 23 () — az(t)z2(t) + ma(t) f2(t, (1), 2, (1)) = 0 t>0,
’ 21(t) =0, —1 <t<0, and lim;_, x1(t) =
29(t) =0, —1p <t <0, and lim; o x2(t) =

where z(t) = (z1(t),22(t)), z-(t) = (z1(t — 71),22(t — 72))7 a; : RT — RT is
continuous, m;(t) € LY(R*) and f; : R*® — R* is continuous, (i=1,2).

Functional differential equations with delays have often been put forward as
mathematical model to describe the real phenomenon, see [1, 2, 3, 4]. Motivated
by its application background, many researchers has been attracted to study of
the theory, methodology and application. For example, J.W. Lee and D. O’'Regan
establish the general existence principle of differential-difference equations with
delay type based on the nonlinear alternative (see [5, 6]). Initialed the work [5,
6], in [7, 8], T. Candan applies Krasnosel’skii’s fixed point theorem for the sum
of a completely continuous and a contraction mapping to obtain some sufficient
conditions for the existence of positive w-periodic solutions for the first (second)
order neutral differential equation, such as

[u(t) — p(t)u(t — 7)) = =Q(t)u(t) + f(t u(t — 7))
or

[u(t) — p(t)u(t — 7)]" = Q(t)u(t) — f(t,ut —7));
n [9, 10], the authors apply Moénch fixed point theorem, Schauder fixed point
theorem and Banach contraction principle to study the existence and uniqueness
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of solutions for the nonlinear functional differential equations on infinite interval

[p(t)u'(t)]" + f(t, u, p(t)u'(t)) =0, t >0,
u(t) = ¢(t)a te [7_7 0}7
limg—s 00 p(t)u' (t) = Yoos

where the delay 7 may be bounded or not; in [11, 12], D. Bai and Y. Xu employ
fixed-point theory to show how the parameters effect the number of positive solution
for a two-delay singular differential system

(,D(U,Il(t))/ + Alhl(t)fl (ul(t — 7’1)7 ’LL2<t — TQ)) =0, 0<t<1,
<p(u’2(t))' + )\th(t)fz(ul(t — 7'1), UQ(t — 7'2)) =0, 0<t<1,
ul(t) = O, —T1 S t S 0, Ul(l) = 0,
UQ(t) = 0, —T2 § t S 0, ’U,Q(l) =0.

Based on the model described by BVP (1.1), by constructing the suitable con-
trolling function and applying some fixed point theorems in cones, the main goal
of the paper is to find some suitable sufficiently conditions, which guarantee that
BVP (1.1) has at least one, two or three positive solutions. Compared to the re-
sults in [9, 10, 11, 12], our work presented in this paper considers a more general
term f(t,z(t),z-(t)) and find some new conditions,which differ from those in the
majority of papers as we know.

The paper is organized as follows. In Section 2, we will recall the Green’s function
of the corresponding linear problem and some basic forms of fixed point theorems.
In Section 3, we list the important results. In Section 4, some exact examples are
given to illustrate our main results.

2. PRELIMINARIES

Throughout this paper, we assume that

(A1) ai(t) : [0,00) — (0,00) is continuous, periodic and bounded. Let

H =max sup +/a;(t), h=min inf +/a;(t) >0.

=12 1¢[0.00) i=1,2 t€[0,00)

(Ag) there exists a k € [h?, H?] such that

t
lim e’pt/ e”?la;(s) — k]ds exists, for any p € R.
0

t—o0

(F) fi:R+*® = R* is continuous.

(M) m;(t) € LY(R*"), and D = Dy [JDy is a non-empty compact set satisfying
D C [r,+00), where

T =max{7, T2},

D; = supp{t € R" : m;(t) # 0} is a non-empty compact set.

