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Abstract

An approach to finding the exact solution of ordinary, fractal and frac-
tional Fokker-Planck equation FPE, based on transforming it to a system
of first- order PDEs, together with using the extended unified method,
is presented. Reduction of the fractal and fractional derivatives to the
classical ones with time dependent coefficient is performed via similarity
transformations. Some explicit solutions of the classical, fractal and frac-
tional time derivative FPE, are obtained . It is shown that the solution of
the FPE is mixed- Gaussian’s. It is worthy to mention that the mixture of
Gaussians is a powerful tool in machine learning. Further,it is found that
the friction coefficient plays a significant role in lowering the magnitude
of the distribution function. While changing the order of the fractal and
fraction time derivative has a slight effects and the mean and mean square
of the velocity vary slowly.

Key words. reduction of fractal and fractional derivatives, non au-
tonomous FPE, exact solutions. extended unified method, mixed -Gaussians

1 Introduction
The FPE deals with fluctuations of systems which stem from disturbances, each
of which changes the variables of the system in an unpredictable way. When
macroscopic particles are immersed in fluid, they are pulled by the fluid and
the position of particles is an unpredictable. So that they fluctuate about an
expected position with a certain probability to find the particle in a given region.
The probability density function can be determined via the FPE.This equation is
used in many different fields in natural science, in solid-state physics, quantum
optics, chemical physics, and mathematical biology. Anomalous diffusion is
an eminent behavior and characterizes the transport processes of matter in
different systems [1–4].The features of diffusion can be classified to sub- and
super- diffusion. They may be measured by evaluating the variance, relevant to
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the displacement of particles in the medium, which behaves as xβwhere x is the
space variable. When 0 < β < 1, this stands to sub-advection (or in transition
state) and when
∗hamdyig@yahoo.com
1 < β < 2, this case is sub-diffusion (or the transition from advection to

diffusion). While in the case when 2 < β < 3 describes super-diffusion (or
the transition from diffusion to dispersion). The first case assigns to spatially
disordered or fractal media and also in fractional Brownian motion and random
processes [5,6]. To this end the fractal and fractional time-space derivatives, of
orders α, 0 < α < 1 and β, 1 < β < 2, respectively, do emerge in the formulation
of diffusion equations relevant to the study of the transport process. By using
the time time fractional derivative, the effects of time distributed delay in the
transport process are then taken into consideration. While fractal derivative
reflect instantaneous frangibility effect.

Fractional derivatives which was proposed in the literature assume numer-
ous definitions; Caputo, Caputo-Fabrizio {7,8], and a very recently Atangana-
Baleneau derivatives [9] and slso Riemann-Liouville, Riesz (see [21]),In the last
three, only the Kernel of the integral is different depending to when it is singular
or not. Analytical investigation of the fractional KPE equation that describes
anomalous diffusion of energetic particles [10] have been accomplished. An ap-
proach was proposed in [11–13] to solve analytically the fractional force-less
one-dimensional FPE. The Klein–Kramers equation [14,15] that describes the
transport of energetic particles in turbulent magnetic fields can be reduced to
the force-less homogeneous one-dimensional FPE.

The Klein–Kramers equation [36,37], which describes the Brownian motion
of particles in the presence of an external force F (z) is

∂

∂t
W (z, v, t) = (−v ∂

∂z
+

∂

∂v
(ηv − F (z)

m
) +B

∂2

∂v2
)W (z, v, t), (1)

where W (z, v, t) is the probability density function of particles, B = ηKBT
m ,KB

is the Boltzmann constant, T is the absolute temperature and m is the mass of
a diffusing particle, v its velocity, η denotesthe friction coefficient, F (z) is an
external force field

To describe the distribution in the velocity space one can evauate the mean
and mean square of the particle position in the absence of the external force. In
this case (1) reduces to the FPE that inspect the diffusion of a test particle in
the phase space,

∂

∂t
f(v, t) = η

∂

∂v
(vf(v, t)) +B

∂2

∂v2
f(v, t), (2)

where f(v, t) =
∫∞
−∞W (z, v, t)dz designates the distribution function.

