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Abstract

The paper investigates a class of exactly solvable third order nonlinear evolution
equation [16]. A list of unknown function F (u) is reported for which considered equa-
tion contains the nontrivial Lie point symmetries. Moreover, nonlinear self-adjointness
is discussed and it is examined that it is not strictly self-adjoint equation for phys-
ical parameter A 6= 0 but quasi self-adjoint or more generally nonlinear self-adjoint.
Additionally, it is observed that Calogero-Degasperis-Fokas (CDF) equation admits a
minimal set of Lie algebra under invariance criteria of Lie groups. These classes are
utilized one by one to construct the similarity variables to reduce the dimension of
the discussed equation. Additionally, Lie symmetries are used to exhibit the associ-
ated conservation laws. Henceforth, Lie symmetry reductions of CDF equation are
reported with the help of an optimal system. Meantime, this Lie symmetry method
reduces the considered equation into ordinary differential equations. Moreover, well-
known (G′/G)-expansion method is used to get the exact solutions. The obtained new
periodic and solitary wave solutions can be widely used to provide many attractive
complex physical phenomena in the different fields of sciences.
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1 Introduction

The importance of nonlinear evolution equations (NLEEs) in various phenomenons of basic
sciences such as physics, biology, chemistry, etc, is not cover for nobody, because the
mathematical modelling of most of these phenomenons lead to NLEEs. In this paper, a
class of exactly solvable third order nonlinear evolution equation [16] of the form:

ut + uxxx −Au3x − F (u)ux = 0, A ∈ R (1.1)

is considered, where u(x, t) is the amplitude of the relevant wave mode. Eq. (1.1) represents
different models with different choices of physical parameter A and unknown function F
[16]:
(i) For F = 0, Eq. (1.1) becomes

ut + uxxx −Au3x = 0, A ∈ R, (1.2)

which represents potential modified Korteweg-de Vries (KdV) equation.

(ii) For A = 0 and F = u, Eq. (1.1) becomes:

ut + uxxx − uux = 0, (1.3)

which describes KdV equation

(iii) For A = 0 and F = u2, Eq. (1.1) represents modified KdV equation of the form:

ut + uxxx − u2ux = 0, A ∈ R (1.4)

(iv) If A = 1
8 and the function F satisfies F ′′′(u) = 8AF ′(u) then Eq. (1.1) Calogero-

Degasperis-Fokas (CDF) equation takes the form [10]:

ut + uxxx −
1

8
u3x − (peu + qe−u)ux = 0. (1.5)

(v) Authors in [34] used exp-function method to construct generalized solitary and periodic
solutions of CDF equation of the form

ut +
1

4
uxxx −

3

4

uxuxx
u

+
3

8

u3x
u2

+
3

8
(αu2 +

β

u2
+ γ)ux = 0.

The work on CDF equation is done by many researchers because of its applications and
importance in applied sciences, like [37] derived soliton solutions to the CDF equations
using the improved tanh method, and the references therein.
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For the proper analysis of nonlinear differential equations with unknown functions, it is
well known practice to investigate such mathematical models via Lie classification [7]. For
such investigation classification of selfadjointness is considered to be equally handy tool
[7, 24, 26, 36] to see the problem in depth. Further, calculation of conservation laws play a
significant role in the study of NLEEs. The integrability for such mathematical equations
depends upon the number of conservation laws. The conservation laws are also helpful
in the numerical integration of partial differential equations. Conservation laws are the
vital part of Lie theory, which are discovered by Noether in 1918. It is well known that
the conservation laws have a significant importance in the study of physical phenomenon.
In literature many techniques are available to find the conservation laws, some of them
are [8, 25, 27, 35, 44, 45]. One of the motives of this article is to compute the conserved
quantities and also discover the conditions of nonlinear self-adjointness.

Consequently, obtaining the solutions of NLEEs is a main subject in all branches of sci-
ences. Among the possible solutions to NLEEs, there are certain special forms of solutions
known as solitary wave solutions (solitons) which may depend only on a single combina-
tion of variables. The concept of solitary waves solutions goes back to works of John Scott
Russell in 1834. To find more information about solitons, we refer the interested reader to
see [42].

