References
Bae, S.-J., Park, B. G., Kim, B.-G., & Hahn, J.-S. (2020). Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System.Biotechnology Journal, 15 (1), 1900238. doi:10.1002/biot.201900238
Cao, X., Wei, L.-J., Lin, J.-Y., & Hua, Q. (2017). Enhancing linalool production by engineering oleaginous yeast Yarrowia lipolytica.Bioresour Technol, 245 , 1641-1644. doi:https://doi.org/10.1016/j.biortech.2017.06.105
Celińska, E., Ledesma-Amaro, R., Larroude, M., Rossignol, T., Pauthenier, C., & Nicaud, J.-M. (2017). Golden Gate Assembly system dedicated to complex pathway manipulation in Yarrowia lipolytica.Microbial Biotechnology, 10 (2), 450-455. doi:10.1111/1751-7915.12605
Chen, D. C., Beckerich, J. M., & Gaillardin, C. (1997). One-step transformation of the dimorphic yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 48 (2), 232-235. doi:10.1007/s002530051043
Dobrowolski, A., Mituła, P., Rymowicz, W., & Mirończuk, A. M. (2016). Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresour Technol, 207 , 237-243.
Egermeier, M., Sauer, M., & Marx, H. (2019). Golden Gate-based metabolic engineering strategy for wild-type strains of Yarrowia lipolytica. FEMS Microbiology Letters, 366 (4). doi:10.1093/femsle/fnz022
El-Ashgar, N. M., El-Basioni, A. I., El-Nahhal, I. M., Zourob, S. M., El-Agez, T. M., & Taya, S. A. (2012). Sol-gel thin films immobilized with bromocresol purple pH-sensitive indicator in presence of surfactants. ISRN Analytical Chemistry, 2012 .
Gao, S., Tong, Y., Zhu, L., Ge, M., Zhang, Y., Chen, D., . . . Yang, S. (2017). Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metabolic Engineering, 41 , 192-201. doi:https://doi.org/10.1016/j.ymben.2017.04.004
Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison III, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature methods, 6 (5), 343.
Groenewald, M., Boekhout, T., Neuvéglise, C., Gaillardin, C., van Dijck, P. W. M., & Wyss, M. (2014). Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential. Critical Reviews in Microbiology, 40 (3), 187-206. doi:10.3109/1040841X.2013.770386
Han, J. Y., Seo, S. H., Song, J. M., Lee, H., & Choi, E.-S. (2018). High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains. J Ind Microbiol Biotechnol, 45 (4), 239-251.
Huang, Y.-Y., Jian, X.-X., Lv, Y.-B., Nian, K.-Q., Gao, Q., Chen, J., . . . Hua, Q. (2018). Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism.Journal of Biotechnology, 281 , 106-114. doi:https://doi.org/10.1016/j.jbiotec.2018.07.001
Jin, C.-C., Zhang, J.-L., Song, H., & Cao, Y.-X. (2019). Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering. Microbial Cell Factories, 18 (1), 77. doi:10.1186/s12934-019-1127-8
Larroude, M., Celinska, E., Back, A., Thomas, S., Nicaud, J.-M., & Ledesma-Amaro, R. (2018). A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene. Biotechnology and Bioengineering, 115 (2), 464-472. doi:10.1002/bit.26473
Larroude, M., Park, Y. K., Soudier, P., Kubiak, M., Nicaud, J. M., & Rossignol, T. (2019). A modular Golden Gate toolkit for Yarrowia lipolytica synthetic biology. Microb Biotechnol, 12 (6), 1249-1259. doi:10.1111/1751-7915.13427
Larroude, M., Trabelsi, H., Nicaud, J.-M., & Rossignol, T. (2020). A set of Yarrowia lipolytica CRISPR/Cas9 vectors for exploiting wild-type strain diversity. Biotechnology Letters . doi:10.1007/s10529-020-02805-4