Here, we consider the fractal and fractional time KPE of (2) that general-
izes the energetic particles transport equations, that is by replacing the ordi-
nary derivatives using the fractal , Caputo and Caputo-Fabrizio fractional time
derivatives [7,8] to make a prediction of the evolution of the particle distribution

2



function in phase space. We mention that the results obtained incorporate the
effects of the distributed time delay.

2 Fractal derivative
The fractional derivative was introduced in [16-18]

d

dtα
f(t) = Limitt1→t

f(t1)− f(t)

tα1 − tα
, t > 0. (3)

When fεC1(R+) , the RHS of (1) Reduces to

d

dtα
f(t) = α−1t1−αf ′(t). (4)

From (2) we find that the fractal derive is nothing else but the conformable
fractional derivative up to multiplication by α−1. On the other hand is is iden-
tical to the LHS of (2) by writing dtα = αtα−1dt. That is dtα is reducible. This
fact suggests to define the fractal derive by

d

dtα
f(t) = Limitε→0

f(t+ εα−1t1−α)− f(t)

ε
, t > 0. (5)

3 Fractional derivative
The Caputo fractional derivative is

DαC
t f(t) =

1

Γ(m− α)

∫ t

0

(t−t1)−α+(m−1)f (m)(t1)dt1, m−1 < α < mt > 0, (6)

provided that f is Hoder continuous , fεHm,α−(m−1)(R+) and the integral ex-
ists. The Caputo-Fabrizio fractional derivative CFFD is

DαCF
t f(t) =

2α

(1− α)(2− α)

∫ t

0

e−
α

1−α (t−t1)f ′(t1)dt1, 0 < α < 1 t > 0, (7)

provided that fεH1,α(R+).
The Atangana-Baleanu fractational derivative ABFD, in the Caputo sense,

is [9,20]

DαAB
t f(t) =

B(α)

1− α

∫ t

0

Eα(− α

1− α
(t− t1)α)f ′(t1)dt1, 0 < α < 1 t > 0, (8)

where B(α) > 0 is a normalization function satisfying B(0) = B(1) = 1 , and
Eα(t) is the Mittag–Leffler function and fεH1,α(R+). It is worth noticing that
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this function is not invariant under the CFD. The function which is invariant is
eα(t) [26] where

Eα(t) =

∞∑
n=0

tn

Γ(αn+ 1)
, eα(t) := eα,1(t) =

∞∑
n=0

tαn

Γ(αn+ 1)
, (9)

and the last function generalizes to

eα,1(λ, t) =

∞∑
n=0

λntαn

Γ(αn+ β)
(10)

We define a new fractional derivative, Gawad’s definition

DβG
t f(t) =

2λ
1
β

λ+ 2

∫ t

0

e−λ(t−t1)βf ′(t1)dt1, β > 0 t > 0, (11)

provided that fεH1,β(R+). We mention that the CFFD is a particular case
from (3), when β = 1and λ = α

1−α .The Kernel in the fraction derivative (3) is
of interest) in the theory of distributions. As when 0 < β ≤ 1, the fractional
exponential distribution is f(t) = λ1/βe−λt

β

generalizes the classical exponential
distribution and when 1 < β ≤ 2, the fractional Gaussian distribution is f(t) =
λ1/β
√
π
e−λt

β

. This later distribution may be considered as transition between the
exponential and the Gaussian.

3.1 Reduction of the fractional derivatives
Here we shall reduce the FD’s to ordinary derivatives with time dependent
coefficients [ 22-24].