The main structure of obtaining the soliton solutions is the comeback to inverse scatter-
ing transform [3] which Ablowitz and Clarkson studied for the integrability of the large field
of NLEEs. In the past years, many other powerful and direct methods have been developed
to find special solutions of NLEEs, such as the Backlund transformation [11], Hirota bilin-
ear method [17], numerical methods [14] and the Wronskian determinant technique [50].
With the help of the computer software, many algebraic methods were proposed, such as
the auxiliary equation method [6, 4], the modified Kudryashov method [18, 30], the first
integral method [12, 15], the general projective Riccati equation method [38, 39], the new
extended direct algebraic method [40, 23], the sine-Gordon expansion method [41, 48], the
sub-equation method [5, 29], the extended sinh-Gordon equation expansion method [9, 46],
the Khater method [33, 43], the Jacobi elliptic function expansion method [32, 47] and
many more.

In 2008, Wang et al. [49] introduced the (G′/G)–expansion method and reached the
traveling wave solution. Since it was a simple method, it was widely used to obtain various
exact solutions of NLEEs [1, 2, 22, 28, 31, 49]. Its strategy is reducing the integrable
NLEEs to a second-order differential equation with constant coefficients and then by using
a simple algebraic computation, the solitary wave solutions of NLEEs can be obtained.
The concept of integrability of NLEEs is discussed by F. Calogero in [13].

The main objective of the paper in hand is to consider Eq. (1.1) by means of Lie
group classification, nonlinear self-adjointness, conserved vectors of CDF Eq. (1.1) and
the application of the (G′/G)–expansion method to obtain the exact solutions of a special
class of CDF Eq. (1.1).

The outline of the paper in hand is as follows: Preliminaries are presented in Section 2,
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nonlinear self-adjointness and conservation laws are given in Section 3. Group classification,
equivalence transformations are given in Section 4. Section 5 is devoted for the travelling
wave solutions of the Calogero-Degasperis-Fokas equation.

2 Preliminaries

Before presenting the main procedure, we recall some operators and definitions to be used
from the literature [7, 19, 20, 21, 26, 36]. Here x = (x1, x2, ..., xn) is an independent variable
while u = u(x) is a dependent variable and u(r) represents rth derivative of u. The vector
space A is of all differential functions of finite order.

2.1 Nonlinear self-adjointness and conservation laws

Suppose a PDE of the form:

E(x, u(1), u(2), ..., u(r)) = 0, E ∈ A, (2.1)

where the adjoint equation of Eq. (2.1) is:

E∗(x, u, v, u(1), u(2), ..., u(r), v(r)) =
δ(L)

δu
= 0 (2.2)

with L = vE, where

δ

δu
=

∂

∂u
+
∞∑
r=1

(−1)rDi1 ...Dir

∂

∂ui1...ir

denotes the Euler-Lagrange operator, while

Di =
∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj
+ ...·

A conserved vector T = T i for the system comprised by Eqs. (2.1)-(2.2) is given by [19, 20]

T i = ξiL+W [
∂L
∂ui
−Dj(

∂L
∂uij

) +DkDj(
∂L
∂uijk

)−DlDkDj(
∂L
∂uijkl

) + · · · ]

+Dj(W )[
∂L
∂uij

−Dk(
∂L
∂uijk

) + · · · ] +DkDj(W )[
∂L
∂uijk

−Dl(
∂L
∂uijkl

) + · · · ] + · · · , (2.3)

here W = φ− ξjuj is the Lie characteristic function and L is Lagrangian.

Definition 1. The Eq. (2.1) will be strictly self-adjoint if its adjoint Eq. (2.2) obtained
by the substitution v = u becomes identical to the Eq. (2.1) [21], i.e;

E∗|v=u = λ(x, u, ...)E, for some λ ∈ A.
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Definition 2. The Eq. (2.1) is said to be quasi self-adjoint if its adjoint Eq. (2.2) obtained
by the substitution v = ψ(u), for some ψ(u) 6= 0, is identical with the Eq. (2.1) [20, 21, 26];
that is

E∗|v=ψ(u) = λ(x, u, ...)E, for some λ ∈ A.

Definition 3. Eq. (2.1) is called weakly self-adjoint if the equation obtained from adjoint
Eq. (2.2) by the substitution v = ψ(x, u) with ψu 6= 0 and ψxi 6= 0 for some xi, is identical
to the Eq. (2.1) [26]; that is

E∗|v=ψ(x,u) = λ(x, u, ...)E, for some λ ∈ A.

Authors in [26] generalized all above three definitions in a fourth definition as follows.

