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Abstract A mixed boundary value problem for the Láme equation in a thin layer
Ωh : C × [−h, h] around a surface C with the Lipshitz boundary is investigated. The
main goal is to find out what happens when the thickness of the layer tends to zero
h → 0. To this end we reformulate BVP into an equivalent variational problem and
prove that the energy functional has the Γ -limit being the energy functional on the
mid-surface C . The corresponding BVP on C , considered as the Γ -limit of the initial
BVP, is written in terms of Günter’s tangential derivatives on C and represents a new
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initial BVP on the upper and lower surfaces transforms into a right-hand side term of
the basic equation of the limit BVP.
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Introduction

In the present paper we study a mixed boundary value problem for the Láme equation
in a thin layerΩh := C × [−h, h] of thickness 2h around a smooth mid-hypersurface
C ⊂ (R)3 written in terms of Gúnter’s derivatives and the energy functional as-
sociated to it. We show that when thickness of the layer tends to zero h → 0, the
corresponding energy functional, scaled properly, converges in the Γ -limit sense
to some functional defined on mid-surface C of the layer, which corresponds to
two-dimensional boundary value problem for associated Euler–Lagrange equation
in terms of Gúnter’s derivatives. The obtained equations together with boundary con-
ditions can be considered as a boundary value problem defined on a shell model.

Different models of shells were investigated already in nineteenth century by a
mathematical justification of the well-known two-dimensional linear Kirchhoff-Love
theory of plates [17]. This theory was obtained by retaining the linear terms in the in-
plane displacement components and only the constant in the normal displacement as
the thickness of the plate approaches zero. There exist a number of approaches pro-
posed for modeling linearly elastic shells. Started by the classical work of brother E.
and P. Cosserats [3], many authors contributed the development of the shell theories
(see [15], [18], [21], [19], [16], [6] and references therein).

In 1960s, the first attempts were made to apply formal asymptotic methods in
linearized elasticity [15]. Shortcoming of these attempts was the lack of convergence
theorems of the scaled three-dimensional solution to the leading term of its formal
expansion as thickness of the layer tends to zero, because in these works the asymp-
totic method was applied directly to the partial differential equations of the three-
dimensional problem.

P.G. Ciarlet and P. Destuynder [7], [8], applied the formal asymptotic method
to the variational formulation of the three-dimensional boundary value problems of
linearly and nonlinearly elastic plates and justified the linear and nonlinear Kirchhoff-
Love plate theories.

One approach to the shell theory is based on the assumption, that the energy
density of the shell can be expressed as a function of the deformation gradient of
the mid-surface. The natural mathematical setting in which these results can be for-
mulated is the variational or Γ -convergence, introduced by De Giorgi (see [1] for
details). This approach was used in works [13], [14] to strictly justify nonlinear plate
theory for surfaces first proposed by G. Kirchhoff.

The equations of three-dimensional linearized elasticity have been studied mostly
in Cartesian coordinates. The linear shell theory justified in the present paper is based
on the natural curvilinear coordinates, defined on the mid-surface C and extended by
the normal vector field of this surface, which ”follow the geometry” of the shell in
a most natural way. Accordingly, the purpose of the present preliminary section is
to provide a thorough derivation and a mathematical treatment of the equations of
linearized three-dimensional elasticity in terms of special curvilinear coordinates.

Let C ⊂ R3 be an open surface with the boundary Γ = ∂C in the Euclidean
space R3, represented by a single coordinate function θ : ω → C where ω is an
open domain in R2 (the case of multiple coordinate functions is similar and we skip
this case for the simplicity.) Let ν(X ) = (ν1(X ), ν2(X ), ν3(X ))>, X ∈ C , be the
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normal vector field on C and N (x) = (N1(x),N2(x),N3(x))
> be its extension in

the neighbourhood Ωh of the surface C . It is known that such extension is unique
under the assumption that the extension, as the field on the surface itself, is a gradient
vector field ∂jNk = ∂kNj for all j, k = 1, 2, 3 and is called the proper extension
(see [11] for details).

The 3-tuple of tangential vector fields to the surface g1 := ∂1Θ, g2 := ∂2Θ (the
covariant basis) together with the proper extension g3 := N of normal vector field ν
from the surface C into the neighborhood Ωh := {θ(x′) + tN (x′) : x′ ∈ ω, −1 <
t < 1} depends only on the variable x′ ∈ C and constitute a basis inΩh. That means,
that arbitrary vector field U =

∑3
j=1 Uje

j can also be represented with this basis
in “curvilinear coordinates”. Along with the covariant basis is used the contravariant
basis g1, g2 which is the bi-orthogonal system to the covariant basis 〈gj , gk〉 = δjk,
where δjk denotes the Kroneker’s symbol, j, k = 1, 2 (see, e.g., [5,6]). In the classical
geometry the covariant {〈gi, gk〉}j,k=1,2 and contravariant

{
〈gi, gk〉

}
j,k=1,2

metric
tensors together with the Christofells symbols Γ ijk := 〈gi, ∂jgk〉 are the main tools
of calculus on hypersurfaces. For example, the covariant derivatives on the surface C

are defined by vi‖j := ∂jvi −
2∑
k=1

Γ kijvk.

Our calculus on the surface C is based on a different curvilinear system of coor-
dinates than the covariant and contravariant vector fields used usually by mathemati-
cians and solid mechanics specialists to derive the shell equations (see, e.g., P. Ciarlet
[5,6]). Moreover, the system of curvilinear coordinates introduced below, is linearly
dependent but, surprisingly, many partial differential equations are recorded in this
system in a simple form (see [10], including Laplace-Beltramy and shell equations
on a hypersurface (see below).

From now on, if not stated otherwise, we stick to the following notation: terms
with repeated indices are implicitly summed from 1 to 3 if indices are Greekα, β, γ, . . .
and are summed from 1 to 4 if indices are Latin j, k, l, . . ., as shown on the examples:

aαbα :=

3∑
α=1

aαbα, b2α :=

3∑
α=1

b2α, cjdj :=

4∑
j=1

cjdj , c2j :=

4∑
j=1

c2j .