We consider (1) when 0 < α < 1

DαC
t1 f(t1) =

1

Γ(1− α)

∫ t1

0

(t1 − t2)−αf ′(t2)dt2. (12)

Theorem. The Caputo FD is reduced to

DαC
t f(t) =

1

Γ(2− α)
(T − t)1−αf ′(t), 0 ≤ t ≤ T0. (13)

Proof.. In (4), operating by the integral on t1 on [0, t], it holds∫ t

0

DαC
t1 f(t1)dt1 =

∫ t

0

(
1

Γ(1− α)

∫ t1

0

(t1 − t2)−αf ′(t2)dt2)dt1 . (14)

In the RHS of (5) we permute the outer with the inner integral and get∫ t

0

DαC
t1 f(t1)dt1 =

∫ t
0
( 1

Γ(1−α) (
∫ t
t2

(t1 − t2)−αdt1)f ′(t2)dt2

=
∫ t

0
( 1

Γ(1−α)
(t−t2)1−α

1−α )f ′(t2)dt2
. (15)

From (6), it holds that
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DαC
t f(t) =

1

Γ(2− α)
(T − t)1−αf ′(t) 0 ≤ t ≤ T0. (16)

,
which is identically (5).
By using the transformation f(t) := f̃(τ), (8) can be rewritten:

DαC
t f(t) :=

d

dτ
f̃(τ), τ =

Γ(2− α)

α
(Tα0 − (T0 − t)α) (17)

The equations (8) and (9) are some of the main results in this work.
By the same way, we find

DαCF
t f(t) = 2

(2−α) (1− e−
α

1−α (T0−t))f ′(t) := d
dτ f̃(τ),

τ = (2−α)(1−α)
2α Log( e

α
1−α (T0−t)−1

e
α

1−αT0−1
) 0 ≤ t ≤ T0,

, (18)

DαAB
t f(t) =

B(α)

(1− α)
(T0 − t)eα,2(− α

1− α
, (T − t1))f ′0(t), (19)

where (see [25])

eα,β(σ, x) =

∞∑
n=0

σnxαn

Γ(αn+ β)
. (20)

And

DβG
t f(t) = 2

λ+2γ( 1
β , λ(T0 − t)β)f ′(t) := d

dτ f̃(τ),

τ = (λ+2)
2

∫ t
0

1
γ( 1
β ,λ(T0−t1)β)

dt1, 0 ≤ t ≤ T0, 0 < β < 1,
(21)

where γ(m, t) is the incomplete lower Gamma function. We mention that

γ(a, x) + Γ (a, x) = Γ(a), a > 0, x > 0, Γ (a, x) =

∫ ∞
x

e−yya−1dy. (22)

,By using (11), we can prove the following theorem.
Theorem 1.The GFD satisfies the following:
(i) DβG

t (f(t)+g(t)) = DβG
t f(t) +DβG

t g(t).
(ii) DβG

t (f(t)g(t)) = f(t)DβG
t g(t) + g(t)DβG

t f(t).

(iii)DβG
t ( f(t)

g(t) )) =
g(t)DβGt f(t)−f(t)DβGt g(t)

g(t)2 .
Further by using (11) the function f(t) which is invariant under the FD

DβG
t ,that is DβG

t eβ,G(t) = eβ,G(t), is found directly:

eβ,G(t) = e
(λ+2)

2

∫ t
0

1

γ( 1
β
,λ(T0−t1)β)

dt1,
. (23)
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4 Solutions of the FPE.
We present the approach to solve of (2) as follows. Here we use the transforma-
tions fv(v, t) = F (v, t) f(v, t) and ft(v, t) = G(v, t) f(v, t).

Thus (2) is written

fv(v, t)− F (v, t) f(v, t) = 0, ft(v, t)−G(v, t) f(v, t) = 0,
G(v, t)− η(1 + vF (v, t))−B(Fv(v, t) + F (v, t)2) = 0.

(24)

On the other hand , the unified method, which asserts that the solutions of
the nonlinear PDEs can be expressed by rational forms in an auxiliary function
that satisfies an auxiliary equation.

We find a class of solutions of (2).

