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Abstract

This study is concerned with the optimal time rates of weak solutions for the 2D
magneto-micropolar equations with only micro-rotational dissipation and magnetic dif-
fusion. Due to some new observations, we obtain the optimal time decay rates of weak

solutions ‖∇u(t)‖L2 + ‖∇w(t)‖L2 ≤ C(1 + t)−2 and ‖∇b(t)‖Lp ≤ C(1 + t)
− 1

2
−(1− 1

p
)
with

p ∈ [2,∞).
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1 Introduction and main result

In this study, we consider the 2D magneto-micropolar equations with only micro-rotational

dissipation and magnetic diffusion

ut + u · ∇u+ (µ+ χ)u+∇p = b · ∇b+ 2χ∇× w,

wt + u · ∇w + 4χw = κ∆w + 2χ∇× u,

bt + u · ∇b = ν∆b+ b · ∇u,

∇ · u = ∇ · b = 0,

u(x, y, 0) = u0, w(x, y, 0) = w0, b(x, y, 0) = b0,

(1.1)

where u = (u1(x, y, t), u2(x, y, t)), w = w(x, y, t), b = (b1(x, y, t), b2(x, y, t)) and p = p(x, y, t)

with (x, y) ∈ R2 and t ≥ 0 denote the velocity of the fluid, micro-rotational velocity, the

magnetic field and the hydrostatic pressure, respectively. µ, χ and ν are separately, kinematic

viscosity, vortex viscosity and magnetic diffusivity constants. It’s worth noting that ∇× u =

∂xu2 − ∂yu1 is a scalar function representing the vorticity, and ∇× w = (∂yw,−∂xw).
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The magneto-micropolar equations describe the motion of an incompressible, electrically

conducting micropolar fluids in the presence of an arbitrary magnetic field [1,3]. It has attracted

considerable attention from the community of mathematical fluids. We refer to [2, 8, 11, 15]

for global regularity for 2D problems, [9, 13, 14] for the existence and time decay rates of 3D

global small solution. Recently, Shang and Gu [11,12] investigated the time decay rates of weak

solutions for the 2D magneto-micropolar equations (1.1), and obtained the following important

results.

Lemma 1.1 ( [11, 12]) Let κ > 4χ2

µ+χ and suppose (u,w, b) is a global weak solution of the

system (1.1) with (u0, w0) ∈ H1(R2) and b0 ∈ L1(R2) ∩ H1(R2), then the solution have the

following time decay rates

‖u(t)‖L2 + ‖w(t)‖L2 ≤ C(1 + t)−2, ‖∇u(t)‖L2 + ‖∇w(t)‖L2 ≤ C(1 + t)−
1
2 ,

‖b(t)‖L2 ≤ C(1 + t)−
1
2 , ‖b(t)‖L∞ + ‖∇b(t)‖L2 ≤ C(1 + t)−1.

The decay rates of ‖u‖L2 and ‖w‖L2 in Lemma 1.1 are optimal since they are derived from

the sharp estimates of b and ∇b (see [12] for details). However, there exist two terms (µ+χ)u

and 4χw in (1.1), the faster decay rates of ‖∇u‖L2 and ‖∇w‖L2 may also be expected.

In this paper, we consider the optimal decay rates of ‖∇u‖L2 and ‖∇w‖L2 . Denote Ω ,

∇× u and j , ∇× b. Then from (1.1), we have
Ωt + u · ∇Ω + (µ+ χ)Ω = b · ∇j − 2χ∆w,

∇wt +∇(u · ∇w) + 4χ∇w = κ∆∇w + 2χ∇Ω,

jt + u · ∇j = ν∆j + b · ∇Ω + T (∇u,∇b),

(1.2)

where T (∇u,∇b) = 2∂xb1(∂xu2 +∂yu1)−2∂xu1(∂xb2 +∂yb1). It is worth mentioning that since

the first equation of (1.2) has no dissipation on Ω, the Fourier splitting method which relies on

the dissipation in order to decompose the whole space into two time-dependent sub-domains

does not apply. Furthermore, without smallness assumption, Kato’s method [7] does not work

due to the difficulty of constructing an iterative procedure. Some more recent new time decay

methods such as the one by Guo and Wang [4] involving Sobolev space of negative indices and

the one by [6] for dual equation technique do not apply to our circumstance.