Definition 4. The Eq. (2.1) is said to be nonlinearly self-adjoint if the equation obtained
from adjoint Eq. (2.2) by the substitution v = ψ(x, u) with ψ(x, u) 6= 0, is identical to the
original Eq. (2.1) [26]; that is

E∗|v=ψ(x,u) = λ(x, u, ...)E, for some λ ∈ A.

2.2 Description of the (G′/G)–expansion method

In this section, we briefly explain the application of (G′/G)–expansion method for solving
certain NLEEs. For a given NLEEs of the form

P (u, ux, ut, uxx, uxt, utt, ...) = 0, (2.4)

where P is a polynomial in its arguments, the transformation u(x, t) = U(ξ), ξ = x− ωt,
reduces Eq. (2.4) to a nonlinear ordinary differential equation

P (U,U ′,−ωU ′, U ′′,−ωU ′′, ω2U ′′, ...) = 0, (2.5)

where U = U(ξ), and prime denotes derivative with respect to ξ. We assume that the
solution of Eq. (2.5) can be expressed by a polynomial in (G′/G) as follows:

U(ξ) =
m∑
n=1

αn

(
G′(ξ)
G(ξ)

)n
+ α0, αm 6= 0. (2.6)

where αn, for n = 0, 1, 2, ...,m, are constants to be determined later and G(ξ) satisfies a
second order linear ordinary differential equation:

d2G(ξ)
dξ2

+ λdG(ξ)
dξ + µG(ξ) = 0, (2.7)

where λ and µ are arbitrary constants. Using the general solutions of Eq. (2.7), we have

G′(ξ)

G(ξ)
=


√
λ2−4µ
2

(
C1 sinh(

√
λ2−4µ
2

ξ)+C2 cosh(

√
λ2−4µ
2

ξ)

C1 cosh(

√
λ2−4µ
2

ξ)+C2 sinh(

√
λ2−4µ
2

ξ)

)
− λ

2 , λ2 − 4µ > 0,

√
4µ−λ2
2

(
−C1 sin(

√
4µ−λ2
2

ξ)+C2 cos(

√
4µ−λ2
2

ξ)

C1 cos(

√
4µ−λ2
2

ξ)+C2 sin(

√
4µ−λ2
2

ξ)

)
− λ

2 , λ2 − 4µ < 0,

(2.8)
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and it follows, from (2.6) and (2.7), that

U ′ = −
m∑
n=1

n αn

(
(G
′

G )n+1 + λ(G
′

G )n + µ(G
′

G )n−1
)
,

U ′′ =
m∑
n=1

n αn

(
(n+ 1)(G

′

G )n+2 + (2n+ 1)λ(G
′

G )n+1 + n(λ2 + 2µ)(G
′

G )n

+ (2n− 1)λµ(G
′

G )n−1 + (n− 1)µ2(G
′

G )n−2
)
,

(2.9)

and so on, here the prime denotes the derivative with respective to ξ. To determine u
explicitly, we take the following four steps:

Step 1. Determine the integer m by substituting Eq. (2.6) along with Eq. (2.7) into
Eq. (2.5), and balancing the highest order nonlinear term(s) and the highest order partial
derivative.

Step 2. Substitute Eq. (2.6) to get the value of m determined in Step 1, along with
Eq. (2.7) into Eq. (2.5) and collect all terms with the same order of (G′/G) together,
the left-hand side of Eq. (2.5) is converted into a polynomial in (G′/G). Then set each
coefficient of this polynomial to zero to derive a set of algebraic equations for ω, λ, µ, αn
for n = 0, 1, 2, ...,m.

Step 3. Solve the system of algebraic equations obtained in Step 2, for ω, λ, µ, α0, ..., αm
using Maple 12.

Step 4. Use the results obtained in above steps to derive a series of fundamental
solutions u(ξ) of Eq. (2.5) depending on (G′/G), since the solutions of Eq. (2.7) have been
well known for us, so we can obtain exact solutions of Eq. (2.4).

3 Point symmetries and equivalence transformations

3.1 Lie point symmetries

The one parameter Lie group of infinitesimal transformations are:

t̃ = t+ sτ(t, x, u) +O(s2),

x̃ = x+ sξ(t, x, u) +O(s2),

ũ = u+ sφ(t, x, u) +O(s2),

where s is the group parameter and τ , ξ and φ are the infinitesimals of the transformations
for the independent variables t, x and dependent variable u respectively.