We consider a deformation of an isotropic layer domain Ωh := C × (−h, h) of
thickness 2h around the mid-surface C which has the nonempty Lipschitz boundary
∂C . The deformation is governed by the Lamé equation, with the classical mixed
boundary conditions, a Dirichlet conditions on the lateral surface ΓhL := ∂C ×
(−h, h) and a Neumann conditions on the upper and lower surfaces Γ± := C ×
{±h}:

LΩhU(x) = F (x), x ∈ Ωh := C × (−h, h),

U+(t) = G(t), t ∈ ΓhL := ∂C × (−h, h),

(T(X ,∇)U)+(X , t) =H(X ,±h), (X , t) ∈ Γ± = C × {±h}.

(1)
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Here U(x) = (U1(x), U2(x), U3(x))
> is the displacement vector, LΩh is the Lamé

differential operator and (T(X ,∇) is the traction operator

LΩhU = −µ∆U − (λ+ µ)∇divU ,

[T(X ,∇)U ]β = λ νβ∂γUγ + µ νγ∂βUγ + µ∂νUβ , β = 1, 2, 3,
(2)

where µ > 0 and 2µ+ 3λ > 0.
The BVP (1) we consider in the following weak classical setting:

U ∈ H1(Ωh), F ∈ H̃−1(Ωh), G ∈ H1/2(ΓhL), H(·,±h) ∈ H−1/2(C ).
(3)

For definitions of Bessel potential spaces Hs, H̃s see, e.g., [20].
Let us consider the following subspace of H1(Ωh):

H̃1(Ωh, ΓhL) :=
{
V ∈ H1(Ωh) : V +(t) = 0 for all t ∈ ΓhL

}
. (4)

Theorem 1 The BVP (1) in the weak classical setting (3) has a unique solution.

Proof: The Láme operator LΩh is strictly positive on the subspace H̃1(Ωh, ΓhL)

〈LΩhV ,V 〉 >M‖V ‖2 ∀V ∈ H̃1(Ωh, ΓhL) (5)

and the proof follows easily from the Lax-Milgram Lemma (see a similar proof, for
example, in [12]). �

To find what happens with the BVP (1), (3) when h→ 0, we first reformulate this
BVP into the equivalent variational problem: Find the vectorU which minimizes the
energy functional EΩh(U) (see (5)) under the same constraints (3). It is proved that
if the weak limits

lim
h→0

F (X , hτ) = F (X ), lim
h→0

1

2h
[H(X ,+h)−H(X ,−h)] =H(1)(X ),

F ,H(1) ∈ L2(C )

exist in L2(Ω
h) and L2(C ), respectively, than the Γ -limit of the energy functional

exists limh→0 EΩh(U) = E 3
C (U) (cf. (9)) and the equivalent BVP on the surface C ,

using the Einstein’s convention, is written as follows;
µ
[
∆CUα + DβDαUβ − 2HC νβDαUβ −Dγ(νανβDγUβ)

]
+

4λµ

λ+ 2µ

[
DαDβUβ − 2HC ναDβUβ

]
=

1

2
Fα +H(1)

α on C ,

Uα(t) = 0 on Γ = ∂C , α = 1, 2, 3.

(6)

In (6) ν := (ν1, ν2, ν3)
> is the unit normal vector filed on C , HC is the mean

curvature of C , Dα := ∂α− να∂ν , α = 1, 2, 3 are the Günter’s tangential derivatives
on C (see § 1) and U := (U1(X , 0), U2(X , 0), U3(X , 0))>, X ∈ C is the trace of
the displacement vector fieldU(X , t) := (U1(X , t), U2(X , t), U3(X , t))>, (X , t) ∈
Ωh := C × (−h, h) on the mid-surface C (see Theorem 4).

The BVP (6) represents a new 2D equation of shell in terms of Günter’s tangential
derivatives on the mid-surface C .
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1 Curvilinear coordinates

We commence with the definition of new system of coordinates: the system of 4-
vectors

d j := ej −NjN , j = 1, 2, 3 and d 4 := N , (1)

where e1 = (1, 0, 0)>, e2 = (0, 1, 0)>, e3 = (0, 0, 1)> is the Cartesian basis in
R3; the first 3 vectors d 1,d2,d 3 are projections of the Cartesian vectors and are
tangential to the surface C , while the last one d 4 = N is orthogonal to it and,
thus, to d 1,d2,d3. The system is linearly dependent, but full and any vector field
U = Uαe

α in Ωh can be written in the following form:

U = Uαe
α = U0

j d
j = U0 = U0 + U0

4N , (2)

U0 := U − 〈N ,U〉N , U0
4 := 〈N ,U〉 = NαUα (3)

and the vectorU0 := (U0
1 , U

0
2 , U

0
3 )
> is chosen to be tangential to the surface 〈N ,U0〉 =

0.
Since the proper extension depends only on the surface variable N (X , t) =

N (X ) (see [11]), the same is true for the entire basis dj(X , t) = dj(X ), j =
1, 2, 3, 4.

Note that

N4 := 〈N ,N 〉 = 1. (4)

Although the system
{
d j
}4
j=1

is linearly dependent, the following holds.

Lemma 1 The representation (2) is unique:

If U0 = U0
j d

j = 0 then U0
1 = U0

2 = U0
3 = U0

4 = 0. (5)

The scalar product and, consequently, the distance between two vectors in Carte-
sian and new coordinate systems coincide:

〈U0,V 0〉 = U0
j V

0
j = UαVα = 〈U ,V 〉, ‖U0 − V 0‖ = ‖U − V ‖ (6)

for arbitrary vectors U = (U1, U2, U3)
>,V = (V1, V2, V3)

> ∈ R3.