In order to overcome these difficulties, we take a new method due to some observations to

the structure of the problem (1.2). Specifically, we firstly see that

(1 + t)n‖Ω(t)‖2L2 and (1 + t)n(‖∇w(t)‖2L2 + ‖j(t)‖2L2)

for large positive integer n satisfy some Gronwall type inequalities. Then we can obtain an

interesting implicit decay estimate (see Lemma 3.1 below),∫ t

0

(1 + s)n(‖Ω‖2L2 + ‖∇w‖2L2 + ‖∇j‖2L2) ds ≤ C(1 + t)n−2, t > 0, (1.3)
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which essentially implies that ‖∇u‖L2 and ‖∇w‖L2 admit the faster upper bounds of decay

rates. This key estimate (1.3) allows us to derive the desired optimal decay rates. In addition,

this practice may be useful for more related decay problems.

Our results read as follows.

Theorem 1.1 Let κ > 4χ2

µ+χ and suppose (u,w, b) is a global weak solution of the system (1.1)

with (u0, w0) ∈ H1(R2) and b0 ∈ L1(R2) ∩H1(R2). Then we have the following optimal upper

bounds of decay rates

‖∇u(t)‖L2 + ‖∇w(t)‖L2 ≤ C(1 + t)−2,

‖∇b(t)‖Lp ≤ C(1 + t)−
1
2−(1− 1

p ), p ∈ [2,∞).

Remark 1.1 Obviously, the decay rates of ∇b in Lp are optimal in the sense it coincides with

those of linear equations. In addition, the decay rates of ‖∇u‖L2 and ‖∇w‖L2 in Theorem 1.1

are also optimal. We take the decay rate of ‖∇u‖L2 for example to illustrate this point. Taking

the L2 inner product of the first equation of (1.2) with Ω and using Hölder inequality, it follows

that
d

dt
‖Ω(t)‖2L2 + ‖Ω(t)‖2L2 ≤ C‖b · ∇j‖2L2 + C‖∆w‖2L2 .

For large positive integer n, there exists t0 > 0 such that

d

dt

(
et(1 + t)n‖Ω(t)‖2L2

)
≤ Cet(1 + t)n(‖b‖2L∞‖∇j‖2L2 + ‖∆w‖2L2), t > t0. (1.4)

Integrating (1.4) in time from t0 to t and applying (1.3), we formally obtain

‖Ω(t)‖2L2 ≤ C(1 + t)−n
∫ t

t0

es−t(1 + s)n‖b‖2L∞‖∇j‖2L2 ds+ f(t)

≤ C(1 + t)−n
(∫ t

0

(1 + s)n−2‖∇j‖2L2 ds

)
+ f(t)

≤ C(1 + t)−4 + f(t), (1.5)

where f(t) = Ce−t + C(1 + t)−n
∫ t

0
es−t(1 + s)n‖∆w‖2L2 ds. It seems that the estimate of ∇j

in (1.3) is optimal in the sense that it coincides with the one of linear equation. So comparing

(1.5) with the one in Theorem 1.1, it’s easy to see that the decay rate of ‖∇u‖L2 we obtained

is optimal to some degree.

This paper is organized as follows. In the next section, we introduce some auxiliary esti-

mates. The proof of Theorem 1.1 is given in Section 3.

