
Received –; Revised –; Accepted –

DOI: xxx/xxxx

RESEARCH ARTICLE

Local discontinuous Galerkin method for distributed-order
time-fractional diffusion-wave equation: Application of Laplace
transform

Hadi Mohammadi Firouzjaei | Hojatollah Adibi* | Mehdi Dehghan

Department of AppliedMathematics, Faculty
of Mathematics and Computer Sciences,
Amirkabir University of Technology, No.
424, Hafez Ave 15914, Tehran, Iran

Correspondence
*Hojatollah Adibi, Department of Applied
Mathematics, Faculty of Mathematics and
Computer Sciences, Amirkabir University of
Technology, No. 424, Hafez Ave, 15914
Tehran, Iran. Email: adibih@aut.ac.ir

Summary

In this paper, the Laplace transform combined with the local discontinuous Galerkin
method is used for distributed-order time-fractional diffusion-wave equation. In this
method, at first, we convert the equation to some time-independent problems by
Laplace transform. Then we can solve these stationary equations by the local discon-
tinuous Galerkin method to discretize diffusion operators at the same time. Then, by
using a numerical inversion of the Laplace transform we can find the solutions of the
original equation. One of the advantages of this procedure is its parallel implemen-
tation. Another advantage of this approach is that the number of stationary problems
that should be solved is much less than that are needed in time-marching methods.
Finally, some numerical experiments have been provided to show the accuracy and
efficiency of the method.
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1 INTRODUCTION

Fractional differential equations are widely used to model anomalous behavior of a system. This application has brought a lot
of interest to scientists and engineers1,2,3. The fractional diffusion equation (FDE) is one of the fractional PDEs which has been
extremely popular, see e.g.4,5. Nowadays instead of the classical diffusion equations, FDEs have attracted broad concentration.
Because the FDE is a generalization of a diffusion equation that can be used to describe an anomalous diffusion phenomenon6.
A time-fractional diffusion equation is achieved by replacing the integer time derivative with a time-fractional derivative in a
diffusion equation. FDEs can be employed in modeling some problems in mechanical systems, models of a variety of biological
processes7, control and robotics8 andmany other areas of applications. Some numerical methods based on the Laplace transform
method are utilized for time-fractional diffusion and time-fractional diffusion-wave equations9,10,11.
There are various researches12,13 about Laplace transform to deal with time derivative. In this method, at first, we convert

these equations to some time-independent problems by Laplace transform. We will solve these stationary equations by space
discretization methods to discretize diffusion operators of each stationary equation. The solution is recovered by numerical
inversion of the Laplace transform. The major difference between this method and the time-marching method is that in this
approach fewer linear systems are solved. Moreover, there is no need to solve them in series and we can do it simultaneously.
However, requiring the Laplace transform of the source term and not giving good accuracy around t=0 are the restrictions in
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this method. Gavrilyuk and Makarov in14 overcame these challenges by introducing a modification of this method. McLean
and Thomée in15,16 used this modification and analyzed that based on maximum and L2 norms for fractional-order evolution
equations. In12,13 when the Laplace transform method used for time discretization, the finite element method (FEM) used for
the discretization of space operators. The simplicity of the implementation of the radial basis function (RBF) method instead
of the FEM caused that Laplace transform has been combined with the RBFs for the parabolic equations on the sphere17,18.
The Laplace transform with the Fourier transform, used to the analytical study of the distributed-order time-fractional (DOTF)
sub-diffusion6 and DOTF diffusion-wave equations19.
In this paper, we will consider the following time distributed-order diffusion model