Liu, G.-S., Li, T., Zhou, W., Jiang, M., Tao, X.-Y., Liu, M., . . . Wei, D.-Z. (2020). The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction. Metabolic Engineering, 57 , 151-161. doi:https://doi.org/10.1016/j.ymben.2019.11.001
Liu, H., Fan, J., Wang, C., Li, C., & Zhou, X. (2019). Enhanced β-Amyrin Synthesis in Saccharomyces cerevisiae by Coupling An Optimal Acetyl-CoA Supply Pathway. Journal Of Agricultural And Food Chemistry, 67 (13), 3723-3732. doi:10.1021/acs.jafc.9b00653
Liu, H., Marsafari, M., Deng, L., & Xu, P. (2019). Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica. Applied Microbiology and Biotechnology, 103 (7), 3167-3179. doi:10.1007/s00253-019-09664-8
Liu, H., Marsafari, M., Wang, F., Deng, L., & Xu, P. (2019). Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica.Metabolic Engineering, 56 , 60-68. doi:https://doi.org/10.1016/j.ymben.2019.08.017
Lv, Y., Edwards, H., Zhou, J., & Xu, P. (2019). Combining 26s rDNA and the Cre-loxP System for Iterative Gene Integration and Efficient Marker Curation in Yarrowia lipolytica. ACS Synthetic Biology, 8 (3), 568-576. doi:10.1021/acssynbio.8b00535
Lv, Y., Marsafari, M., Koffas, M., Zhou, J., & Xu, P. (2019). Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis. ACS Synthetic Biology, 8 (11), 2514-2523. doi:10.1021/acssynbio.9b00193
Ma, Y.-R., Wang, K.-F., Wang, W.-J., Ding, Y., Shi, T.-Q., Huang, H., & Ji, X.-J. (2019). Advances in the metabolic engineering of Yarrowia lipolytica for the production of terpenoids. Bioresour Technol, 281 , 449-456. doi:https://doi.org/10.1016/j.biortech.2019.02.116
Marsafari, M., & Xu, P. (2020). Debottlenecking mevalonate pathway for antimalarial drug precursor amorphadiene biosynthesis in Yarrowia lipolytica. Metabolic Engineering Communications, 10 , e00121. doi:https://doi.org/10.1016/j.mec.2019.e00121
Meadows, A. L., Hawkins, K. M., Tsegaye, Y., Antipov, E., Kim, Y., Raetz, L., . . . Xu, L. (2016). Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature, 537 (7622), 694.
Minard, K. I., Jennings, G. T., Loftus, T. M., Xuan, D., & McAlister-Henn, L. (1998). Sources of NADPH and expression of mammalian NADP+-specific isocitrate dehydrogenases in Saccharomyces cerevisiae.J Biol Chem, 273 (47), 31486-31493.
Minard, K. I., & McAlister-Henn, L. (2005). Sources of NADPH in yeast vary with carbon source. J Biol Chem, 280 , 39890-39896.
Moser, S., & Pichler, H. (2019). Identifying and engineering the ideal microbial terpenoid production host. Applied Microbiology and Biotechnology, 103 (14), 5501-5516. doi:10.1007/s00253-019-09892-y
Nowrousian, M., Kück, U., Loser, K., & Weltring, K.-M. (2000). The fungal acl1 and acl2 genes encode two polypeptides with homology to the N-and C-terminal parts of the animal ATP citrate lyase polypeptide.Current Genetics, 37 (3), 189-193.
Palmer, C. M., Miller, K. K., Nguyen, A., & Alper, H. S. (2020). Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy. Metabolic Engineering, 57 , 174-181. doi:https://doi.org/10.1016/j.ymben.2019.11.006
Palsuledesai, C. C., & Distefano, M. D. (2015). Protein Prenylation: Enzymes, Therapeutics, and Biotechnology Applications. ACS Chemical Biology, 10 (1), 51-62. doi:10.1021/cb500791f
Polakowski, T., Stahl, U., & Lang, C. (1998). Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biotechnol, 49 (1), 66-71.