4.1 Case of Linear auxiliary equations
(I) We assume that the auxiliary equations are linear. In (28) and take the
solutions in the form.

f(v, t) = s1(v)g(v,t)+s0(v)
a1(v)g(v,t)+a0(v) , F (v, t) = b1(v)g(v,t)+b0(v)

s1(v)g(v,z,t)+s0(v) ,

G(v, t) = d1(v)g(v,t)+d0(v)
s1(v)g(v,t)+s0(v) ,

(25)

together with linear auxiliary equation.

gt(v, t) = µ (c1g(v, t) + c0), gv(v, t) = h(v) (c1g(v, t) + c0), (26)

It is worth noticing that in (26), the compatibly equation gtv(v, t) = gvt(v, t)
holds.

By inserting (25) into (24), and by using (30), we get a system of coupled
ODEs of first order in ai, b, di, i = 1, 2..We found that the calculations are not
straight forward due to two facts. (i)The equations obtained are nonlinear (ii)
It arises that we can have two equations, for example,aj(v) and a′j(v), j = 0, 1,
so we have to use the compatibly equation, b′j(v)− (bj(v))′ = 0.

We have the following equations

a′0(v) = 1
s0(v) (−c0a1(v)h(v)s(v) + a0(v)(−b0(v) + c0h(v)s1(v) + s′0(v))),

s′1(v) = b1(v), s′0(v) = b0(v) + h(v)(−c0s1(v) + c1s0(v)),

b′0(v) = 1
mB (b0(v)(−mv η + F0 +Bc1mh(v))−m(Bc0b1(v)h(v)− c0(k0v + µ)s1(v)

+(c1k0v + η + c1µ)s0(v))),
b′1(v) = 1

mB (b1(v)(−mv η + F0)−mηs1(v))
(27)

and

d1(v) = 0, d0(v) = c1µ
a1(v) (s1(v)− a1(v)s0(v)), a1(v) = c1/c0, a0(v) = 1.

(28)
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By rewriting the second equation in (27) as b1(v) = s′1(v),the compatibly
equationb′1(v)− (b1(v))′ = 0, gives rise to

mηs1(v) +mvηs′1(v) +Bms′′1(v) = 0, (29)

where (29) solves to

s1(v) = A2e
− v

2η
2B +A1

√
π B

2η
e
v2η
2B −

F2
0

(2Bm2η erfi(
mv η]√
2Bηm

), erfi(x) = e−x
2

∫ x

0

ey
2

dy.

(30)
In (27), we can evaluate b1(v) = s′1(v)..By the same way, we rewrite the

third equation in(31) as

b0(v) = −s′0(v) + h(v)(−c0s1(v) + c1s0(v)), (31)

we find that the compatibly equation b′0(v)− (b0(v))′ = 0 gives rise to
and

(mv η)h(v) +Bc1mh(v)2 +m(+µ−Bh′(v)) = 0.. (32)

The solutions of (32) is given by

c1 = n η
µ , h(v) = P1(v)

Q1
, P1(v) = −

√
2B
η µB0Hn−1(

v
√
η√

2B
) + vµ1F1(1− n

2 ,
3
2 ,

v2η
2B )),

Q1(v) = BB0Hn(
v
√
η√

2B
) + 1F1(−n2 ,

1
2 ,

ηv2

2B ),

(33)
where Hn(v

√
η

2B ) and 1F1(−n2 ,
1
2 ,

ηv2

2B ) are the Hermite polynomial and the
hyper geometric functions respectively.

Further the solution of the auxiliary equations give rise to

g(v, t) = −c0
c1

+B3e
c1

∫
h(v)dv+µt. (34)

We mention that
∫
h(v)dv can not be directly evaluated. To this end we

assume that (see (33))

(Q1 + s(v))′ = P1, (35)

and the calculations give

s(v) = (nη+µ)
nη (−BB0Hn(

v
√
η√

2B
) +B(1−P FQ({−n2 }, {

1
2},

ηv2

2B ))

,
(36)

where PFQ is the generalized hyper geometric function. Finally, we get
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∫
h(v)dv = Log(| P1(v) + s(v) |). (37)

By substituting for si(v), ai(v) and by using (32)-(41) in the first equation
in (29) we get the required solution. It is too lengthy to be produced here.