2 Some auxiliary estimates

We first in this section recall the classic Lp − Lq decay estimates for the heat semigroup et∆.
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Lemma 2.1 Let 1 ≤ p ≤ q ≤ ∞ and s ≥ 0, the following estimates are valid for f ∈ Lp(R2),

‖Λset∆f‖Lq(R2) ≤ Ct−( 1
p−

1
q )− s

2 ‖f‖Lp(R2), t > 0,

where Λ = (−∆)
1
2 denotes the Zygmund operator.

The following fractional Gagliardo-Nirenberg interpolation inequality is necessary to prove

the estimate of ‖∇b(t)‖Lp with p ∈ [2,∞).

Lemma 2.2 ( [5]) Let 1 < p, p0, p1 <∞, α, β ∈ R, 0 ≤ θ ≤ 1. Then the fractional Gagliardo-

Nirenberg interpolation inequality

‖Λαu‖Lp ≤ C‖u‖1−θLp0 ‖Λ
βu‖θLp1 (2.1)

is true in R2 if and only if

1

p
− α

2
=

(
1

p1
− β

2

)
θ +

1− θ
p0

and α ≤ θβ.

Let’s recall the following estimates which have been proved in [11].

Lemma 2.3 ( [11]) Under the same conditions of Theorem 1.1, the weak solutions (u,w, b)

obey the following global H1-bound,

‖u(t)‖2L2 + ‖w(t)‖2L2 + ‖b(t)‖2L2 +

∫ t

0

(
‖∇w(τ)‖2L2 + ‖∇b(τ)‖2L2

)
dτ ≤ C,

‖Ω(t)‖2L2 + ‖∇w(t)‖2L2 + ‖j(t)‖2L2 +

∫ t

0

(
‖Ω(τ)‖2L2 + ‖∆w(τ)‖2L2 + ‖∇j(τ)‖2L2

)
dτ ≤ C,

where the constant C depends on µ, χ, κ, ν and the initial data.

3 Proof of Theorem 1.1

As usual, we assume that the solutions are regular enough. The process of obtaining the decay

for weak solutions from regular approximations is standard, for details see [11].

Proof of Theorem 1.1. The proof of Theorem 1.1 is divided into three steps.

Step 1. In this step, we will give some auxiliary decay rates for ∇u, ∇w and ∇b.
Taking the L2 inner product of equations (1.2) with (Ω,∇w, j), it follows that

1

2

d

dt

(
‖Ω(t)‖2L2 + ‖∇w(t)‖2L2 + ‖j(t)‖2L2

)
+ (µ+ χ)‖Ω(t)‖2L2

+ 4χ‖∇w(t)‖2L2 + κ‖∇w(t)‖2L2 + κ‖∆w‖2L2 + ν‖∇j‖2L2

= −4χ

∫
R2

∆wΩ dx−
∫
R2

∇(u · ∇w) · ∇w dx+

∫
R2

T (∇u,∇b) · j dx, (3.1)
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where we use the equalities∫
R2

(b · ∇j) · Ω dx+

∫
R2

(b · ∇Ω) · j dx = 0,

and

−2χ

∫
R2

∆wΩ dx = 2χ

∫
R2

∇Ω · ∇w dx.

By Hölder and Young inequalities, we have

4χ

∫
R2

∆wΩ dx ≤ 4χ‖∆w‖L2‖Ω‖L2 ≤ (µ+ χ− ε)‖Ω‖2L2 +
4χ2

µ+ χ− ε
‖∆w‖2L2 ,

where ε > 0 is sufficiently small such that κ > 4χ2

µ+χ−ε + ε. Using Hölder inequality, Young

inequality and Gagliardo-Nirenberg interpolation inequality, we have∫
R2

∇(u · ∇w) · ∇w dx =

∫
R2

∇w · ∇u · ∇w dx

≤ ‖∇w‖2L4‖Ω‖L2

≤ C‖∆w‖L2‖∇w‖L2‖Ω‖L2

≤ ε‖∆w‖2L2 + C‖∇w‖2L2‖Ω‖2L2 .