Lemma 2.1.[13] Assume that (A;) holds. Then the linear boundary value problem

2" (t) — a;(t)x(t) + h(t) =0, t >0,
(2.1) { 2(0) =0, and lim; o 2(t) =0
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. . +oo
has a unique solution z(t) = [, G(t, s)h(s)ds, where

) di(t)pia(s), s>,
Gilt5) = {@1(8)@5@2@)7 t>s.

Lemma 2.2.[13] Assume that (A;) holds. Then
(i) 0 < Gi(t,s) < 55, for all (t,s) € [0,00) x [0,00);
(74) for any given 6 € (1,00), we have

Gi(t,s) fQ(t) < %¢i2(S)Gi(878)7 for (t,s) € (0,00) x (0, 00);
(#it) for any t, s € (0,00), we have
Gi(t,s) > qi(t)dia(s)Gi(s, ),

where

qi(t) = min {2h¢p;1(t), dia(t)}

t€(0,+00)
Let

E;,={z € Cl-1;,00):2(t) =0, Vt € [-7,0] and lim x(t) =0}

t—o0

be a Banach space with norm | - |;, which defined by

ali = swp [0l - |=(t)]]
—1; <t<oo
= sup [05(0) ()]
Then E = E; x Es is a Banach space with norm ||z|| = |z1]; + |z2|s, for z(t) =

(x1(t),22(t)) € E. Let D* =DUD,, UD,,, where D, = {s:s=1t—7;, ¢t € D}
Define a cone K C E by

K ={z € E:2(t) 2 0, minfe:(t) + z2(t)] 2 4|21},

where "
§ = ¢ min min g;(t) € (0, 1).
Also, for r > 0, define K, and K, by
K. ={z(t)e K:|z| <r}, OK,={z(t)e K:|z|=r}.

Define an operator T by T(x)(t) = (T1(x)(t), T2(z)(t)), where
a@xw—{k Gi(t, s)mi(s)fils, 2(s), w7 (5))ds, >0,

0, -7 <t <0.
Now solutions of (1.1) can be rewritten as fixed points of ¥ in Banach space E.

Lemma 2.3.[14] Let BC(R1) = {u is a bounded and continuous function}. Then
the subset 2 C BC(R™) is compact, if the function u €  is equicontinuous in each
compact interval of R* and that for all u € €, we have

lu(t)] < ((t), VteRT,
where ¢ € BC(R™) verifies
lim ((t) = 0.

|t]—=+o0
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Lemma 2.4. Assume that (A1), (Az), (F) and (M) hold. Then T(K) C K and
T : K — K is completely continuous.

Proof. Initially, we show that T(K) C K. For any (z1,z2) € K, by lemma
2.2, we have

gﬁ%ii(x)(t) > tne%g/ooo ¢ (1)Gi(5,8)piz(s)m;(s) fi(s, x(s), 2, (s))ds
- I}tllg%mr*lqi(t)/o %QﬁiQ(s)Gi(Svs)mi(s)fi(S,af(S);JJT(S))dS
>

aam¢g@y/mGxugmx@ﬁ@wwxmxaws
teh 0
> 8Ti()(0),
which implies that
min [T1(2)(6) + To(@)(0)] 2 61T @) O + [Ta()(0)]2).

teD

Moreover, we claim that ¥ : K — K is continuous. For any x, — x as n — oo,
by Lebesgues dominated convergence theorem and letting n — oo, it is standard to
verify that ||T(z,) — T(z)| — 0.

Ultimately, we prove that the operator ¥ is compact on K. Let € be a subset
of K, which is bounded. Then there exists a C' > 0 such that ||z| < C, for each
x € Q. Since the derivative of G;(¢, s) is bounded in compact interval, the operator
T;(Q) are equicontinuous on each compact interval. Furthermore, for any = € Q,
we have

|Z:(x)(t)] < max  fi(t,x,z,) /Dv Gi(t,s)m;(s)ds = ((t).