4.2 case of quadratic auxiliary equations
We assume that the auxiliary equations are quadratic. By using (24), the solu-
tions have the form

f(v, t) = s1g(v,t)+s0
a1(v)g(v,t)+a0(v) , F (v, t) = b1(v)g(v,t)+b0(v)

s1g(v,t)+s0
,

G(v, t) = d1(v)g(v,t)+d0(v)
s1g(v,t)+s0

,
(38)

together withe auxiliary equation

gt(v, t) = µ (c2g(v, t)2 +c1g(v, t)+c0), gv(v, t) = h(v) (c2g(v, t)2 +c1g(v, t)+c0).
(39)

It is worth noticing that in (39), the equation gtv(v, t) = gvt(v, t) holds.
By inserting (38) into (25) and by using (39), we find that the calculations are

not straight forward due to two facts. (i) The equations obtained are nonlinear
(ii) It arises that we can have two equations for aj(v) and a′j(v), j = 0, 1, so we
have to use the compatibly equation, a′j(v)− (aj(v))′ = 0.

We have the following

a′0(v) = 1
s0

(−ao(v)bo(v)− c0s0a1(v)h(v) + c0s1a0(v)h(v)), c0 =
c21−k

2
0

4c2
,

a′1(v) = 1
s1

(−a1(v)b1(v)− c2s0a1(v)h(v) + c2s1a0(v)h(v)),

a1(v) =
a0(v)((c21−k

2
0)s1µ−4c2d0(v))

(c21−k20)s0µ
, d1(v) = − (d0(v)((c21−k

2
0)s1µ−4c1c2s0µ−4c2d0[v]))

(c21−k20)s0µ
,

b1(v) = 1
4c2s0

(4c2s1b0(v)− (c21 − k2
0)s2

1h(v) + 4c1c2s1s0h(v)− 4c2
2
2so

2h(v),

d0(v) = − 1
4c2

((c1 + k0)(−c1s1 + k0s1 + 2c2s0)µ),

b′0(v) = − 1
4B2c2h[v)2 (B2c2k

2
0s0h(v)ˆ4 + c2s0(µ−Bh′2(v) + h(v)2(c2s0(4Bη

−vˆ2η2 + 2Bk0µ) +B2(−c21s1 + k2
0s1 + 2c1c2s0)h′(v))

b0(v) = 1
4Bc2h(v) (2c2s0µ− 2c2s0vηh(v) +Bc1ˆ2s1h

2(v)−Bkoˆ2s1h2(v)

−2Bc1c2s0h
2(v)− 2Bc2s0h

′(v)).
(40)

The compatibly equation between b′0(v) and b0(v) gives rise to

s0(µ2 + (−v2η2 + 2B(η + k0µ))h2(v) +B2k2
0h

4(v)− 4Bµh′(v) = 0
+3B2h′2(v)− 2B2h(v)h′′(v))

. (41)

The equation has the first integral
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h′(v) =
1

B
(η + vηh(v) +Bk0h

2(v)), (42)

that integrates to

h(v) = −P (v)
Q(v) , P (v) = µ(

√
B
√

2n
√
ηB0Hn−1(

v
√
η]√

2B
)− nvη 1F1(1− n

2 ,
3
2 ,

v2η
2B )),

Q(v) = n ηB(B0Hn(
v
√
η]√

2B
)− nvη 1F1(−n2 ,

1
2 ,

v2η
2B )), k0 = n η

µ ,

(43)
whereHn(x) and 1F1(a, b, x) are the Hermite polynomial and hyper-geometric

function respectively.
The compatibly equation between a′1(v) and a1(v) holds identically. It re-

mains to find a0(v) by using (40), we get

a:0(v) = e
v2η
2B B1, a1(v) =

2c2a0(v)

c1 − k0
, . (44)