The associative vector field for Eq. (1.1) is:

X = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ φ(t, x, u)

∂

∂u
. (3.1)
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After applying Lie’s symmetry criteria, one can have

X [3]

{
ut + uxxx −Aux3 − F (u)ux

}
|Eq. (1.1)= 0, (3.2)

where X [3] is the 3rd prolongation of (3.1) and defined as:

X [3] = X + φt∂ut + φx∂ux + φx
2
∂ux2 + ...+ φx

3
∂ux3 . (3.3)

In (3.3), ∂ut = ∂
∂ut

and so on, while

φt = Dt(φ− τut − ξux) + ξuxt + τut2 ,

φx = Dx(φ− τut − ξux) + ξux2 + τuxt,

where Dt and Dx are the total derivatives with respect to t and x respectively. The reader
is referred to [36] for the definition and properties of Lie point symmetries.

The condition (3.2) yields a system of following linear PDEs with τ = τ(t), ξ = ξ(t, x)
and φ = a :

(i) ξxx = 0, (ii) τt − 3ξx = 0, (iii) − Fuφ− Fτt + Fξx − ξxxx − ξt + 3φxxu = 0. (3.4)

Differentiating Eq. (3.4(iii)) with respect to u and some manipulations yields to the fol-
lowing two cases:

(i) Fu 6= 0, (ii) Fu = 0.

3.1.1 Fu 6= 0

For this case, we get:(
Fu
Fuu

)
u

= 0. (3.5)

The solutions of Eq. (3.5) yield the following functions

(i) F (u) = aebu + c, (ii) F (u) = au+ b.

Now we discuss the different forms of F (u), up to equivalence transformations, which
lead to an extension of the principal Lie algebra of Eq. (1.1) for A 6= 0.

3.1.2 When F (u) is arbitrary, (Minimal symmetry algebra)

The minimal algebra for the arbitrary case is:

X1 =
∂

∂t
, X2 =

∂

∂x
. (3.6)

and appeared in all the rest of the considered cases, thus we shall only present the additional
algebra(s).
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3.1.3 F (u) = aebu + c

For this case the principal algebra extends and additional generator will be:

X3 = −3bt
∂

∂t
+ (2ct− x)b

∂

∂x
+ 2

∂

∂u
. (3.7)

3.1.4 F (u) = (au+ b)

In this case, additional generators will be:

X3 = −at ∂
∂x

+
∂

∂u
. (3.8)

3.1.5 Fu = 0, (Maximal symmetry algebra)

Taking F (u) = a the principal algebra extends and additional generators will be:

X3 =
∂

∂u
, X4 = t

∂

∂t
+

1

3
(x− 2at)

∂

∂x
. (3.9)

3.2 One dimensional optimal systems

Next task is to classify Lie algebra L = {Xi, Xj} into its subalgebras up to conjugacy
classes. For this purpose some basic definitions are taken from the literature [36].

1: A subspace £i of a Lie algebra [36] £ is said to be a Lie subalgebra if it is closed
under Lie bracket or Lie commutator which is

[Xi, Xj ] = Xj(Xi)−Xi(Xj),

where Xi and Xj are Lie point symmetry generators.
Using the definition of subalgebra one can easily conclude that there are infinite number

of one dimensional subalgebras of L. It should be noted that £i and £j are said to be
equivalent conjugacy classes if

£i = Ad Xi(£j),

where Xi ∈ L and

Ad

[
exp(tXi)

]
Xj = Xj − t[Xi, Xj ] +

t2

2

[
Xi, [Xi, Xj ]

]
− · · · .

As Lie algebra L = {X1,X2} holds:

[X1,X2] = 0, (3.10)
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where [, ] is called Lie bracket which can be defined as follows:

[Xi, Xj ] = Xj(Xi)−Xi(Xj),

while Xi and Xj are Lie point symmetry generators.

For X1 and X2 which satisfy (3.10), the one dimensional optimal system [36] is:

< X1 >, < X2 >, < X1 + ωX2 > .

3.3 Reduction by using optimal systems

In this section, all possible similarity reductions via similarity variables are computed for
Eq. (1.1) for arbitrary choice of F .

3.3.1 £1 =< X1 >

For this case, one can have

ξ = t, u = V (ξ),

which gives constant solution.

3.3.2 £2 =< X2 >

For this class, one can obtain

ξ = x, u = v(ξ), (3.11)

where V is the solution of

v
′′′ −A(v

′
)3 − F (v)v

′
= 0. (3.12)

where v
′

= dv
dξ and so on.