©teD; ||z <C

Then from [13] it follows that lim;_ 4o ((t) = 0, namely, T; is completely contin-
uous on K.o

At the end of this section, we introduce two crucial lemmas as follows

Lemma 2.5.[15] Let K be a subcone of the Banach space E. Assume that
F: K, — K be a completely continuous operator satisfying Fu # u, for u € 0K,..
(i) If |Ful| < |ull, ue K, then i(F, K,, K) = 1.
(i) If |Ful| > ||ul|, v € K, then i(F, K,, K) = 0.
Lemma 2.5.[15] Assume that the map « : K — R* is continuous and concave
such that o(u) < ||ul| for u € K. For given constants 0 < d; < dg, define a convex
set by
K(a,dy,dy) ={u € K : dy < au),||ul| <ds}.
In addition, suppose that F : K., — K, is completely continuous, and there exist
0 <1 < ey <3 <y such that
(i) {u € K(a,ca,c3) : a(u) > co} # 0 and a(Fu) > ¢ for u € K(a, ca,c3);
(i) IFull < e for lul] < er;
(iii) a(Fu) > cg for x € K(a,cg,cq) with |[|[Ful| > cs.
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Then F has three fixed points u1, us, us satisfying

luill < 1, co < afuz),

llus|| > c1 and a(us) < ca.

3. Main results

For convenience, let p = min{py, p2}, where

p1 = min{min ¢5(t), min ¢3,(1)} > 0,

p2 = min{m]Di)n Yo (t — 1), m]D'%n @9y (t — )} > 0.
For r >0, r; >0, i« =1,2,3,4, we introduce the height function

T r
wi(t,r) = max{|fi(t,z,z;)| : 0 < z1 + 22 < o 0<z1r, + 227, < ;}’
1 2

wi(ta 7”j) = min{|fi(taxax‘r)| ‘T S T+ X2 S T2, T3 S T1ry +$27'2 S 7/'4}; (,7 = 1;2,374)'

Theorem 3.1. Assume that (A1), (Az), (F) and (M) hold. If there exist b > a > 0
such that

sup gbe(t)/ Gi(t, s)m;(s)w;(s, ob, i, ob, i)als >
teD D; P1

P2

N o

and

)

supals(t) [ Gult.s)mi(9)ei(s.0)ds <

teD

e

then there exist one positive solutions to problem (1.1).

Proof. Choosing r = a, let K, = {z = (z1,22) € K : |z|| < r}. Then for
x = (z1,22) € 0K, and t € D, we have

r=llel = sup [6fa(t) - la1 (8)]] +sup [#8,(8) - 2 (t)
D D
> min 9fa(t) - a1 (1) + min ¢ (1) - 2 (1)]
> pi(z1+22)
and
r=lel = sup [0 - o1 ()] +sup [@8:(0) - [22()]]
D D

> sup [0y(t 7)< laa(t = 7o)l +sup [ (0 = 7) - foa(t — 7o)

> mﬁﬂ(ﬁ?z@ —71) |zt — )|+ n%n¢§2(t —72) - |w2(t — 72|

B {titeIﬂI)},i?ZTl} ¢§2(t B Tl) ’ |I1(t B T1)| + {t:telﬂr)}yi?ZT2} ¢g2(t a T2) . |z2(t a T2)|
> p2|:$(}1<t—7'1>+$2(t—7'2)}.
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Furthermore, we have

[Zix|;, = supgb?Q(t) /000 Gi(t, s)m;(s) fi(s,z(s),z,(s))ds

teD

— supdh(t) / Gi(t, $)ma(s) fi(5, 2(5), 2. (5))ds
teh D;

< swob(t) [ Giltopmils)pils,a)ds
teD D;
a
< a0
- 2
which implies that
12| = |F12]1 + |Taz]2 < a = ||z||, for x € OK,,
namely, (%, K., K)=1.
Choosing R = b, let Kp = {& = (z1,22) € K : ||z|| < R}. Then for z =
(z1,22) € 0K and t € D, on one hand, we have
x1(t) + x2(t) > 6||z|| = 6R and z1(t — 1) + 22(t — 72) > x| = OR.
On the other hand, it is clear that