The solution of the auxiliary equation (3) gives rise to

g(v, t) =
(n η − en η(t+

∫
h(v)dv)n η − c1µ− c1en η(t+

∫
h(v)dv))µ)

2c2µ(1 + e(n η(t+
∫
h(v)dv))

. (45)

By substituting from (44) and (45) into the first equation in (38) we have

f(v, t) = P1

Q1
, P1 = e

v2η
2B (c1 − k0)((−1 + en η(t+

∫
h(v)dv))ns1η+

(1 + en η(t+
∫
h(v)dv))(c1s1 − 2c2s0)µ), Q1 = 2B1c2n((−1 + en η(t+

∫
h(v)dv))nη

+(1 + en η(t+
∫
h(v)dv))k0µ).

(46)
Now we evaluate

∫
h(v)dv, to this end we use (43) and assume that

P (v) = (Q(v) + S(v))′, (47)

where S(v) is to be determined. Calculations show that

S(v) =
nη + µ)B

(n
√
η

(n
√
η)(−B0Hn(

v
√
η]

√
2B

) + (1−P FQ({−n
2
}, {1

2
}, v

2η

2B
)),(48)

where PFQ (a, b, x) is the generalized hyper geometric function [19]. Finally
we get ∫

h(v)dv = −Log(| Q(v) + S(v) |), (49)

where Q(v) and S(v) are give by (43) and (48) respectively.
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4.3 Self Similar solution
now we consider the similarity transformations z = v ω(t), t := t;and f(v, t) =
f̃(z, t) so the equation (2) is

∂

∂t
f̃(z, t) = η

∂

∂z
(zf̃(z, t)) +Bω(t)2 ∂

2

∂z2
f̃(z, t), (50)

and as in section 4.1, (50) is transformed to

f̃z(z, t)− F (z, t) f̃(z, t) = 0, f̃t(z, t)−G(z, t) f̃(z, t) = 0,
G(z, t)− η(1 + zF (z, t))−Bω(t)2(Fz(z, t) + F (z, t)2) = 0.

. (51)

We assume that the solutions, by using (51), have the form

f̃(z, t) = s1g(z,t)+s0
a1(z,t)g(z,t)+a0(z,t) , F (z, t) = b1(z,t)g(z,t)+b0(z,t)

s1g(z,,t)+s0
,

G(z, t) = d1(z,t)g(z,t)+d0(z,t)
s1g(z,,t)+s0

,
(52)

and

gt(z, t) = µ(t) (c2g(z, t)2 + c1g(z, t) + c0),
gz(z, t) = h(z) (c2g(z, t)2 + c1g(z, t) + c0)

. (53)

By inserting (52) and (53) into (51), we have following equations .

a0z(z, t) = 1
s0ω(t) (−a0(z, t)b(z, t)− c0s0a1(z, t]h(z)ω(t)

+c0s1a0(z, t)h(z)ω(t),
a1z(z, t) = 1

s1ω(t) (−a1(z, t])b1(z, t)− c2s0a1(z, t0h(z)ω(t)

+c2s1a0(z, t)h(z)ω(t)),
b1(z, t) = 1

s0
(s1b0(z, t)− c0s2

1h(z)ω(t) + c1s1s0h(z)ω(t)

−c2s2
0h(z)ω(t)),

a0t(z, t) = 1
s0

(−a0(z, t)d0(z, t)− c0s0a1(z, t)µ(t)

+c0s1a0(z, t)µ(t)),
a1t(z, t) = 1

s1
(−a1(z, t)d1(z, t)− c2s0a1(z, t)µ(t) + c2s1a0(z, t)µ(t))

b0z(z, t) = 1
4B2h[z)2ω(t)3 (−s0µ(t)2+

2Bµ(t)ω(t)2((−2c0s1 + c1s0)h(z)2 + s0h
′(z))

+ω(t)2(−B2(c21 − 4c2co)s0h(z)4ω(t)2 −B2s0ω(t)2h′2(z)
+h(z)2(s0η(−4B + z2η) + 4Bd0(z, t)

+2B2(2c0s1 − c1s0)ω(t)2h′(z))),
b0(z, t) = 1

2Bh(z))ω(t) (s0µ(t)− s0zηh(z)ω(t) + 2Bc0s1h(z)2ω(t)2

−Bc1s0h(z)2ˆ2ω(t)2 −Bs0ω(t)2h′(z)).