3.3.3 £3 =< X1 + ωX2 >

For this class, one can easily get

ξ = x− ωt, u = v(ξ),

where v is the solution of

−ωv′ + v
′′′ −A(v

′
)3 − F (v)v

′
= 0. (3.13)
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4 Nonlinear Self-Adjointness and Conserved Vectors

4.1 The nonlinear self-adjointness classification

To investigate whether Eq. (1.1) for arbitrary F (u), is strictly self-adjoint Def. (1), quasi
self-adjoint Def. (2), weak self-adjoint Def. (3) or nonlinear self-adjoint Def. (4), we have
it Lagrangian

L = v[ut + uxxx −Aux3 − F (u)ux] = 0, (4.1)

and adjoint equation of Eq. (1.1) is calculated as

E∗ = −vt − vxxx + 3Avxux
2 + 6Avuxuxx + vxF (u). (4.2)

Result 1. Eq. (1.1) is not strictly self-adjoint for A 6= 0 but strictly self-adjointness exists
for Eq. (1.1) by keeping A = 0.

Result 2. Eq. (1.1) is a quasi self-adjoint or more generally a nonlinearly self-adjoint
equation for

v = ψ(u) = pe
√
2Au + qe−

√
2Au, with p, q ∈ R. (4.3)

4.2 Conserved Vectors

The conserved vectors for above symmetry generators are calculated next. Here, we will
omit the term ξiL from (2.3) as it provides a trivial conserved vector of the equation.

4.2.1 Conserved quantities for minimal symmetry algebra

In this section, we will compute the conserved vectors via minimal set of Lie point symme-
tries given in Eq. (3.6) for arbitrary F (u) and v = ψ(u) from Eq. (4.3).

(I) For this case, components of conserved vector T1 for X1 are:

T t1 = −ψut,

T x1 = 3Aψutu
2
x + ψutF (u)− ut(ψuuxx + ψuuu

2
x) + utxψuux − utxxψ, (4.4)

where ψ is given in Eq. (4.3).

(II) The conserved vectors for X2 are:

T t2 = −ψux,

T x2 = 3Aψu3x + ψuxF (u)− ux(ψuuxx + ψuuu
2
x) + uxxψuux − uxxxψ. (4.5)

where ψ is same as presented in Eq. (4.3).
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5 Application of (G′/G)–expansion method to CDF equation

In this section, we will apply the (G′/G)–expansion method to find the solitary wave
solutions of a special class of CDF Eq. (1.1). By setting A = 1

8 and F (u) = peu + qe−u in
Eq. (1.1), we get Eq. (3.13) of the form

−ωv′ + v
′′′ −A(v

′
)3 − (pev + qe−v)v

′
= 0. (5.1)

where pq 6= 0.
By using the transformation v(ξ) = lnV (ξ) in Eq. (5.1), we get the following equation:

(−ωV ′ + V ′′′)V 2 − 3V V ′V ′′ + 15
8 (V ′)3 − V V ′(pV 2 + q) = 0. (5.2)

According to Step 1, we put 3m+ 3 = 4m+ 1, hence m = 2. Therefor, we assume that the
solution of Eq. (5.2) can be expressed by a polynomial in (G′/G) as follows:

V = α2(
G′

G )2 + α1(
G′

G ) + α0, α2 6= 0, (5.3)

where G(ξ) satisfies a second order linear ordinary differential Eq. (2.7) and α2, α1, α0, are
unknown to be determined later.

Substituting Eq. (5.3) into Eq. (5.2) and collecting all terms with the same order of
(G′/G) together, the left-hand side of Eq. (5.2) is converted into a polynomial in (G′/G).
Equating each coefficient of this polynomial to zero yields a set of simultaneous algebraic
equations for λ, µ, ω, α0, α1 and α2. Solving the system of algebraic equations with the aid
of Maple 12, we obtain the following three general results.

5.1 Case 1

The first set of obtained results is{
µ = ±2

3

√
pq, ω = ∓2

3

√
pq − 1

2λ
2, α0 = 0, α1 = 0, α2 = 3

2p

}
(5.4)

where λ is an arbitrary constant. Therefore, substituting the above case in Eq. (5.3), we
get

V (ξ) = 3
2p(G

′

G )2, (5.5)

where ξ = x ± 2
3

√
qp t + 1

2λ
2t. Substituting the general solutions (2.8) into Eq. (5.5), we

can obtain the following three types of solitary wave solutions of of Eq. (1.5) with respect
to the value of D1 = λ2 − 4µ.