Qiao, K., Wasylenko, T. M., Zhou, K., Xu, P., & Stephanopoulos, G. (2017). Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat Biotechnol, 35 (2), 173-177. doi:10.1038/nbt.3763
Rakicka, M., Biegalska, A., Rymowicz, W., Dobrowolski, A., & Mirończuk, A. M. (2017). Polyol production from waste materials by genetically modified Yarrowia lipolytica. Bioresour Technol, 243 , 393-399.
RODWELL, V. W., NORDSTROM, J. L., & MITSCHELEN, J. J. (1976). Regulation of HMG-CoA reductase. In Advances in lipid research(Vol. 14, pp. 1-74): Elsevier.
Seip, J., Jackson, R., He, H., Zhu, Q., & Hong, S.-P. (2013). Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica. Appl. Environ. Microbiol., 79 (23), 7360-7370.
Shimano, H. (2001). Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Progress in Lipid Research, 40 (6), 439-452. doi:https://doi.org/10.1016/S0163-7827(01)00010-8
Spanova, M., & Daum, G. (2011). Squalene – biochemistry, molecular biology, process biotechnology, and applications. European Journal of Lipid Science and Technology, 113 (11), 1299-1320. doi:10.1002/ejlt.201100203
Szabo, R. (1999). Dimorphism inYarrowia lipolytica: filament formation is suppressed by nitrogen starvation and inhibition of respiration.Folia Microbiologica, 44 (1), 19-24.
Thompson, A., Kwak, S., & Jin, Y.-S. (2014). Squalene production using Saccharomyces cerevisiae. i-ACES, 1 (1), 57-63.
van Rossum, H. M., Kozak, B. U., Pronk, J. T., & van Maris, A. J. (2016). Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: pathway stoichiometry, free-energy conservation and redox-cofactor balancing. Metabolic Engineering, 36 , 99-115.
Wagner, J. M., Williams, E. V., & Alper, H. S. (2018). Developing a piggyBac Transposon System and Compatible Selection Markers for Insertional Mutagenesis and Genome Engineering in Yarrowia lipolytica.Biotechnology Journal, 13 (5), 1800022. doi:10.1002/biot.201800022
Wasylenko, T. M., Ahn, W. S., & Stephanopoulos, G. (2015). The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab Eng, 30 .
Wong, L., Engel, J., Jin, E., Holdridge, B., & Xu, P. (2017). YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica. Metabolic Engineering Communications, 5 (Supplement C), 68-77. doi:https://doi.org/10.1016/j.meteno.2017.09.001
Wong, L., Holdridge, B., Engel, J., & Xu, P. (2019). Genetic Tools for Streamlined and Accelerated Pathway Engineering in Yarrowia lipolytica. In C. N. S. Santos & P. K. Ajikumar (Eds.), Microbial Metabolic Engineering: Methods and Protocols (pp. 155-177). New York, NY: Springer New York.
Xie, X., & Tang, Y. (2007). Efficient synthesis of simvastatin by use of whole-cell biocatalysis. Applied and Environmental Microbiology , 2054-2060. doi:DOI 10.1128/AEM.02820-06
Xu, J., Liu, N., Qiao, K., Vogg, S., & Stephanopoulos, G. (2017). Application of metabolic controls for the maximization of lipid production in semicontinuous fermentation. Proceedings of the National Academy of Sciences, 114 (27), E5308-E5316.
Xu, P., Qiao, K., Ahn, W. S., & Stephanopoulos, G. (2016). Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proceedings of the National Academy of Sciences, 113 (39), 10848-10853.
Xu, P., Qiao, K., & Stephanopoulos, G. (2017). Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnol Bioeng, 114 (7), 1521-1530.
Yang, Z., Edwards, H., & Xu, P. (2020). CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica. Metabolic Engineering Communications, 10 , e00112. doi:https://doi.org/10.1016/j.mec.2019.e00112
Zhang, M., Galdieri, L., & Vancura, A. (2013). The yeast AMPK homolog SNF1 regulates acetyl coenzyme A homeostasis and histone acetylation.Molecular and Cellular Biology, 33 (23), 4701-4717.