(54)

Now the compatibly equation b0z(z, t)− (b0(z, t))z = 0 , solves to

d0(z, t) = 1
4Bh(z)2ω(t)2 (s0ω(t)2 + 2Bµ(t)ω(t)2((2c0s1 − c1s0)h(z)2

−2s0h
′(z)) + s0ω(t)2(B2(c21 − 4c2c0)h(z)4ω(t)2

−ηh(z)2(−4A+ zˆ2η + 2Bω(t))
+3B2ω(t)2h′2(z)− 2B2h(z)ω(t)2h′′(z))).

(55)
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The compatibly equations (aiz(z, t))t − (ait(z, t))z = 0, give rise to

(−B2(c21 − 4c2c0)h(z)4ω(t)5h′(z) + ω(t)h(z)(µ(t)2µ(t)

−4Bµ(t)ω(t)2h′(z) + 3B2ω(t)4h′2(z) + zηh(z)3ω(t)(ηω(t)2 + ω′(t))
+2Bh(z)ω(t)3(µ(t)− 2Bω(t)2h′(z))h′′(z)

+h[z]ˆ2(ω(t)µ′(t)− 2µ(t)ω(t)) +B2ω(t)5h(3)(z))) = 0.

(56)

We find that (60) holds when

µ(t) = A0ω
2(t), ω′(t) = −ηω(t)2, c0 = (c21 − p2

3)/(4c2), .
h′(z) = A0

A + p1h(z) + p2h(z)2 (57)

It remains to evaluate aj(z, t), j = 0, 1, where detailed calculations yield

a1(z, t) = B3

√
B0+tη√
B0

e( 1
4 (2p1z−4tη+(z2ηB0+tη))/B−(Bp21t)/(B

2
0+B0tη)+(4A0p2t)/(B

2
0+Botη)−4c1

∫
h(z)dz)),

a0(z, t) = e
∫ t
0

1
4 ((η(−4+ z2η

B )+2ηω(t1)−Bp21ω(t1)2)dt1e(
p1z
2 +

B0z
2η

4B B1, c0 = 0, c2 = 0.
(58)

The solution of the auxiliary equation is

g(z, t) = B2e
c1(

∫ t
0
µ(t1)dt1+

∫
h(z)dz), (59)

together with

h(z) = −
−p1
√
B − rtanh( r(z+A1)

2
√
B

)

2c1
√
B

, r =
√
Bp2

1 + 4A0c1. (60)

Finally we get the solution of (51) which is

f(z, t) = P2

Q2
, P1 =

√
B0e

− p1z2 −
z2η(Bo+tη)

4B +t(η+
Bp21

4B2
0+4B0tη

)
,

(B2e
1
2 (

(2A0(−1+t)c1)

(B0+η)(B0+tη)
−p1z−2Log(cosh((

√
Bp21+4A0c1(z+A1)

2
√
B

))
s1 + s0)

Q1 = (B1 +B2B3e
A0(B0(c1(−1+t)−c1t)−c1tη)

B0(B0+η)(Bo+tη) )
√
Bo+ tη, z = v, ω(t) = v√

Bo+tη
.

,

(61)

5 Solutions of fractal and fractional FPE
The study of fractional evolution equations occupies a remarkable area in the
literature [29-32]. Here the fractal and fractional time derivative FPE is reduced
to the classical one’s by using the similarity transformations f(v, t) = f̃(v, τ)
and τ is given by

(a) In the case of fractal derivative τ = tβ .
(b) In the case CFD τ = Γ(2−α)

α (Tα0 − (T0 − t)α).
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(c) In the case of CFFD τ = (2−α)(1−α)
2α Log( e

α
1−α (T0−t)−1

e
α

1−αT0−1
).