�2

∫
�1

(�)C0D
�
t u(x, t)d� = Δu(x, t) + f (x, t), (x, t) ∈ Ω × (0, T ], (1)

in which (�) is the weight function of the distribution of order � 20. The model is divided into three kinds of equations.
Assuming �1 ∶= inf{�|� ∈ supp (�)} and �2 ∶= sup{�|� ∈ supp (�)}. When 0 < �1 ≤ 1 < �2 ≤ 2, Eq. (1) is a
DOTF diffusion-wave equation, also when, �2 ≤ 1, Eq. (1) is a DOTF diffusion equation and if �1 > 1, Eq. (1) is a DOTF wave
equation20. Some researchers have proposed numerical methods to solve the distributed-order differential equations . The finite
difference method21,22,23,24, finite difference/spectral method25,26,27, local discontinuous Galerkin (LDG) method28 and some
meshless methods29,30,31 have been applied for the solution of distributed-order differential equations. In this study we provide
a numerical method for solving two sub-classes of Eq. (1). We consider DOTF diffusion equation32,33

⎧

⎪

⎨

⎪

⎩

∫ 1
0 (�)C0D

�
t u(x, t)d� = Δu(x, t) + f (x, t), (x, t) ∈ Ω × (0, T ],

u(x, 0) =  (x), x ∈ Ω,
u(x, t) = 0, (x, t) ∈ )Ω × (0, T ],

(2)

which is investigated and analyzed by Jin et al.. They used the Laplace transform based on the FEM to recover the numerical
solution of Eq. (2)33.
The DOTF diffusion-wave equation is as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫ �2
�1

(�)C0D
�
t u(x, t)d� = Δu(x, t) + f (x, t), (x, t) ∈ Ω × (0, T ],

u(x, 0) =  (x), x ∈ Ω,
)
)t
u(x, 0) = '(x), (x, 0) ∈ Ω,

u(x, t) = 0, (x, t) ∈ )Ω × (0, T ],

(3)

where �1 > 0 and 1 < �2 ≤ 2. We stated that Eq. (3) describes DOTF wave equation for �1 > 1 and �2 ≤ 2. In21 authors
proposed a compact difference scheme when �1 = 1 and �2 = 2.
Let us consider Eq. (2). When we have(�) = �(� − �) where �(⋅) is the Dirac Delta function, Eq. (2) reduces to

⎧

⎪

⎨

⎪

⎩

C
0D

�
t u(x, t) = Δu(x, t) + f (x, t), (x, t) ∈ Ω × (0, T ],

u(x, 0) =  (x), x ∈ Ω,
u(x, t) = 0, (x, t) ∈ )Ω × (0, T ],

(4)

where 0 < � < 1. When � → 1, Eq. (4) tends to parabolic (heat) equation. Laplace transform based on the FEM studied and
analyzed for the parabolic equation in12,13. Eq. (4) is known as sub-diffusive PDE9. The Laplace transform coupled with the
Chebyshev spectral collocation method is applied to recover solution of Eq. (4) in one-dimensional case.9. Uddin et al.10 worked
on Eq. (4) with use of the local meshless method.
Considering Eq. (3), again when(�) = �(� − �) Eq. (3) reduces to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C
0D

�
t u(x, t) = Δu(x, t) + f (x, t), (x, t) ∈ Ω × (0, T ],

u(x, 0) =  (x), x ∈ Ω,
)
)t
u(x, 0) = '(x), (x, 0) ∈ Ω,

u(x, t) = 0, (x, t) ∈ )Ω × (0, T ],

(5)

where 1 < � < 2. When � → 2, Eq. (5) tends to wave equation. The Laplace transform method combined with a localized
meshless method and was applied in11 for solving Eq. (5).
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1.1 Motivations
The main aim of the current work is to implement a numerical method for the solutions of equations (2) and (3). We use
the Laplace transform method based on the LDG method. The Laplace transform and time-marching methods have different
approaches for time discretization. The main restriction of the time-marching methods is Courant-Friedrichs-Lewy (CFL) con-
dition and here we employ the Laplace transform method via the LDG scheme to avoid the time-stepping issue. This method
not only can be applied parallelly but also maintains good accuracy. In Section 2 we will present a brief description of some
ideas which is needed later. Section 3 is dedicated to the implementation of the Laplace transform method based on the LDG
method. In Section 4 we present some numerical results for both equations (2) and (3). Section 5 includes the conclusion.