Proof: If condition (5) holds U0 = 0, then U4 = 〈U ,N 〉 = 〈U0,N 〉 = 0. But
then U0

j = Uj − 〈U0,N 〉Nj = Uj , j = 1, 2, 3 and, therefore,

0 = U0 = U0
αd

α = Uαe
α −NαUαN = Uαe

α − UαNαN

= Uαe
α − 〈U ,N 〉N = Uαe

α

which implies U0
j = Uj = 0, j = 1, 2, 3, because the Cartesian basis e1, e2, e3 is

linearly independent.
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Let us prove the first equality in (6):

〈U0,V 0〉 = U0
j V

0
j = (Uα −Nα〈N ,U〉)(Vα −Nα〈N ,V 〉) + 〈N ,U〉〈N ,V 〉

=
[
UαVα − 〈N ,V 〉UαNα − 〈N ,U〉VαNα + 〈N ,U〉〈N ,V 〉N 2

α

]
= UαVα = 〈U ,V 〉

and the equality is proved.
The second equality in (6) is a simple consequence of the first one because

‖U0 − V 0‖ =
√
〈U0 − V 0,U0 − V 0〉 =

√
〈U − V ,U − V 〉 = ‖U − V ‖. �

The Günter’s derivatives

Dαϕ := ∂αϕ− να∂νϕ, α = 1, 2, 3 (7)

represent tangential differential operators on the surface C (orthogonal projections of
the coordinate derivatives ∂1, ∂2, ∂3 and have extensions

Dαϕ := ∂αϕ−Nα∂N ϕ

in the neighbourhood of the surface C . The system D1,D2,D3 is, obviously, linearly
dependent, but full: any tangential linear differential operator on the surfaceA(D) is
written in the following form:

A(D) = aα(X )∂α = aα(X )Dα, provided aα(x)να(X ) ≡ 0, X ∈ C .

In particular

∂U = Uα∂α = U0
j Dj .

The adjoint operator to Dj , j = 1, 2, 3, is

D∗j ϕ = −Djϕ+ 2νjHCϕ , ϕ ∈ C1(C ) , (8)

where

HC (X ) :=
1

2
Dανα(X ) =

1

2
DαNα(X ) , X ∈ C (9)

is the mean curvature of the surface C .

Definition 1 For a function ϕ ∈W1(Ωh) we define the extended gradient

∇Ωh ϕ =
{

D1ϕ,D2ϕ,D3ϕ,D4ϕ
}>

, D4ϕ := ∂N ϕ (10)

and, for a vector field U = Uαe
α = U0

j d
j ∈W1(Ωh)–the extended divergence

divΩh U := DjU
0
j + 2HCU

0
4 = −∇∗ΩhU , (11)

where ∇∗Ωh denotes the formally adjoint operator to the gradient ∇Ωh , HC is the
mean curvature (cf.(9) and

D4U
0
4 := ∂N U0

4 = 〈N , ∂N U〉 = (D4U)04.
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Caution: While defining the extended divergence in (11) we have to use only the
representation U = U0

j d
j (cf. (2)), because any other representation differs from the

indicated one by the vector cN , where c(X ) is an arbitrary function. Then the ex-
tended divergences will differ by the summand divΩh

(
c(X )N (X )

)
= ∂N c(X ) +

2c(X )HC (X )

Lemma 2 The classical gradient ∇ϕ :=
{
∂1ϕ, ∂2ϕ, ∂3ϕ

}>
, written in the full sys-

tem of vectors
{
d j
}4
j=1

in (1) coincides with the extended gradient∇ϕ = ∇Ωh ϕ in
(10).

The classical divergence divU := ∂αUα of a vector field U := Uαe
α, written

in the full system (1), coincides with the extended divergence: divU = divΩh U
0 in

(11).
The gradient and the negative divergence are adjoint operators ∇∗Ωh = −divΩh

with respect to the scalar product induced from the ambient Euclidean space Rn.
The classical Laplace operator in the domain Ωh

∆Ωhϕ(x) := (divΩh∇Ωh ϕ)(x) = −(∇∗Ωh
(
∇Ωhϕ

)
(x) x ∈ Ωh,

written in the full system (1), acquires the following form

∆Ωhϕ = D2
j ϕ+ 2HC D4ϕ , ϕ ∈W2(Ωh) . (12)

Proof: Formulae (10) for the extended gradient follows from the choice of the new
coordinate vectors (1):

∇ϕ :=
{
∂1ϕ, ∂2ϕ, ∂3ϕ

}>
= eα∂αϕ = eα(Dαϕ+ NαD4ϕ)

= e αDαϕ+ N D4ϕ = d jDjϕ = ∇Ωhϕ

since
∂α = Dα + NαD4, eαDαϕ = d αDαϕ. (13)

By applying

D4 = ∂N , NαUα = U0
4 , NαDα = 0, DαNα = 2HC , (14)

D4Nα = ∂N Nα = 0, α = 1, 2, 3,

we prove formulae (11) for the extended divergence:

divU = ∂αUα = (Dα + NαD4)(U
0
α + NαU

0
4 )

= DαU
0
α + NαD4Uα + (DαNα)U

0
4 + NαDαU

0
4

= DαU
0
α + D4 [NαUα] + HCU

0
4

= DjU
0
j + HCU

0
4 = divΩhU

0 .

Formulae (6), (10) and (11) combined with the classical equality ∇∗ = −div
ensures the equality

(∇ΩhU0,V 0) = (∇U ,V ) = (U ,−divV ) = (U0,−divΩhV 0),
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which proves that ∇∗Ωh = −divΩh (cf (11)). The latter can also be verified by direct
calculations.

Formula (12) is proved by applying (10) and (11):

∆ϕ := divΩh∇Ωhϕ = D2
j ϕ+ 2HC 〈N ,∇Ωhϕ〉 = D2

j ϕ+ 2HC 〈N ,∇ϕ〉
= D2

j ϕ+ 2HC D4ϕ = ∆Ωhϕ. �

Lemma 3 A matrix-operator A = [Aαβ ]3×3 written in curvilinear coordinates (1)-
(3) acquires the form:

A =


A11 A12 A13 〈A1,·,ν〉
A21 A22 A23 〈A2,·,ν〉
A31 A32 A33 〈A3,·,ν〉
〈A·,1,ν〉 〈A·,2,ν〉 〈A·,3,ν〉 〈Aν,ν〉

 (15)

Aα,· := (Aα,1,Aα,2,Aα,3)
>, A·,α := (A1,α,A2,α,A3,α)

>, α = 1, 2, 3,

Proof: Indeed, using the representations (2) amd (1) of a vector function U =
(U1, U2, U3) and of the coordinate vectors eα we verify the claimed equality (15)
by direct calculations:

AU = AαβUβe
α = Aαβ(U

0
β + νβU

0
4 )(d

α + ναd
4)

= AαβU
0
βd

α +AαβναU
0
βd

4 +AαβνβU
0
4d

α +AαβνανβU
0
4d

4

=


A11 A12 A13 〈A1,·,ν〉
A21 A22 A23 〈A2,·,ν〉
A31 A32 A33 〈A3,·,ν〉
〈A·,1,ν〉 〈A·,2,ν〉 〈A·,3,ν〉 〈Aν,ν〉



U0
1

U0
2

U0
3

U0
4

 . �

The Lamé operator

LU = −µ∆U − (λ+ µ)∇divU = −
[
µδαβ∂

2
k + (λ+ µ)∂α∂β

]
3×3U (16)

= − [cαγβω∂γ∂ω]3×3U , cαγβω = λδαγδβω + µ(δαβδγω + δαωδβγ)

is formally self-adjoint differential operator of the second order and, written in the
full system (1), acquires the form

LΩhU
0 = −µ∆ΩhU

0 − (λ+ µ)∇ΩhdivΩhU0. (17)

To reformulate the BVP (1) in curvilinear coordinates we also need to represent
the traction operator (cf. (2))

T(x, ∂)U = (Tαβ(x, ∂)Uβ) e
α = ({λνα∂β + µνβ∂α + δαβµ∂ν}Uβ) eα, (18)

U = (U1, U2, U3)
> = Uαe

α

in Gunter’s derivatives. For this we apply the representations (1) amd (7) of the coor-
dinate vectors eα and the differential operators ∂α, take into account the equalities

∂ν = D4, ναe
α = ν = d4, ναd

α = 0, ν2α = 1.
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and find the claimed representation of the traction operator T(x, ∂) by direct calcula-
tions:

T(X ,D) = eα ⊗ eβ {λνα∂β + µνβ∂α + δαβµ∂ν}
= λd4 ⊗ (dβ + νβd

4)(Dβ + νβD4)

+µ(dβ + ναd
4)⊗ (dβ + νβd

4)D4

+µ(dβ + νβd
4)⊗ d4(Dβ + νβD4)

=


µD4 0 0 µD1

0 µD4 0 µD2

0 0 µD4 µD3

λD1 λD2 λD3 (λ+ 2µ)D4

 . (19)

2 Variational reformulation of the problem

To apply the method of Γ -convergence we have to reformulate the BVP (1) in an
equivalent varational problem for the energy functional. For this we need to consider
the BVP with the vanishing Dirichlet condition on the lateral surface

LΩhU0(x) = F 0(x), x ∈ Ωh := C × (−h, h),

U+
0 (t) = 0, t ∈ ΓhL := ∂C × (−h, h), (1)

(T(X ,∇)U0)
+(X ,±h) =H0(X ,±h), X ∈ C .

It is possible to rewrite the BVP (1) in an equivalent BVP (1). Indeed, consider the
BVP

LΩhV (x) = 0, x ∈ Ωh := C × (−h, h),

V +(t) = G(t), t ∈ ΓhL ,

(T((X ,∇)V )+(X ,±h) = 0, (X ,±h) ∈ Γ± = C × {±h},

(2)

which has a unique solution V ∈ W1(Ωh) (see Theorem 1) and note, that the
difference U0 := U − V of solutions to BVPs (1) and (2) is a solution to the
BVP (3), where F 0(X ) = F (X ) − LΩhV (X ), H0(X ,±h) := H(X ,±h) −
(T((X ,∇)V )+(X ,±h). Vice versa, solution to the BVP (1) is recovered as the sum
of solutions U = U0 + V of the BVPs (3) and (2).

Thus, in the BVP (1) we can assume, without restricting generality, that G = 0
and consider the BVP

LΩhU(x) = F (x), x ∈ Ωh := C × (−h, h),

U+(t) = 0, t ∈ ΓhL := ∂C × (−h, h), (3)

(T(X ,∇)U)+(X ,±h) =H(X ,±h), X ∈ C .
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Theorem 2 The problem (3) with the constraints

U ∈ H1(Ωh, ΓhL), F ∈ H̃−1(Ωh), H(·,±h) ∈ H−1/2(C ) (4)

is reformulated into the following equivalent variational problem: Under the same
constraints (4) look for a displacement vector-function U ∈ H̃1(Ωh, ΓhL), which is a
stationary point of the following functional

EΩh(U) :=
1

2

∫
Ωh

[
µ∂βUα · ∂βUα + µ∂βUα · ∂αUβ + λ∂αUα · ∂γUγ

+2F β ·Uβ

]
dx+

∫
C

[
〈H(X ,+h),U+(X ,+h)〉 − 〈H(X ,−h),U+(X ,−h)〉

]
dσ

=
1

2

∫ h

−h

∫
C

[
µ∂βUα · ∂βUα + µ∂βUα · ∂αUβ + λ∂αUα · ∂γUγ + 2F β ·Uβ

+
1

h

[
〈H(X ,+h),U+(X ,+h)〉 − 〈H(X ,−h),U+(X ,−h)〉

] ]
dσdt, (5)

Remark 1 The integral on C in (5) is understood in the sense of duality between the
spaces H̃1/2(C ) and H−1/2(C ) because H(·,±h) ∈ H−1/2(CN ) and the condition
U ∈ H̃1(Ωh, ΓhL) implies the inclusion U+(·,±h) ∈ H̃1/2(CN ).

Prior proving Theorem 2 we prove the following auxiliary lemma.