Firstly, assume that D1 = λ2 − 4µ = 1
6

(
9λ2 ∓ 24

√
pq
)
> 0, then using the relationship

(5.5) and relationship v(ξ) = lnV (ξ), we obtain hyperbolic function solution vH, of time
dependent CDF Eq. (1.5) as follows:

v±H(ξ) = ln
(

3
2p(G

′

G )2±

)
, (5.6)
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where

(G
′

G )± = 1
6

√
9λ2∓24√pq

(
C1 sinh(

1
6

√
9λ2∓24√pq ξ)+C2 cosh(

1
6

√
9λ2∓24√pq ξ)

)
C2 sinh(

1
6

√
9λ2∓24√pq ξ)+C1 cosh(

1
6

√
9λ2∓24√pq ξ)

− 1
2λ, (5.7)

and ξ = x± 2
3

√
qp t+ 1

2λ
2t, and C1, C2, λ are arbitrary constants. It is easy to see that the

hyperbolic solution (5.7) can be rewritten at C2
1 > C2

2 , as follows

u±H(x, t) = ln

(
1

24p

(√
9λ2 ∓ 24

√
pq tanh(16

√
9λ2 ∓ 24

√
pq ξ + ηH)− 3λ

)2)
, (5.8a)

while at C2
1 < C2

2 , one can obtain

u±H(x, t) = ln

(
1

24p

(√
9λ2 ∓ 24

√
pq coth(16

√
9λ2 ∓ 24

√
pq ξ + ηH)− 3λ

)2)
, (5.8b)

where ξ = x± 2
3

√
qp t+ 1

2λ
2t, and λ, ηH = tanh−1

(
C1
C2

)
, are arbitrary constants.

Now, when D1 = λ2−4µ = 1
6

√
9λ2 ∓ 24

√
pq < 0, using the relationship v(ξ) = lnV (ξ),

we obtain trigonometric function solution UT , of Eq. (??) as follows:

v±T (ξ) = ln
(

3
2p(G

′

G )2±

)
, (5.9)

where

(G
′

G )± = 1
6

√
±24√pq−9λ2

(
−C1 sin(

1
6

√
±24√pq−9λ2 ξ)+C2 cos(

1
6

√
±24√pq−9λ2 ξ)

)
C2 sin(

1
6

√
±24√pq−9λ2 ξ)+C1 cos(

1
6

√
±24√pq−9λ2 ξ)

− 1
2λ, (5.10)

and ξ = x± 2
3

√
qp t+ 1

2λ
2t, and C1, C2, λ are arbitrary constants. Similarity, it is easy to

see that the trigonometric solution (5.9) can be rewritten at C2
1 > C2

2 , and C2
1 < C2

2 , as
follows

u±T (x, t) = ln
( 1

24p

(√
±24
√
pq − 9λ2 tan(16

√
±24
√
pq − 9λ2 ξ + ηT )− 3λ

)2)
(5.11a)

and

u±T (x, t) = ln
( 1

24p

(√
9λ2 ∓ 24

√
pq cot(16

√
±24
√
pq − 9λ2 ξ + ηT )− 3λ

)2)
(5.11b)

respectively, where ξ = x± 2
3

√
qp t+ 1

2λ
2t, and λ, ηT = tan−1

(
C1
C2

)
, are arbitrary constants.

Finally, when D1 = λ2 − 4µ = 0, we obtain the following solution

u(x, t)± = ln

(
3

2p

( C2

C1 + C2(x± 2
√
pq t)

− 1

3

√
6
√
pq
)2)

, (5.12)

where C1 and C2 are arbitrary constants.
The graphics of positive kind of hyperbolic solution (5.8b), trigonometric solution

(5.11b) and rational solution (5.12) for p = q = 1
2 , λ = 1, C1 =

√
2 and C2 =

√
3 are

shown in Figure 1.
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5.2 Case 2

The second set of obtained results is{
λ =

α2
1p

2+9µ±6√pq
3α1p

, ω = 1
18

(
18µ− α2

1p
2 ± 24

√
pq
)
− 81µ2±108µ√pq+36pq

18α2
1p

2 , α0 = 1
6α

2
1p, α2 = 3

2p

}
(5.13)

where µ and α1 6= 0 are arbitrary constants. Therefore, substitute the above case in (5.3),
and using relationship v(ξ) = lnV (ξ), we get

v±(ξ) = ln
(

3
2p(G

′

G )2± + α1(
G′

G )± + 1
6α

2
1p
)
, (5.14)

where

ξ = x+ 1
8(α2

1p
2 − 18µ∓ 24

√
pq)t+

81µ2±108µ√pq+36pq

α2
1p

2 t. (5.15)