2 PRELIMINARIES

Definition 1. Caputo fractional derivative which is introduced by Michele Caputo34, is defined as

C
0D

�
t f (t) =

1
Γ(n − �)

t

∫
0

f (n)(z)
(t − z)�+1−n

dz, n − 1 < � ≤ n. (6)

Here, when 0 < � ≤ 1, for n = 1, Eq. (6) gives

C
0D

�
t f (t) =

1
Γ(1 − �)

t

∫
0

f ′(z)
(t − z)�

dz, 0 < � ≤ 1.

Also for n = 2 and 1 < � ≤ 2 the definition is

C
0D

�
t f (t) =

1
Γ(2 − �)

t

∫
0

f ′′(z)
(t − z)�−1

dz, 1 < � ≤ 2.

Theorem 1. 34 (Laplace transform formula for Caputo fractional derivative). Using definition 1, assuming � > 0, the Laplace
transform formula for the Caputo fractional derivative is as follows:

{C0D
�
t f (t)} = s

�F (s) −
n−1
∑

k=0
s�−k−1f k(0), n − 1 < � ≤ n, (7)

where F (s) is the Laplace transform of f (t).
Corollary 1. 34 When n = 1, 0 < � ≤ 1, then Eq. (7) reduces to

{C0D
�
t f (t)} = s

�F (s) − s�−1f (0), 0 < � ≤ 1,

and for n = 2, 1 < � ≤ 2, Eq. (7) gives

{C0D
�
t f (t)} = s

�F (s) − s�−1f (0) − s�−2f ′(0), 1 < � ≤ 2.

3 TIME DISCRETIZATION

This section is devoted to the time discretization of Eqs. (2) and (3). Sheen et al.12,13 presented Laplace transform approach
to solve partial differential equations for discretizing temporal term. The Laplace transform approach for time discretization
and continuous Galerkin finite element method is used33 for space discretization to recover the solutions of DOTF diffusion
equation. We follow the same approach that they have done but with some differences. Local discontinuous Galerkin is replaced
by Galerkin finite element method. That is; at first we review the approach followed in33, but LDG is used instead of Galerkin
FEM to achieve higher order accuracy. After that we implement the Laplace transform based on LDG method for distributed-
order time-fractional diffusion-wave equation. Also, the modified version of the method which is presented to find the solution
of heat equation in14 is applied for DOTF diffusion-wave equation.
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First case: Eq. (2). Applying the Laplace transform and Corollary 1 to Eq. (2) gives33

1

∫
0

(�)
(

s� (x, s) − s�−1u0
)

d� − Δ (x, s) =  (x, s),

and by simplifying it we obtain33

⎛

⎜

⎜

⎝

1

∫
0

(�)s� d�  − Δ
⎞

⎟

⎟

⎠

 (x, s) =
1

∫
0

(�)s�−1 d� u0 +  (x, s), (8)

in which  denotes the identity operator and (�) is a known function. Define m1(s) = ∫ 1
0 (�)s�d� and m2(s) =

∫ 1
0 (�)s�−1d�, which can be evaluated exactly or numerically. By substituting m1(s) and m2(s) in Eq. (8) we rewrite Eq. (8)
as33

(

m1(s) − Δ
)

 (x, s) = m2(s)u0 +  (x, s), (9)

which can be rewritten as

 (x, s) = "̂1(s)g1(s), (10)

where "̂1(s) =
(

m1(s) − Δ
)−1 and g1(s) = m2(s)u0 +  (x, s). We recover the solution by the inversion Laplace

u(t) = −1 { (x, s)} = 1
2�i ∫

Γ

est (x, s) ds, for t > 0, (11)

where the path of integration, Γ, is the line Real(s) = �, with � ≥ �0 > 0 and with an increasing imaginary part, i.e.

u(t) = −1 { (x, s)} = 1
2�i

�+i∞

∫
�−i∞

est (x, s) ds, for t > 0, � > �0.