(d) In the case of Gawad’s FD τ = (λ+2)
2

∫ t
0

1
γ( 1
β ,λ(T0−t1)β)

dt1.

The equation (2) is rewritten

∂

∂τ
f̃(v, τ) = η

∂

∂v
(vf̃(v, τ)) +B

∂2

∂v2
f̃(v, τ), (62)

We find two classes of solutions, first by using the similarity transforma-
tions and second by considering (54) non autonomous equation in (i) and (ii)
respectively.

(I) We use the similarity transformations f(v, t) = f̃(v, τ) and τ is given as
follows.

Thus the solutions given in section 5 hold but t → τ and τ is replaced by
one of the values mentioned in (a)-(d). Now we present some numerical results
with relevance to subsection 5.1. We confine ourselves to consider the cases of
fractal and CFD.

The results of the solution, given in subsection 5.1 are displayed against v
and t, and they are shown in figures 1 (i)-(iii) for different values of β and the
friction coefficient η.

Figures 1 (i)-(iii), (i)B0 = 1.5, co:0 = 2, n = 10, η = 1.7, A0 = 1.3;A1 =
2.3, B = 5,m = 2.5, τ = tβ , β = 0.39;A2 = 3, µ = −0.5, B1 = 1.9, B2 = 0.7.
(ii) the same caption as in (i) but η = 1.7.(iii) the same caption as in (i) but
β = 0.99.

Figures 1 show that the distribution function is mixed-Gaussian’s and that
the friction coefficient plays a significant role in lowering the magnitude of the
distribution density function. While and the effect of vanning the fractal order
plays a in lowering the tails

Figures 2 (i) and (ii) show the mean and the mean square of the velocity,
when B0 = 1.5c0 = 2, n = 10, η = 0.5, A0 = 1.3, A1 = 2.3, B = 5,m := 2.5, τ =
tβ , β = 0.99;A2 = 3, µ = −0.5, B1 = 1.9, B2 = 0.7.

12



The order of the fractal time derivative has no remarkable effect on the mean
and the mean square.

For the solution of fractional FPE in the caputo sense, the results in section
5.1 are displayed against v and t, and they are shown in figures3 (i)-(iii) for
different values of α and the friction coefficient η.

Figures 3 (i)-(iii), (i) B0 = 1.5, c0 = 2, n = 10, η = 0.5, Ao := 1.3, A1 =

2.3, B = 5;m = 2.5, τ = Γ(2−α)
α (Tα0 − (T0 − t)α, α = 0.39, T0 = 20, A2 := 3, µ =

−0.5, B1 := 1.9, B2 := 0.7. (ii) the same caption as in (i) but η = 1.7.(iiii) the
same caption as in (i) but α = 0.99.

Figures 3 show mixed Gaussian’s. The friction coefficient plays a dominant
role in lowering the magnitude of the distribution function. While and when
α = 0.99. permutation the Gaussian’s occurs.

In figures 4 (i) and (ii0 for the mean and mean square of the velocity are
displayed against t, by varying the fractional order.

Figures 4 show the man and mean square for the same caption as in Figs.3.
Figures (i) and (ii), show no remarkable variation in the mean and mean

square when varying the fractional order.

6 Conclusions
An approach for finding solutions of linear PDE’s with variable coefficients is
presented. It is established by transforming the PDE to a system of first order
PDE’s and the extended unified method is implemented A class of solutions
of fractal and fractional Fokker Planck equations are obtained. The solutions
show that the distribution function is mixed-Gaussian’s. Further the friction
coefficient plays the role of lowering the magnitude of the distribution function.
On the other hand, varying the order of the fractional time derivative has the
effect of permuting the Gaussian’s the distribution function.
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