According to second set of results (5.13), we have

D2 = λ2 − 4µ = 1
6

(
(α2

1p
2 − 18µ± 12

√
pq) +

81µ2±108µ√pq+36pq

α2
1p

2

)
. (5.16)

Similar as previous case, in the first step, assume that D2 = λ2−4µ > 0, then the expression
(G
′

G )± with respect to second set of results (5.13) will be

(
G′

G
)± =

√
D2

(
C1 sinh(

√
D2 ξ) + C2 cosh(

√
D2 ξ)

)
C2 sinh(

√
D2 ξ) + C1 cosh(

√
D2 ξ)

−
α2
1p

2 + 9µ± 6
√
pq

6α1p
, (5.17)

where ξ and D2 are mentioned in (5.15) and (5.16) respectively, and C1, C2, µ and α1 6= 0
are arbitrary constants. It is easy to see that the hyperbolic solution (5.14) can be rewritten
at C2

1 > C2
2 , and C2

1 < C2
2 , as follows

u±H(x, t) = ln

(
3

2p

(√
D2 tanh(12

√
D2 ξ + ηH)−

α2
1p

2 + 9µ± 6
√
pq

6α1p

)2
+ α1

(√
D2 tanh(12

√
D2 ξ + ηH)−

α2
1p

2 + 9µ± 6
√
pq

6α1p

)
+ 1

6α
2
1p

) (5.18a)

and

u±H(x, t) = ln

(
3

2p

(√
D2 coth(12

√
D2 ξ + ηH)−

α2
1p

2 + 9µ± 6
√
pq

6α1p

)2
+ α1

(√
D2 coth(12

√
D2 ξ + ηH)−

α2
1p

2 + 9µ± 6
√
pq

6α1p

)
+ 1

6α
2
1p

)
,

(5.18b)

where ξ and D2 are mentioned in (5.15) and (5.16) respectively, µ, α1 6= 0 and ηH =

tanh−1
(
C1
C2

)
are arbitrary constants.
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Next, when D2 = λ2 − 4µ < 0, then the expression (G
′

G )± will be

(
G′

G
)± =

√
−D2

(
− C1 sin(

√
−D2 ξ) + C2 cos(

√
−D2 ξ)

)
C2 sin(

√
−D2 ξ) + C1 cos(

√
−D2 ξ)

−
α2
1p

2 + 9µ± 6
√
pq

6α1p
, (5.19)

where ξ and D2 are mentioned in (5.15) and (5.16) respectively, C1, C2, µ and α1 6= 0 are
arbitrary constants.

Similarly, the trigonometric solution (5.14) can be written for C2
1 > C2

2 , and C2
1 < C2

2 ,
as

u±T (x, t) = ln

(
3

2p

(√
−D2 tan(12

√
−D2 ξ + ηT )−

α2
1p

2 + 9µ± 6
√
pq

6α1p

)2
+ α1

(√
−D2 tan(12

√
−D2 ξ + ηT )−

α2
1p

2 + 9µ± 6
√
pq

6α1p

)
+ 1

6α
2
1p

)(5.20a)

and

u±T (x, t) = ln

(
3

2p

(√
−D2 cot(12

√
−D2 ξ + ηT )−

α2
1p

2 + 9µ± 6
√
pq

6α1p

)2
+ α1

(√
−D2 cot(12

√
−D2 ξ + ηT )−

α2
1p

2 + 9µ± 6
√
pq

6α1p

)
+ 1

6α
2
1p

)
,

(5.20b)

respectively. Here ξ and D2 are mentioned in (5.15) and (5.16), µ, α1 6= 0 and ηT =

tan−1
(
C1
C2

)
, are arbitrary constants.

Eventually, when D1 = λ2 − 4µ = 0, then we obtain the following solution

u±(x, t) = ln

(
3

2p

( C2

C1 + C2(x− 2
√
pq t)

− 1

3
α1p±

√
−6
√
pq
)2

+ α1

( C2

C1 + C2(x− 2
√
pq t)

− 1

3
α1p±

√
−6
√
pq
)

+ 1
6α

2
1p

)
,

(5.21)

where C1, C2 and α1 6= 0 are arbitrary constants.
Again as previous case, for p = q = 1

2 , C1 =
√

2, C2 =
√

3, the graphics of positive kind
of hyperbolic solution (5.18b) for µ = 1 are shown in Figure 2(a), trigonometric solution
(5.20b) and rational solution (5.21) for µ = 1

2 are shown in Figure 2(b) and Figure 2(c)
respectively.