The above integral is known as Bromwich integral9. When a contour of integration as s = s(� ) is considered we obtain

u(t) = −1 { (x, s)} = 1
2�i

∞

∫
−∞

es(� )t (x, s(� ))s′(� ) d�, (12)

and this integral is calculated numerically via well-known quadrature rules like trapezoidal rule with step size k as

uNLap
(t) = k

2�i

NLap
∑

j=−NLap

esj t (x, sj)s
′

j ,

in which sj = s(�j), s
′

j = s
′(�j), �j = jk and

 (x, sj) = "̂1(sj)g1(sj), −NLap ≤ j ≤ NLap. (13)

In all procedures following in this paper, we choose a contour integration like

s(� ) = �(i� + 1)2, −∞ < � <∞,

or
s(� ) = �(1 + sin(i� − c)), −∞ < � <∞,

where the parameters are optimized in9.
Second case: Eq. (3). Taking Laplace transform from Eq. (3) and applying Corollary 1 gives

�2

∫
�1

(�)
(

(s� (x, s) − s�−1u0 − s�−2u
′

0
)

d� − Δ (x, s) =  (x, s),
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and subsequently

⎛

⎜

⎜

⎝

�2

∫
�1

(�)s�d�  − Δ
⎞

⎟

⎟

⎠

 (x, s) =
�2

∫
�1

(�)s�−1d�u0 +

�2

∫
�1

(�)s�−2d�u′0 +  (x, s),

in which(�) is a known function, so we denote

m′

1(s) =

�2

∫
�1

(�)s�d�, m′

2(s) =

�2

∫
�1

(�)s�−1d�, m′

3(s) =

�2

∫
�1

(�)s�−2d�.

Note that m′i(s) can be evaluated exactly or numerically for i = 1, 2, 3. Then Eq. (12) can be simplified to
(

m′

1(s) − Δ
)

 (x, s) = m′

2(s)u0 + m
′

3(s)u
′

0 +  (x, s),

or briefly
 (x, s) = "̂2(s)g2(s),

where
"̂2(s) =

(

m′

1(s) − Δ
)−1

, g2(s) = m
′

2(s)u0 + m
′

3(s)u
′

0 +  (x, s).
By exactly the same procedure as in the first case the solution is recovered by using the inversion Laplace transform and the
associated integral is calculated via

ũNlap
(t) = k

2�i

Nlap
∑

j=−Nlap

esj t (x, sj)s
′

j ,

in which sj = s(�j), s
′

j = s
′(�j), �j = jk and

 (x, sj) = "̂2(sj)g2(sj), −Nlap ≤ j ≤ Nlap. (14)

Remark 1. The finite element method is a well-known technique for space discretization. But in this article local discontinuous
Galerkin method is used for spatial discretization to obtain a technique with high order accuracy. Here the discretization operator
that we will use is the one which has been introduced in35.

Remark 2. In mentioned method, the Laplace transform method combined with the LDGmethod, Eqs. (13) and (14) have to be
solved for each sj , −Nlap ≤ j ≤ Nlap. Also, all of these equations can be solved simultaneously. This is the main advantage of
this method which is called parallel method12,13. The reason of such naming is that these problems are completely independent.
Therefore, these equations can be solved on separate processors. In contrast, the time-marching methods are not able to be solved
parallelly12.

Remark 3. It is notable that in this procedure we need to evaluate the Laplace transform of the source term f (x, t) which might
be difficult. The authors of14 have modified this method in which the Laplace transform of the source term f (x, t) is no longer
needed. It is also used for fractional-order equations15,16.

We review this modification14,15,16 for first case. It’s straightforward for the second case. Putting f ≡ 0 in Eq. (9) gives
(

m1(s) − Δ
)

 (x, s) = m2(s)u0.