Similarly, we also obtain∫
R2

T (∇u,∇b) · j dx ≤ ‖j‖2L4‖∇u‖L2 ≤ ν

2
‖∇j‖2L2 + C‖j‖2L2‖Ω‖2L2 ,

Inserting these estimates into (3.1), we get

d

dt

(
‖Ω(t)‖2L2 + ‖∇w(t)‖2L2 + ‖j(t)‖2L2

)
+ 2ε‖Ω‖2L2 + 8χ‖∇w‖2L2

+ 2
(
κ− 4χ2

µ+ χ− ε
− ε
)
‖∆w‖2L2 + ν‖∇j‖2L2 ≤ C

(
‖∇w‖2L2 + ‖j‖2L2

)
‖Ω‖2L2 .

Let σ = min{2ε, 8χ}, then

d

dt

(
‖Ω(t)‖2L2 + ‖∇w(t)‖2L2 + ‖j(t)‖2L2

)
+ σ

(
‖Ω‖2L2 + ‖∇w‖2L2 + ‖∇j‖2L2

)
≤ C

(
‖∇w‖2L2 + ‖j‖2L2

)
‖Ω‖2L2 . (3.2)

We now apply the generalized Fourier splitting methods ( [10]) to examine the decay estimate

of ‖j(t)‖L2 . Dividing the domain R2 into B(t) and B(t)c obeys

‖∇j(t)‖2L2 =

∫
R2

|ξ|2|ĵ(ξ, t)|2 dξ ≥ n

1 + t

∫
B(t)c

|ĵ(ξ, t)|2 dξ

=
n

1 + t

(∫
R2

|ĵ(ξ, t)|2 dξ −
∫
B(t)

|ĵ(ξ, t)|2 dξ

)
.
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where n > 10 is a large positive integer and

B(t) =

{
ξ ∈ R2; |ξ|2 ≤ n

σ(1 + t)

}
.

Then for t > n, from (3.2) together with the decay results in Lemma 1.1, we obtain

d

dt

(
‖Ω(t)‖2L2 + ‖∇w(t)‖2L2 + ‖j(t)‖2L2

)
+

n

1 + t

(
‖Ω(t)‖2L2 + ‖∇w(t)‖2L2 + ‖j(t)‖2L2

)
≤ n

σ(1 + t)

∫
B(t)

|ĵ(t)|2 dξ + C
(
‖∇w‖2L2 + ‖j‖2L2

)
‖Ω‖2L2

≤ n

σ(1 + t)

∫
B(t)

|ξ|2|b̂(t)|2 dξ + C
(
‖∇w‖2L2 + ‖j‖2L2

)
‖Ω‖2L2

≤ C(1 + t)−2‖b(t)‖2L2 + C
(
‖∇w‖2L2 + ‖j‖2L2

)
‖Ω‖2L2

≤ C(1 + t)−3 + C
(
‖∇w‖2L2 + ‖j‖2L2

)
‖Ω‖2L2 .

Multiplying the above inequality by (1 + t)n and integrating in time from n to t give

(1 + t)n
(
‖Ω(t)‖2L2 + ‖∇w(t)‖2L2 + ‖j(t)‖2L2

)
≤ C(1 + t)n−2 + C

∫ t

0

(1 + s)n
(
‖∇w‖2L2 + ‖j‖2L2

)
‖Ω‖2L2 ds.

Applying Lemma 2.3 and Gronwall inequality to the above inequality about

(1 + t)n‖Ω(t)‖2L2 and (1 + t)n(‖∇w(t)‖2L2 + ‖j(t)‖2L2),

respectively, we obtain that

(1 + t)n
(
‖Ω(t)‖2L2 + ‖∇w(t)‖2L2 + ‖j(t)‖2L2

)
≤ C(1 + t)n−2.

That is,

‖∇u(t)‖L2 + ‖∇w(t)‖L2 + ‖∇b(t)‖L2 ≤ C(1 + t)−1. (3.3)

Step 2. In this step, we will show the faster decay rates of ∇u and ∇w than these in (3.3).