5.3 Case 3

The third set of obtained results is{
µ = 0, λ = 1

3α1p± 2

√
pq

α1p
, ω = 2

9

(
α2
1p

2 ± 6
√
pq
)
− 5α4

1p
3 + 36q

18α2
1p

, α0 = 1
6α

2
1p, α2 = 3

2p

}
(5.22)
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where α1 6= 0 is an arbitrary constant. Therefore, using relationship v(ξ) = lnV (ξ), we get

v±(ξ) = ln
(

3
2p(G

′

G )2± + α1(
G′

G )± + 1
6α

2
1p
)
, (5.23)

where

ξ = x− 2
9(±α2

1p
2 + 6

√
pq)t+

5α4
1p

3+36q

α2
1p

t. (5.24)

and the parameter D3 = λ2 − 4µ will be

D3 = λ2 − 4µ = 1
6

(
(±α2

1p
2 + 6

√
pq)2

α2
1p

2

)
. (5.25)

It is easy to see that the parameter D3 always will be positive, then the only possible
expression (G

′

G )± with respect to third set of results (5.22) in case 3 will be

(
G′

G
)± =

√
D3

(
C1 sinh(

√
D3 ξ) + C2 cosh(

√
D3 ξ)

)
C2 sinh(

√
D3 ξ) + C1 cosh(

√
D3 ξ)

− 1

6
α1p∓

√
pq

α1p
, (5.26)

where ξ and D3 are mentioned in (5.24) and (5.25) respectively, C1, C2 and α1 6= 0
are arbitrary constants. Therefore, the hyperbolic solution of (5.23) can be rewritten for
C2
1 > C2

2 , and C2
1 < C2

2 , as follows

u±H(x, t) = ln

(
3

2p

(√
D2 tanh(12

√
D2 ξ + ηH)− 1

6
α1p∓

√
pq

α1p

)2
+ α1

(√
D2 tanh(12

√
D2 ξ + ηH)− 1

6
α1p∓

√
pq

α1p

)
+ 1

6α
2
1p

) (5.27a)

and

u±H(x, t) = ln

(
3

2p

(√
D2 coth(12

√
D2 ξ + ηH)− 1

6
α1p∓

√
pq

α1p

)2
+ α1

(√
D2 coth(12

√
D2 ξ + ηH)− 1

6
α1p∓

√
pq

α1p

)
+ 1

6α
2
1p

)
,

(5.27b)

where ξ and D2 are mentioned in (5.24) and (5.25) respectively, α1 6= 0 and ηH =

tanh−1
(
C1
C2

)
are arbitrary constants.

Finally, from D1 = λ2 − 4µ = 0, we get α1 = ±
√

6
√
pq

p2
then the following solution can

be obtain

u±(x, t) = ln

(
3

2p

C2
2

(C1 + C2(x+ 2pq√
pq t))

2
±

√
6
√
pq

p2
C2

C1 + C2(x+ 2pq√
pq t)

+

√
pq

p

)
. (5.28)

where C1, C2 and α1 6= 0 are arbitrary constants.
Similarly, as previous cases, for p = q = 1

2 , α1 = 1, λ = 2, C1 =
√

2 and C2 =
√

3,
the graphics of positive kind of hyperbolic solution (5.27b) and rational solution (5.28) are
shown in Figure 3(a)and Figure 3(b) respectively.
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6 Conclusions

In this paper, Lie classification for a class of exactly solvable third order nonlinear evolution
equation [16] is carried out. The nonlinear self-adjointness is also investigated proving it
a quasi self-adjoint equation and conserved vectors are computed for the set of minimal
Lie algebra. Further, a Calogero–Degasperis–Fokas equation is introduced and the solitary
wave solutions of mentioned equation are obtained via (G′/G)-expansion method. The
reliability of the method and the reduction in the size of computational domain give this
method a wider applicability. With the aid of Maple 12, we have assured the correctness
of the obtained solutions by putting them back into the original equation. We hope that
obtained solutions will be useful for further studies in applied sciences and engineering.
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