Therefore the solution of Eq. (9) is as follows
u(t) = "1(t)

(

m2(s)u0
)

,
where we define the operator "1(t) for an arbitrary function Q as

"1(t) (Q) =
1
2�i ∫

Γ

est
(

m1(s) − Δ
)−1 (Q) ds. (15)
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Now getting back to the inhomogeneous case, the solution can be obtained by (11) and Duhamel formula14,16

u(t) = "1(t)
(

m2(s)u0
)

+ 1
2�i ∫

Γ

est"̂1(s) (x, s) ds (16)

= "1(t)
(

m2(s)u0
)

+

t

∫
0

"1(t − �)f (x, �) d�.

Putting Eq. (15) in (16) gives

u(t) = 1
2�i ∫

Γ

(

m1(s) − Δ
)−1

⎛

⎜

⎜

⎝

estm2(s)u0 +

t

∫
0

es(t−�)f (x, �) d�
⎞

⎟

⎟

⎠

ds,

in which the path of integration, Γ, is the line Real(s) = �, with � ≥ �0 > 0 and with an increasing imaginary part, i.e.

u(t) = 1
2�i

�+i∞

∫
�−i∞

̃(x, s) ds, for t > 0, � > �0, (17)

where

̃(x, s) =
(

m1(s) − Δ
)−1

⎛

⎜

⎜

⎝

estm2(s)u0 +

t

∫
0

es(t−�)f (x, �) d�
⎞

⎟

⎟

⎠

.

As mentioned before, Eq. (17) is Bromwich integral. By considering a contour of integration as s = s(� ) we have

u(t) = 1
2�i

∞

∫
−∞

̃(x, s(� ))s′(� ) d�, (18)

in which

̃(x, s(� )) =
(

m1(s(� )) − Δ
)−1

⎛

⎜

⎜

⎝

es(� )tm2(s(� ))u0 +

t

∫
0

es(� )(t−�)f (x, �) d�
⎞

⎟

⎟

⎠

.

The integral (18) can be calculated numerically. By exactly the same method just used for Eq. (12), the numerical solution of
(2) can be evaluated as

ũNlap
(t) = k

2�i

Nlap
∑

j=−Nlap

̃(x, sj)s
′

j ,

which sj = s(�j), s
′

j = s
′(�j), �j = jk and

̃(x, sj) =
(

m1(sj) − Δ
)−1

⎛

⎜

⎜

⎝

esj tm2(sj)u0 +

t

∫
0

esj (t−�)f (x, �) d�
⎞

⎟

⎟

⎠

, −NLap ≤ j ≤ NLap. (19)

For the numerical integration (18), (19) have to be solved for each sj , −Nlap ≤ j ≤ Nlap. Now the LDG method can used to
discretize space. Notice that we can solve all of these equations simultaneously to take advantage of this method as mentioned
in Remark. 2.

4 RESULTS AND DISCUSSION

In this section, we present some examples to show the accuracy of the modified method. For each case, two examples are
provided. The order of accuracy and maximum andL2 errors of method are reported. More properly, the error norms are defined
as

L∞ = max
1≤i≤M

|ũi − u(xi, T )|, L22 = ∫
Ω

(ũ − u)2 dx,

in which T is final time and ũ and u are approximated and exact solutions of the equation, respectively.
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FIGURE 1 Numerical results (solid line) and exact solution (circular marks) of Example 1 for various final times.

4.1 Examples for the DOTF diffusion equation
Example 1. Here we present the numerical results of proposed method for time discretization of one-dimensional DOTF
diffusion Eq. (2) as follows

⎧

⎪

⎨

⎪

⎩

∫ 1
0 (�)C0D

�
t u(x, t)d� = Δu(x, t) + f (x, t), (x, t) ∈ Ω × (0, T ],

u(x, 0) =  (x), x ∈ Ω,
u(x, t) = 0, (x, t) ∈ )Ω × (0, T ].