To do this, we first need to establish the following estimate.

Lemma 3.1 Under the conditions of Theorem 1.1, we have∫ t

0

(1 + s)n(‖Ω‖2L2 + ‖∇w‖2L2 + ‖∇j‖2L2) ds ≤ C(1 + t)n−2, t > 0. (3.4)

Proof. Multiplying both sides of (3.2) by (1 + t)n and recalling Lemma 1.1 yield

d

dt

(
(1 + t)n

(
‖Ω‖2L2 + ‖∇w‖2L2 + ‖j‖2L2

))
+ σ(1 + t)n(‖Ω‖2L2 + ‖∇w‖2L2 + ‖∇j‖2L2)

≤ n(1 + t)n−1
(
‖Ω‖2L2 + ‖∇w‖2L2 + ‖j‖2L2

)
+ C(1 + t)n

(
‖∇w‖2L2 + ‖j‖2L2

)
‖Ω‖2L2

≤ C(1 + t)n−3 + C(1 + t)n−2‖Ω‖2L2 .
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Since ‖Ω‖2L2 is integrable in (0,∞), integrating in time from 0 to t, one has

(1 + t)n
(
‖Ω‖2L2 + ‖∇w‖2L2 + ‖j‖2L2

)
+ σ

∫ t

0

(1 + s)n(‖Ω‖2L2 + ‖∇w‖2L2 + ‖∇j‖2L2) ds

≤ C(1 + t)n−2 + C

∫ t

0

(1 + s)n−2‖Ω‖2L2 ds

≤ C(1 + t)n−2,

which implies that∫ t

0

(1 + s)n(‖Ω‖2L2 + ‖∇w‖2L2 + ‖∇j‖2L2) ds ≤ C(1 + t)n−2.

So we complete the proof of Lemma 3.1. �

With the help of Lemma 3.1, we now continue to prove Theorem 1.1. Taking the L2 inner

product to the first and second equations of (1.2) with Ω and ∇w and adding the resulting

equations together, we have

1

2

d

dt

(
‖Ω(t)‖2L2 + ‖∇w(t)‖2L2

)
+ (µ+ χ)‖Ω(t)‖2L2 + 4χ‖∇w(t)‖2L2 + κ‖∆w(t)‖2L2

=

∫
R2

(b · ∇j) · Ω dx− 4χ

∫
R2

∆w · Ω dx−
∫
R2

∇w · ∇u · ∇w dx. (3.5)

By Hölder and Young inequalities, we have∫
R2

(b · ∇j) · Ω dx ≤ ‖b‖L∞‖∇j‖L2‖Ω‖L2 ≤ ε

2
‖Ω‖2L2 + C‖b‖2L∞‖∇j‖2L2 .

By the similar method with the proof of (3.2), we see that

4χ

∫
R2

∆w · Ω dx ≤ (µ+ χ− ε)‖Ω‖2L2 +
4χ2

µ+ χ− ε
‖∆w‖2L2

and ∫
R2

∇w · ∇u · ∇w dx ≤ ε‖∆w‖2L2 + C‖∇w‖2L2‖Ω‖2L2 .

Inserting these estimates into (3.5) and multiplying the resulting inequality by (1 + t)n, we

have

(1 + t)n
d

dt

(
‖Ω(t)‖2L2 + ‖∇w(t)‖2L2

)
+ σ(1 + t)n

(
‖Ω(t)‖2L2 + ‖∇w(t)‖2L2

)
≤ C(1 + t)n‖b‖2L∞‖∇j‖2L2 + C(1 + t)n‖∇w‖2L2‖Ω‖2L2 .