Lemma 4 In the representation of the energy functional EΩh(U) from (5)

EΩh(U) =
1

2
Q(U)−F (U) (6)

as the sum of quadratic and linear functionals

Q(U)=

∫ h

−h

∫
C

[
µ∂βUα · ∂βUα + µ∂βUα · ∂αUβ + λ∂αUα · ∂γUγ

]
dσdt

F (U)= −
∫ h

−h

∫
C

[
F β ·Uβ +

1

2h

[
〈H(X ,+h),U+(X ,+h)〉

−〈H(X ,−h),U+(X ,−h)〉
]]
dσdt

the quadratic part Q(U) is positive definite on the space H1(Ωh, ΓhL):

Q(U) ≥ ‖U
∣∣H1(Ωh)‖, for all U ∈ H1(Ωh, ΓhL). (7)

Proof: Note, that

Q(U) =

∫ h

−h

∫
C

Q(∇U(X , t))dσdt (8)

Q(F ) = 2µ|E|2 + λ(Trace E)2, E =
1

2
(F + F>),

where E = [Eαβ ]3×3 is a 3× 3 matrix and |E|2 = Trace(E>E) =
∑
α,β

E2
αβ .



SHELL EQUATIONS IN TERMS OF GÜNTER’S [3mm] DERIVATIVES 11

Indeed, the equality (8) holds because

Q(∇U) = µ∂βUα · ∂βUα + µ∂βUα · ∂αUβ + λ∂αUα · ∂γUγ

=
1

2
µ(∂αUβ + ∂βUα)(∂αUβ + ∂βUα) + λ(∂αUα)(∂βUβ)

= 2µ |Def(U)|2 + λ (Trace Def(U))
2
, Def(U) :=

∇U + (∇U)>

2
. (9)

To prove the positive definiteness (7) let us rewrite the expression (9), using the

notation E =
F + F>

2
, as follows

Q(F ) = 2µ
∑
α6=β

E2
αβ + 2µ

∑
α

E2
αα + (µ+ λ)

∑
α,β

EααEββ − µ
∑
α,β

EααEββ

= 2µ
∑
α6=β

E2
αβ + (µ+ λ)

(∑
α

Eαα

)2
+ µ

[
2
∑
α

E2
αα −

∑
α 6=β

EααEββ

]
= 2µ

∑
α6=β

E2
αβ + (µ+ λ)

(∑
α

Eαα

)2
+ µ

∑
α6=β

(Eαα − Eββ)2 ≥ 0, (10)

since µ > 0, µ+ λ >
2µ+ 3λ

3
> 0 (see (2)).

From (10) follows that if Q4(F ) = 0, F = ∇U , then the deformation tensor is

zero E = Def(U) :=
∇U + (∇U)>

2
= 0. The latter infers that

U(x) = a+ Bx = a+ b ∧ x ,

a = (a1, a2, a3)
>, b := (b1, b2, b3)

> ∈ R3 , x ∈ Ωε ,
B :=

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 .
Since U ∈ H̃1(Ωh, ΓhL) vanishes on the lateral surface ΓL. Then the vector U is
identically zero (see [4]). �

Proof of Theorem 2: Let U be a solution to the mixed problem (3). By taking the
scalar product of the first equation LΩhU(x) = F (x) in (3) with a function V ∈
H̃1(Ωh, ΓhL) and applying the Green’s formulae we get the following equality:∫
Ωh

〈
F (x),V (x)

〉
dx =

∫
Ωh

〈
LΩhU(x),V (x)

〉
dx

= −
∫
Ωh

[
µ∂βUα · ∂βV α + µ∂βUα · ∂αV β

+λ∂αUα · ∂γV γ

]
dx+

∫
ΓhL

〈(T(y,∇)U)+(y),V +(y)〉dσ

+

∫
C

[
〈(T(y,∇)U)+(y),V +(X ,+h)〉 − 〈(T(y,∇)U)+(y),V +(X ,−h)〉

]
dσ.
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By inserting the boundary conditions from (3) and recalling that the trace V + of a
vector-function V ∈ H1(Ωh, ΓhL) vanishes on ΓL, we derive that the solution U
to the BVP (3) solves the following variational problem for arbitrary trial function
V ∈ H̃1(Ωh, ΓhL):∫

Ωh

[
µ∂βUα · ∂βV α + µ∂βUα · ∂αV β + λ∂αUα · ∂γV γ

]
dx

=

∫
C

[
〈H(X ,+h),V +(X ,+h)〉 − 〈H(X ,−h),V +(X ,−h)〉

]
dσ

−
∫
Ωh
〈F (x),V (x)〉dx. (11)

Next note, that the quadratic form (i.e. when V = U ) in the left hand side of the
equality (11) is positive definite in the space H̃1(Ωh, ΓhL) and, therefore, defines an
equivalent norm in the Hilbert space H̃1(Ωh, ΓhL). On the other hand, the functional
in the right hand side with a fixed U is bounded in the same space H̃1(Ωh, ΓhL).
Therefore, by the Riesz theorem on functionals in the Hilbert spaces there exists a
unique function U ∈ H̃1(Ωh, ΓhL) which defines the functional in (11).

Now let U ∈ H̃1(Ωh, ΓhL) be the solution to the variational problem (5) and
V ∈ H̃1(Ωh, ΓhL) is arbitrary. A direct verification shows that

EΩh(U + V ) = EΩh(U) +
[
Q(U ,V )−F (V )

]
+

1

2
Q4(V ,V ), (12)

where Q(U ,V ) is the bilinear form (cf. (6))

Q(U ,V ) =

∫ h

−h

∫
C

[
µ∂βUα · ∂βV α + µ∂βUα · ∂αV β + λ∂αUα · ∂γV γ

]
dσdt

and F (V ) is the functional, defined in (6). Then the equality holds

EΩh(U) =
1

2
Q(U ,U)−F (U) (13)

and, due to the equality (12), Lemma 4

Q(U ,V )−F (V ) = 0 for all V ∈ H̃1(Ωh, ΓhL) implies

EΩh(U + V )− EΩh(U) =
1

2
Q4(V ,V ) >

C

2
‖V
∣∣H̃1(Ωh)‖2 ∀V ∈ H̃1(Ωh, ΓhL).