(El(t) +1’2(t) S HLH = E and .’El(t—’ﬁ) +.’E2(t—7’2) S HLH = E
P1 P1 P2 P2

So, we have

[Siale = supos(t) [ Gult.s)mi(s)fis. () (5)ds

teD

> sup (be(t)/ G (t, s)m;(s)i(s, b, E,éb, ﬁ)ds
teD D; P1 P2
b

> a9

- 2

which implies that
|Tx|| = |T1z|1 + [T2x]2 > b = ||z]|, for € OKR,
namely, i(T, Kr, K) =0

From the above discussions, we have (¥, K \ K,, K) = —1, which means that
% has a fixed point x = (21, 23) € Kg\K,.©

Theorem 3.2. Assume that (A1), (Az), (F)) and (M) hold. If there exist b > a > 0

such that

sup qS?Q(t)/ Gi(t, s)m;(s)w;(s, da, i, da, i)ds >
D; P1 P2

a
teh 2

and b
sup ¢%5(1) / Gi(t, s)ma(s)pi(s,byds < 2.
teD D; 2

then there exist one positive solutions to problem (1.1).

Corollary 3.3. Assume that (A1), (Ag), (F) and (M) hold. If there exist 0 < a <
b < ¢ such that

)

sup 6% (1) / Gilt,s)mi(s)i(s, a)ds <

teD

NS
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sup ¢f2(t)/ G (t, s)m;(s)wi(s, b, i,éb, ﬁ)ds > é
teD D; P1 P2 2

and

sup¢12 / Gi(t, s)m;(s)pi(s,c)ds <

teh

AR

then there exist two positive solutions to problem (1.1).

Corollary 3.4. Assume that (A1), (Ag), (F) and (M) hold. If there exist 0 < a <
b < c such that
a

sup (bfg(t)/ G;(t, s)m;(s)wi(s, da, i, da, —)ds >
D; P1

a
a0
ted P2 2

sup(bfz(t)/ Gi(t,s)m;(s)pi(s,b)ds < 9
teD D; 2

and
c

sup ¢y (t / G;(t, s)m;i(s)i(s, 50 ,0c g)ds >

C
ia
teD

then there exist two positive solutions to problem (1.1).

Theorem 3.5. Assume that (A;), (As), (F) and (M) hold. If there exist pos-
itive constants ¢1,co and ¢4 with 0 < ¢; < ¢y < 504, such that

(H1) supyep ¢ (t) i, Gi(t s)mi(s)pi(s, c1)ds < G
(Hz) there exists ig € {1,2}, such that

0 Co 862 802
: t Gz t7 7 7 a7a77077 d Z77
o) | G simay (o)l 5. g0, )0

(Hs) supyep @5 (t) [, Gilt, s)mi(s)pils, ca)ds < G
then there exist three positive solutions to problem (1.1).
Proof. For x = (z1,z2) € K, define

= mi t t
a(z) = min p(z: (t) + 22(t)),

then it is clear that « is a nonnegative continuous concave functional on K with
a(z) < ||z||. In fact, for any z € K,

sup [643(0) -l (1) + sup [65,(0) -l 1)

]

> i ¢l () -1 (5] + min () - | ()
> pi(w1 + x2)
= pl@1+32) = afz).

First, we show that T : K., — K.,. For any = € K,,, we have

0< 21(t) + 22(t) < Il e
P1 P1
and
0§$1(t*7’1)+1‘2(t*7’2)§mgcf4.

P2 P2
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Then from (Hj) it follows that

x|, = Sup¢f2(t)/ Gi(t,s)m;(s) fi(s,x(s), z,(s))ds
teD

7

< supdly(t) / Gi(t, $)ma(s)i(s, ca)ds
teD D;

< 24,

- 2

which implies that
[Tz| = [Tiz]i + [Tazl2 < 4.

In the similar way, we can verify that T : K., — K,,. So (ii) of Lemma 2.6 holds.