Combining the above inequality with (3.3) and Lemma 1.1, we obtain

d

dt

(
(1 + t)n(‖Ω(t)‖2L2 + ‖∇w(t)‖2L2)

)
≤ C(1 + t)n‖b‖2L∞‖∇j‖2L2 + C(1 + t)n‖∇w‖2L2‖Ω‖2L2

≤ C(1 + t)n−2(‖∇j‖2L2 + ‖Ω‖2L2). (3.6)
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Integrating (3.6) in time from 0 to t and combining with Lemma 3.1, we have

(1 + t)n(‖Ω(t)‖2L2 + ‖∇w(t)‖2L2)

≤ C + C

∫ t

0

(1 + s)n−2(‖∇j‖2L2 + ‖Ω‖2L2) ds

≤ C(1 + t)n−4.

Then we obtain

‖∇u(t)‖L2 + ‖∇w(t)‖L2 ≤ C(1 + t)−2. (3.7)

Step 3. In the last step, we prove the estimate of ‖∇b(t)‖Lp with p ∈ [2,∞).

Writing the magnetic field equation of (1.1) into integral form and applying ∇ to the

resulting equation, we get that

‖∇b(t)‖Lp ≤ ‖∇eνt∆b0‖Lp +

∫ t

0

‖∇eν(t−s)∆(u · ∇b− b · ∇u)(s)‖Lp ds

≤ Ct
1
p−

3
2 +

∫ t
2

0

‖∇∇eν(t−s)∆(u⊗ b− b⊗ u)(s)‖Lp ds

+

∫ t

t
2

‖∇eν(t−s)∆(u · ∇b− b · ∇u)(s)‖Lp ds. (3.8)

By Lemma 2.1, Hölder inequality and Gagliardo-Nirenberg interpolation inequality, we get∫ t
2

0

‖∇∇eν(t−s)∆(u⊗ b− b⊗ u)(s)‖Lp ds

≤ C
∫ t

2

0

(t− s)
1
p−2‖(u⊗ b− b⊗ u)(s)‖L1 ds

≤ Ct
1
p−2

∫ t
2

0

‖u(s)‖L2‖b(s)‖L2 ds

≤ Ct
1
p−2

∫ t
2

0

(1 + s)−4 ds ≤ Ct
1
p−2. (3.9)

Let α ∈ (1 − 1
p , 1). By fractional Gagliardo-Nirenberg interpolation inequality (2.1), Lemma

1.1 and the estimate (3.7), we have

‖Λ1−αu(s)‖Lp ≤ ‖u(s)‖2( 1
p−

1−α
2 )

L2 ‖∇u(s)‖1−2( 1
p−

1−α
2 )

L2 ≤ C(1 + s)−2,

‖Λ1−αb(s)‖L2p ≤ ‖b(s)‖2( 1
2p−

1−α
2 )

L2 ‖∇b(s)‖1−2( 1
2p−

1−α
2 )

L2 ≤ C(1 + s)
1
2p−

1−α
2 −1.
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Then by Lemma 2.1, we also obtain∫ t

t
2

‖∇eν(t−s)∆(u · ∇b+ b · ∇u)(s)‖Lp ds

≤
∫ t

t
2

‖∇Λαeν(t−s)∆Λ−α∇(u⊗ b− b⊗ u)(s)‖Lp ds

≤ C
∫ t

t
2

(t− s)−
1+α
2 ‖Λ1−α(u⊗ b− b⊗ u)(s)‖Lp ds

≤ C
∫ t

t
2

(t− s)−
1+α
2

(
‖Λ1−αu(s)‖Lp‖b(s)‖L∞ + ‖Λ1−αb(s)‖L2p‖u(s)‖L2p

)
ds

≤ C
∫ t

t
2

(t− s)−
1+α
2

(
(1 + s)−3 + (1 + s)

1
2p−

1−α
2 −3

)
ds ≤ C(1 + t)

1
2p−3. (3.10)

Inserting (3.9) and (3.10) into (3.8), we have

‖∇b(t)‖Lp ≤ C(1 + t)−
1
2−(1− 1

p ). (3.11)

Thus we complete the proof of Theorem 1.1. �
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