Then, obviously, U ∈ H̃1(Ωh, ΓhL) is the minimizer of the functional EΩh(U).
Conversely: Let U ∈ H̃1(Ωh, ΓhL) be the minimizer of EΩh(V ) and the vector-

function V ∈ H̃1(Ωh, ΓhL) be arbitrary. The inequality (cf. (12))

0 6 EΩh(U+εV )−EΩh(U) = ε
{
Q(U ,V )−F (V )

}
+
ε2

2
Q(V ,V ) ∀ ε ∈ R.

implies that Q(U ,V ) = F (V ). Indeed, the first summand in the right-hand side
of the equality dominates for small ε (positive and negative) and the second is non-
negative. If we assume contrary Q(U ,V ) 6= F (V ) the difference EΩh(U + εV )−
EΩh(U) would become negative for certain small ε, which is a contradiction. �
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3 Γ -limit of the energy functional and main theorem

Main theorem of the present paper, Theorem 4, will be proved later. We commence
with the investigation of the Γ -limit of the energy functional EΩh(U) in (5).

Let us rewrite the kernel Q(∇U) of the quadratic part Q4(U) of the energy
functional in (6),(8), (10) by using the equalities (13) and (14) as follows:

Q4(∇U) = Q(∇U) = µ(DβUα + NβD4Uα)
2 + µ(DβUα + NβD4Uα)(DαUβ

+NαD4Uβ) + λ(DαUα + NαD4Uα)(DβUβ + NβD4Uβ)

= µ
[
(DβUα)

2 + (D4Uα)
2 + DβUα ·DαUβ + NαDβUαD4Uβ

+NβDαUβD4Uα + (D4U4)
2
]
+ λ(DαUα + D4U4)(DβUβ + D4U4)

= µ
[
(DjUk)

2 + DβUα ·DαUβ + 2NβDαUβD4Uα
]

+λ(DαUα + D4U4)(DβUβ + D4U4)

= µ
[
(DαUβ)

2 + D4Uβ)
2 + DβUαDαUβ + 2NαDβUαD4Uβ

]
+ λ
[
DαUαDβUβ

+2DαUαD4U4

]
+ (λ+ µ)(D4U4)

2, α, β = 1, 2, 3, j, k = 1, 2, 3, 4, (1)

since NαDα = 0, NαD4Uα = D4(NαUα) = D4U4 and U4 = NαUα.
Next we perform the scaling of the variable t = hτ , −1 < τ < 1 in the modified

kernel Q4(∇U) of the quadratic part of energy functional (1), divide by h and study
the following kernel in the scaled domain Ω1 = C × (1, 1)

Q0
4

(
∇ΩhŨ

h
(X , τ)

)
:=

1

h
Q4 (∇U(X , hτ))

= µ

[
(DαUβ(X , hτ))2 +

(
1

h

∂Uα(X , hτ)

∂τ

)2

+DβUα(X , hτ) ·DαUβ(X , hτ) + 2NβDαUβ(X , hτ)
1

h

∂Uα(X , hτ)

∂τ

]

+λ

[
DαUα(X , hτ)DβUβ(X , hτ) + 2DαUα(X , hτ)

1

h

∂U4(X , hτ)

∂τ

]
+(λ+ µ)

(
1

h

∂U4(X , hτ)

∂τ

)2

, (2)

where

Ũ
h
(X , τ) := U1(X , hτ), U2(X , hτ), U3(X , hτ), U4(X , hτ))>, U4 = NαUα.(3)

Lemma 5 The scaled and divided by h energy functional

E 0
Ωh(Ũ

h
) =

1

h
EΩh(Ũ

h
) =

1

2
Q0

4(Ũ
h
)−F 0(Ũ

0

h) (4)
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with the quadratic and linear parts

Q0
4(Ũ

h
)=

∫ 1

−1

∫
C

Q0
4

(
∇ΩhŨ

h
(X , τ)

)
dσdτ

F 0(Ũ
0

h)= −
∫ h

−h

∫
C

[
〈F̃

0

h,U
0
h〉+

1

h

[
〈H̃(X ,+h), Ũ

0
(X ,+h)〉

−〈H̃
0
(X ,−h), Ũ

0
(X ,−h)〉

]]
,

F̃
0

h(X , τ) := (F 0
1 (X , hτ), F 0

2 (X , hτ), F 0
3 (X , hτ), F 0

4 (X , hτ))>,

H̃
0

h(X , τ) := (H0
1 (X , hτ), H0

2 (X , hτ), H0
3 (X , hτ), H0

4 (X , hτ))>,

H0
4 = NαHα, F 0

4 = NαFα

is correctly defined on the space H̃1(Ω1, Γ 1
L) (see (4)) and is convex

E 0
Ωh(θŨ

h
+ (1− θ)Ṽ

h
) 6 E 0

Ωh(Ũ
h
) + (1− θ)E 0

Ωh(Ṽ
h
), 0 < θ < 1 (5)

for arbitrary vector Ṽ
h
(X , τ) := (V1(X , hτ), V2(X , hτ), V3(X , hτ), V4(X , hτ))>,

Ṽ
h
∈ H̃1(Ω1, Γ 1

L).

Moreover, if F̃
0

h(X , τ) := F 0(X , hτ) are uniformly bounded in L2(Ω
1)

sup
h<h0

‖F̃
0

h|L2(Ω
1)‖ <∞ (6)

for some h0 > 0, the energy functional has the following quadratic estimate: there
exist positive constants C1, C2 and C3, independent of the parameter h such that

C1

∫
Ω1

(DαU
0
j (X , hτ))2 +

(
1

h

∂U0
j (X , hτ)

∂τ

)2
 dx− C2 6 E 0

Ωh(Ũ
h
)

6 C3

1 +

∫
Ω1

(DαU
0
j (X , hτ))2 +

(
1

h

∂U0
j (X , hτ)

∂τ

)2
 dx

 (7)

for all Ũ
h
∈ H̃1(Ω1, Γ 1

L).

Proof: The convexity of the linear part F 0(Ũ
h
) is trivially obvious and we concen-

trate on the convexity of the quadratic part Q0
4(Ũ

h
). It follows easily from the well

known inequality:

[θa+ (1− θ)b]2 = θ2a2 + 2θ(1− θ)ab+ (1− θ)2b2 6 θ2a2 + θ(1− θ)(a2 + b2)

+(1− θ)2b2 = θa2 + (1− θ)b2.

Thus, the inequality (5) is proved.