Next, let ¢3 = 82 and 7 = (% + %03, £2 4 %03). Since

po 2p
- . c
a(Z) = minp(z1(t) +2(t)) = 20(% + e > e
and

1z| = sup [¢?2(t) o1 ()] + @5a(t) - w2 (t)]

< @zt

Co 35
= 2 —_ —_
(2p + 1663)
= 563 < c3,

it implies that T € K(a,cq,c3), namely, the set {x € K(«a,ca,c3) : a(x) > co} is
not empty. Then for any = € K(«,ca,c3) and t € D, we have

e 2 flall = sup [60a(t) - o1 (D] +sup [65,() - [22(0)]]
D D
> min ofa(t) - a1 (1) + min (1) - ()]
> pi(zy + x2)
> p(x1 + 72)
> ax) >c
and
es 2 llall = sup [6%2(6) fea )] +sup [¢a(6) - b))
> sup [ofa(t =) (0 = )|+ sup |6t = ) - feat = 7)
> mmi)n¢?2(t —71) |zt — 7))l + H%Di)n¢gz(t —72) - |2(t — 7))
> p2 {xl(t —71) + @2t — 7'2)]
2 p(xl(t—71)+x2(t772)) 20
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Then by (Hs), we have
a(Tx(t)) = rtréiﬂr)} p(T1x(t) + Taz(t))
pTipx(t)
o0l[ T (1)
pOSUD 67,5 (1) T2 (1)

AVANIY)

> phsupdly () / G (1, 8)miy () o (5. 2(s), 2+ (5))ds
teD DiO
Coy C3
> phsup ol [ Guttomi (o5, 2. %20, Lds
20 | Gnlthmn sy 5. 2.5 %)ds
Z Co,

which implies that (i) of Lemma 2.6 is satisfied.
Ultimately, for any x € K(«, ca,c4) with ||Tz|| > c3, then we have

a(Tx(t)) = rtréiﬂgl p(Z12(t) + Taz(t))
> pd(|Tix|r + [Taxl2)
= pd|| Tzl > pocs

which implies that (iii) of Lemma 2.6 is satisfied.

Therefore, from Leggett-Williams theorem it follows that problem (1.1) has at

least three positive solutions z! = (z1,21), 22 = (22,22) and 2® = (23, 23) such

that
|zt < e1, ca < a(2?), ||2°]| > 1 and a(2?) < co. 0

4. EXAMPLES

Example 4.1. Now we consider the following problem:

xf () — (Slnt—|—3) 1) + ma(8) f1(t, z(t), z-(t)) =0, t>0,
xy(t) — (Slnt+3 2(t) + ma(t) fo(t, z(t), 2, (t)) =0, t >0,
21(t) =0, —1<t<0, and limy_,o z1(¢) =0,
x2(t) =0, —1<¢<0, and lim; o z2(t) = 0,

where 71 =1 =1, a4, 3; > 0,
filt,z(t), 2. (1)) = (sin2 t+2)[cin(x1 + @2)* + cia(x(t — 1) + 22(t — 7’2))51’]

and

(4.1)

1, teD, = [2,4 1, t €Dy = [5,11],
(1) = R = 2=l
0, t & Dy = [2,4], 0, t & Dy = [5,11].
It is clear that (A1), (Ag), (F) and (M) hold.
(I): Since
@i(t,a) = max{f;:0< 2 +x2 < pi’ 0<z1 + 227, < pg}
1 2

= (sin? Ci1 a4 Cio Bi
= ( t+2)[z(p1) + (pz)}
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and
. b b
Y;(t, 6b, —, b, —) = min{f; : b <zt < —, b<uz1 + 225, < —}
P1 P2 P1 P2
= (Sin2 t+ 2)[02‘1(&))% + CQ(éb)’BiL
if oy > 1,8; > 1, then there two positive constants a (small enough) and b (big
enough) with b > a such that

ilel]ggﬁ / G(t,s)(sin? 8+2)d8[(p1) + (%)Bi] < g

and
b
sup (1) [ Glt,s)(sin® s + Dids- [ + (60)*] > .
teD D; 2
Therefore from Theorem 3.1, it concludes that problem (4.1) has one positive
solution.