(20)

Consider the exact solution u(x, t) = t3sin(2x) with x ∈ [−�, �] and (�) = Γ(4 − �). The numerical and exact solutions of
Eq. (2) are shown in Figure 1 for different final times. Also the errors in maximum norm are presented in Table 1 .

Example 2. For 2D example, two-dimensional DOTF diffusion equation is determined as

⎧

⎪

⎨

⎪

⎩

∫ 1
0 (�)C0D

�
t u(x, t)d� = Δu(x, t) + f, x = (x, y) ∈ Ω; t ∈ (0, T ],

u(x, 0) =  (x), x ∈ Ω,
u(x, t) = 0, (x, t) ∈ )Ω × (0, T ].

(21)

The exact solution u(x, y, t) = t3sin(�x)sin(�y) with Ω = [−1, 1] × [−1, 1] is considered for Eq. (2) with(�) = Γ(4− �). The
numerical results are shown in Figure 2 .

4.2 Examples for the DOTF diffusion-wave equation
Example 3. Suppose the following equation

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫ �2
�1

(�)C0D
�
t u(x, t)d� = Δu(x, t) + f (x, t), (x, t) ∈ Ω × (0, 1],

u(x, 0) =  (x), x ∈ Ω,
)
)t
u(x, 0) = '(x), (x, 0) ∈ Ω,

u(x, t) = 0, (x, t) ∈ )Ω × (0, 1],

(22)

has the exact solution u(x; t) = t4sin( �
2
x) with x ∈ [−2, 2] and(�) = Γ(5−�). In this one-dimensional DOTF diffusion-wave

equation �1 = 1 and �2 = 2. To depict the numerical and exact solutions of Eq. (22) we refer reader to Figure 3 . Also the errors
in maximum norm obtained by Laplace transform and the quadrature rule used are presented in Table 2 .
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(a) polynomial order=1 (b) polynomial order=2

(c) polynomial order=3 (d) polynomial order=4

FIGURE 2 Errors in maximum norm obtained for Example 2.

Example 4. Here the numerical results of two-dimensional DOTF diffusion-wave equation are presented. The exact solution is
u(x, y, t) = t4sin(�x)sin(�y) with Ω = [−1, 1] × [−1, 1]. In Eq. (3), (�) = Γ(5 − �) is considered. The numerical and exact
solutions of the Eq. (3) are shown in Figure 4 .

The results are shown in Tables 1 and 2 for some number of quadrature points, NLap, number of space elements, NLDG
and the degree of polynomials, p, that were applied. In Figures 5 and 6 , it can be observed that when ℎ is the size of space
elements, increasingNLap leads to get convergence rateO(ℎp+1). i.e. the results demonstrate that the proposed method suggested
that the order of accuracy is p + 1 in both the L2 and L∞ norms as we expected. Also, the errors of 2D examples are depicted
in Figures 2 and 4 with several polynomial orders.

5 CONCLUSION

In this paper we used the Laplace transform along with quadrature approach and obtained a parallel algorithm for distributed-
order fractional differential equations. We utilized the local discontinuous Galerkin method for the discretization of space and
Laplace transformwhich employed a quadrature formula for time discretization. To recover the solutions of time-dependent prob-
lems, we transformed equations to some time-independent problems by Laplace transform. The concluded stationary equations
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FIGURE 3 Numerical results (solid line) and exact solution (circular marks) of Example 3 for various final times.

can be solved by the LDG method to discretize diffusion operators at the same time. By using a numerical inversion of the
Laplace transform our solutions were recovered. The application of this method was to abandon the Courant-Friedrichs-Lewy
(CFL) condition for solving time-dependent PDEs. Also, the Laplace transform combined with FEM used extensively but we
substituted LDG instead of FEM to achieve a technique with high order accuracy. In fact, we used a modification of the method.
The accuracy of the modified method was confirmed by presenting some examples.
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