For the quadratic part Q0
4(Ũ

h
) of the energy functional the upper estimate in the

inequality (7) is trivial, while the lower estimate, even with C2 = 0, follows due to
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the inequality (7) since the norms of the vector-functions U(X , ht) and Ũ
h
(X , t)

are equivalent (cf. Lemma 1).

On the other hand F 0(Ũ
h
) 6 C4Q0

4(Ũ
h
) (i.e., the quadratic part dominates the

linear part) and the estimate (7) for the difference E 0
Ωh(Ũ

h
) = 1

2Q0
4(Ũ

h
)−F 0(Ũ

h
)

follows from the proved estimate for Q0
4(Ũ

h
). �

Theorem 3 Let the weak limits

lim
h→0

F (X , hτ) = F (X ), lim
h→0

1

2h
[H(X ,+h)−H(X ,−h)] =H(1)(X ), (8)

F ,H(1) ∈ L2(C )

in L2(Ω
h) and L2(C ), respectively, exist. Then the Γ -limit of the energy functional

E 0
Ωh(Ũ

h
) exists

Γ − lim
h→0

E 0
Ωh(Ũ

h
) = E 3

C (U) :=

∫
C

Q3

(
U(X )

)
dσ, (9)

where

Q3(U) = µ
[
(DαUβ)(DαUβ) + DβUαDαUβ − νβνγDαUβDαUγ

]
+

2λµ

λ+ 2µ
(DαUα)

2 + 〈F (X ) + 2H(1)(X ), U(X )〉 (10)

and

U(X ) := (U1(X ), U2(X ), U3(X ))>, Uα(X ) := Uα(X , 0), α = 1, 2, 3.

Proof: Since the Γ -convergence of the linear part F 0(U0
h) coincides with the point-

wise convergence of a functional, it is trivial part of the proof and we will only con-

sider the Γ -convergence of the quadratic part Q0
4(Ũ

h
) (cf. (4)).

To check the Γ -convergence of the quadratic part Q0
4(Ũ

h
) first we prove the

lower estimate for its kernel

Q0
4(Ũ

h
) > Q3

C (U) :=

∫
C

Q0
3

(
U(X )

)
dσ, (11)

Q0
3(U) =

µ

2

[ [
DαUβ + DβUα

]2 − 2νβνγDαUβDαUγ

]
+

2λµ

λ+ 2µ
(DαUα)

2.

For this let us rewrite Q0
4 in (2) in the form

Q0
4

(
∇ΩhŨ

h
(X , τ)

)
= µ

[
[(DαUβ(X , hτ))]

2
+ ξ2α

+DβUα(X , hτ)DαUβ(X , hτ) + 2NβDαUβ(X , hτ)ξα
]

+λ
[
DαUα(X , hτ)DβUβ(X , hτ) + 2DβUβ(X , hτ)ξ4

]
+ (λ+ µ)ξ24 , (12)
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where the variables

ξα = ξα(X , hτ) :=
1

h

∂Uα(X , hτ)

∂τ
, α = 1, 2, 3, ξ4 = Nαξα (13)

depend on h and we will find minimum of the kernel Q0
4

(
∇ΩhŨ(X , τ)

)
with re-

spect to the variables ξ1, ξ2, ξ3. To this end we write the condition of minimum, by
using the equality ∂ξαξ

2
4 = 2ξ4∂ξαξ4 = 2Nαξ4 (cf. (13)):

∂

∂ξα
Q0

4(∇ΩhŨ
h
) = 2µ(ξα+NβDαUβ)+2λNαDβUβ+2(λ+µ)Nαξ4 = 0 (14)

for α = 1, 2, 3. From (14) follows

0 = Nα
∂

∂ξα
Q0

4(∇ΩhŨ
h
) = 2µ(Nαξα + NβNαDαUβ) + 2λNαNαDβUβ

+2(λ+ µ)NαNαξ4 = 2µξ4 + 2λDβUβ + 2(λ+ µ)ξ4, (15)

Finding ξ4 from (15) and inserting into (14) we find ξα:

ξ4 = − λ

λ+ 2µ
DβUβ , (16)

ξα = −Nβ(DαUβ)−
λ

λ+ 2µ
Nα(DβUβ), α = 1, 2, 3. (17)

From (16), (17) and (12) we find the minimum Q3(U):

Q3(U) = min
ξ1,ξ2,ξ3

Q0
4

(
∇ΩhŨ

h
)

= µ
[ [

DαUβ
]2

+ νβ(DαUβ)νγ(DαUγ) + DβUαDαUβ

+
λ2

(λ+ 2µ)2
(DβUβ)

2
]
− 2µνβ

[
νγ(DαUγ) +

λ

λ+ 2µ
να(DγUγ)

]
(DαUβ)

+λ(DαUα)
2 − 2λ2

λ+ 2µ
(DαUα)

2 + (λ+ µ)
λ2

(λ+ 2µ)2
(DαUα)

2

= µ
[ [

DαUβ
]2

+ (DβUα)(DαUβ)
]
+ µνβνγ(DαUβ)(DαUγ)

+
µλ2

(λ+ 2µ)2
(DαUα)

2 − 2µνβνγ(DαUγ)(DαUβ)

+λ(DαUα)
2 − 2λ2

λ+ 2µ
(DαUα)

2 + (λ+ µ)
λ2

(λ+ 2µ)2
(DαUα)

2

= µ
[
(DαUβ)

2 + DβUαDαUβ − νβνγDαUβDαUγ

]
+

2λµ

λ+ 2µ
(DαUα)

2

=
µ

2

[ [
DαUβ + DβUα

]2 − 2νβνγDαUβDαUγ

]
+

2λµ

λ+ 2µ
(DαUα)

2. (18)

Thus, the equality (11) is proved.
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To accomplish the proof of the Γ -convergence (9) it remains to build a recovery
sequence U

k ∈ H1(Ω1, Γ 1
L)

U
k
(X , t) = (Uk1 (X , t), Uk2 (X , t), Uk3 (X , t), Uk4 (X , t))> → (U(X ), 0),

U(X ) = (U1(X ), U2(X )U3(X ))>,

Ukα(X , t) := Uα(X , hkt), Uα(X ) := Uα(X , 0)