(IT): Since
b b
wi(tvb) = maX{fiI()SJSl +22< —, 0< 217y +T27, < 7}
f1 P2
. 9 b .., b s
= (sin"t+2) - [ein(—) + cia(—)7]
p1 P2
and
Yi(t, da, 2 ba, 2y = min{f; : da < xp + 22 < S T1r + Zor, < i}
P1 P2 P1 P2

= (sin2 t+ 2)[c;1(0a)* + Ci2(5a)'8i]a

if ; < 1,5; < 1, then there exists two positive constants a (small enough) and b
(big enough) with b > a such that

b b b
sup ¢y () / G(t,s)(sin? s + 2)ds - [c;1(—)* + co(—)P] < =
teb D; P1 P2 2

and
a
5"

Therefore from Theorem 3.2, it concludes that (4.1) has one positive solution.c

sup 6%, (1) / Gt 5)(sin® s + 2)ds - [e1 (50)™ + cia (05)7] >
teD D;

Example 4.2. Now we consider the following problem:
2y (8) = ar (D21 (t) +m () [1(t 2(1), 2 (1)) = 0 t>0,

(t)*az() 2(t) + ma(t) f2(t, 2(t), 2+ (1)) = t>0,
z1(t) =0, —1n <t¢<0, and lim; xl(t)
xg(t) 0, —m7» <t<0, and lim;_, o z2(t) =

Ai(@] + a3 +at,, +23.,)%, (
1

Bi(z} + a3 + 2%, +23,)1 + D, (=,

2

279

Br(0) = {(z,z,) eR* 12l + 23 + 27 +x
Let
6; = sup (be(t)/ G(t,s)m;(s)ds > 0,
teD D
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and the positive constant A;, B;, D;, R satisfy the following relation

B;R? + D; = A;R%,
(2)iB;R* + D; = 2.

First, let ¢; < %, then we have

2, 2., 2 2 2 2
o] + 25 + 2, + 25, < (@14 22)" + (T +220)" S S5+ 5 < Hd < -

Pt p3 = P 2
Furthermore, we have
2 2
fil < Ail(z1 + 22)? + (21, +22,)°]? < Ai(5 + 5)%
P11 P2
Thus there exists a sufficiently small ¢; < % such that
1 1 c
sup Qﬁfz(t)/ G(t,s)m;(s)pi(s,c1)ds = 0; Ai(— + 7)20411 <=,
teD D; pPT P2 2
which implies that (H;) holds.
Next, let ¢4 > %, then we have
fil < AiR'4 Bi[(x1 + 2) + (217, +@2r,)%]T + Dy
1 1 1
S A1R4+B1(*2+*2)%Cf +Dz
1 P2
Thus there exists a sufficiently large ¢, > % such that
1 1 1 c
sup ¢§2(t)/ G(t, s)yma(s)pi(s, ca)ds = B[ AR* + By(— + ~)¥ek + D) < &,
teD D; P P2 2
which implies that (Hs) holds.
Finally, choosing co = 2pR < %604. Since
Co 862 802
— <z1+22 < %, 0< 217 + 227, < 25
we have
2 2 2
ot +ay +af, +ad, > S zx2) (1, —;x%) > 022 =2R*> R?
P
Furthermore, we have
0 C2 862 862 o\ 1 4R 2R Co
sup ¢;(t / G(t,s)m;(s)Yi(s, —, —=,0, 55)ds = 6; B;(2R*)*+6,D; = — > =—,
up o (8) [ G apmits, 2, 75 050 (2R?) N

which implies that (H2) holds.
Therefore from Theorem 3.5, it concludes that (4.2) has three positive solutions.o
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