(α = 1, 2, 3), along which the quadratic form attains its minimum

lim
hk→0

Q0
4(U

k
) = Q3

C (U(X )). (19)

The first three components of the minimizing sequenceUk1 (X , t), Uk2 (X , t), Uk3 (X , t)
should be found from the initial value problem, minimizing the quadratic form (cf.
(14)-(17)):

1

hk

∂Ukα(X , τ)

∂τ
= −νβDαUβ(X )− λ

λ+ 2µ
ναDβUβ(X ), α = 1, 2, 3, (20)

Ukα(X , 0) = Uα(X ), α = 1, 2, 3 (21)

and Uk4 (X , t) = Nα(X )Ukα(X , t). From (20) and (21) we have for α = 1, 2, 3:

Ukα(X , τ) = Uα(X )− hkτ
[
νβDαU

0
β(X ) +

λ

λ+ 2µ
ναDβU

0
β(X )

]
. (22)

By inserting the obtained solutions into the quadratic form Q0
4(Ũ

h
) and by send-

ing hk → 0 we prove that the limit in (9) is attained. �

Theorem 4 Let F ,H(1) ∈ L2(C ). The vector-function U ∈ H̃1(C ) which mini-
mizes the energy functional E 3

C (U) in (9)-(10) is a solution to the following boundary
value problem

µ
[
∆CUα + DβDαUβ − 2HC νβDαUβ −Dγ(νανβDγUβ)

]
+

4λµ

λ+ 2µ

[
DαDβUβ − 2HC ναDβUβ

]
=

1

2
Fα +H(1)

α on C ,

Uα(t) = 0 on Γ = ∂C , α = 1, 2, 3.

(23)

Vice versa: on the solutionU ∈ H̃1(C ) to the boundary value problem (23) under
the condition F ,H(1) ∈ L2(C ), the energy functional E 3

C (U) in (9)-(10) attains the
minimum.

Remark 2 According to the foregoing Theorem 4 the boundary value problem (23)
can be considered as the Γ -limit of the BVP (3).
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Proof of Theorem 4: If E 3
C (U) attains the minimum on the vector-function U and

V = (V 1, V 2, V 3)
> ∈ H̃1(C , Γ ) is arbitrary, then

d

dt
E 3

C ((U + tV )
∣∣∣
t=0

=

∫
C

d

dt

[
Q3(U + tV ) + 〈F (X ) + 2H(1)(X ),U(X ) + tV (X )〉

]
t=0

dσ

=

∫
C

{
2µ
[
DβUαDβV α + DαUβDβV α − νανβDγUβDγV α

]
+

4λµ

λ+ 2µ
DβUβDαV α + 〈F + 2H(1),V 〉

}
dσ.

Now we apply formula (8) (we remind that Uα(t) = V α(t) = 0 on Γ = ∂C ) and
get

d

dt
E 3

C ((U + tV )
∣∣∣
t=0

= −
∫

C

{
2µ
[
D2
βUα − 2HC νβDβUα + DβDαUβ

−2HC νβDαUβ −Dγ(νανβDγUβ) + 2HC νανβνγDγUβ
]

+
4λµ

λ+ 2µ

[
DαDβUβ − 2HC ναDβUβ

]
− Fα − 2H(1)

α

}
V α dσ

= −
∫

C

{
2µ
[
∆CUα + DβDαUβ − 2HC νβDαUβ −Dγ(νανβDγUβ)

]
+

4λµ

λ+ 2µ

[
DβDαUα − 2HC νβDαUα

]
− Fα − 2H(1)

α

}
V α dσ

Since V 1, V 2, V 3 are arbitrary, from the obtained equality follows that the vector-
function U(X ) = (U1(X ), U2(X ), U3(X ))> is a solution to the BVP (23).

The inverse assertion that if U ∈ H̃1(C ) is the solution to the boundary value
problem (23) under the condition F ,H(1) ∈ L2(C ), then the energy functional
E 3

C (U) in (9)-(10) attains the minimum at U , is proved as in Theorem 2. �

Remark 3 Note, that when C = Ω ⊂ R2 is the flat 2-dimensional domain, then the
energy functional E 3

Ω(U) in (9) coincides with the density of the energy functional
E2(U) of the plane theory of elesticity (see [13], p.16).

Indeed,

E2(U) :=

∫
Ω

Q2(U)(x)dx, U = (U1, U2)
>

(see (see [13], p.16), where

Q2(U) = 2µ
∣∣∣∇U +∇U>

2

∣∣∣2 + 2λµ

λ+ 2µ

(
trace∇U

)2
, (24)

∇U :=

(
∂1U1 ∂2U1

∂1U2 ∂2U2

)
.
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From (24)

Q2(U) = 2µ[(∂1U1)
2 + (∂2U2)

2] + µ(∂1U2 + ∂2U1)
2

+
2λµ

λ+ 2µ
(∂1U1 + ∂2U2)

2. (25)

On the other hand, if C = Ω = Ω ⊂ R2, then x3 = 0, ν = (0, 0, 1), HC = 0,
D1 = ∂1, D2 = ∂2, D3 = 0, U1 = U1, U2 = U2, U3 = U3 and from (10) we have

Q3(U) = µ
[
(D1U1)

2 + (D1U2)
2 + (D1U3)

2 + (D2U1)
2 + (D2U2)

2

+(D2U3)
2 + (D1U1)

2 + (D2U2)
2 + 2(D1U2)(D2U1)− (D1U3)

2

−(D2U3)
2
]
+

2λµ

λ+ 2µ
(D1U1 + D2U2)

2

= 2µ[(∂1U1)
2 + (∂2U2)

2] + µ(∂1U2 + ∂2U1)
2 +

2λµ

λ+ 2µ
(∂1U1 + ∂2U2)

2

= 2µ[(∂1U1)
2 + (∂2U2)

2] + µ(∂1U2 + ∂2U1)
2 +

2λµ

λ+ 2µ
(∂1U1 + ∂2U2)

2

= Q2(U)

and we have verified that Q3(U) = Q2(U).

Remark 4 Note, that in the case of a flat surface the energy functional E 3
Ω(U) =

E2(U) is independent of the displacement in the vertical direction U3 = 0 (cf. (25)).
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