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Abstract. The polyphenyl chains with n hexagons are the special graphs of un-
branched polycyclic aromatic hydrocarbons. The objective of this study is to find
the expected values of the multiplicative version of the atomic-bond connectivity
index and geometric-arithmetic index of this class of special hydrocarbons. The
average values of these two indices with respect to the set of all polyphenyl chains
have been determined. Finally, the comparisons between the expected values of
aforementioned indices in the random polyphenyl and spiro chains, have been
outlined.
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1. Introduction

Topological indices (TIs) are digital counterparts of chemical structures and there-
fore represent these discrete molecular constitutional formulas by numerical func-
tions. Some of their main uses are for quantitative structure-property or structure-
activity relationships, QSPR and QSAR, respectively [20],[16]. Chemical graphs are
connected non-directed graphs which are graph-theoretically planar.

The Wiener index [29], the Zagreb indices [15], or the Hosoya index [17], which
are integers are the earliest TIs, have a high degeneracy. As compare to TIs, which
are non-integer such as molecular connectivity (Randic [22]), higher-order molecular
connectivity ([21]), or information-theoretic indices ([3], [25]) have lower degeneracy.

E. Estrada et al. [13] proposed atom-bond connectivity index of a graph G. The
stability of alkanes and the strain energy of cycloalkanes has been study through
the correlation with the ABC index in[13, 14].

Recently Kulli (2016b) introduce the multiplicative version of atomic-bond con-
nectivity index defined as

(1.1) ABC
∏

(G) =
∏

uv∈E(G)

√
du + dv − 2

dudv

The authors computed the multiplicative atom-bond connectivity index of some
nanotubes. Since the multiplicative atom-bond connectivity index has not been
widely studied until now, the results on the multiplicative atombond connectivity
index are still limited, compared to the atom-bond connectivity index, for more
recent work see [24]. In [26] geometric-arithmetic index has been defined and in
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[26] it is proved that the GA index is well correlated with a lot of physico-chemical
properties. The GA index predict better than the Randic index. More details related
the mathematical properties of GA index can be found in [7, 8, 12, 23, 32, 33].

Recently Kulli (2016b) introduce the multiplicative version of geometric-arithmetic
index defined as

(1.2) GA
∏

(G) =
∏

uv∈E(G)

2
√
dudv

du + dv

The polyphenyls will be considered as the molecular graphs which can be used
in organic synthesis, drug synthesis, heat exchanger, etc., see for more details in
[18,27,31]. Biphenyl compounds also have extensive industrial applications. For ex-
ample, 4,4-bis (chloromethyl) biphenyl can be used for the synthesis of brightening
agents. Especially, polychlorinated biphenyls, which are dangerous organic pollu-
tants and lead to global pollution, can be applied in print and dyeing extensively
[4].

Let us consider n hexagons h1, h2, . . . , hn. Then one can obtained a polyphenyl
chain of length n by adding a bridge to each pair of consecutive hexagons, which is
denoted by RPCn.

Since two consecutive hexagons can be bridged by three different ways. Thus,
RPCn may not be unique when n > 2. Thus there can be three types of local
arrangements denoted by RPC1

n, RPC2
n, and RPC3

n respectively (see Figure 1). So,
to obtained RPCn from a fixed RPCn−1 is a random process. Let us associate the
probabilities ρ1, ρ2 and 1 − ρ1 − ρ2 for obtaining RPC1

n, RPC2
n, and RPC3

n from a
fixed RPCn−1, respectively. If ρ1 and ρ2 are constants and independent of n, Then
above is a zeroth-order Markov process. The above polyphenyl chain denoted by
RPC(n; ρ1, ρ2) is known as a random polyphenyl chain.

If n = 1, 2 there are unique random polyphenyl chains and for n > 2 the general
form of polyphenyl chains has been shown in Figure 1. Some results on matchings
and independent sets, Wiener index, etc., of polyphenyl chains can be found in
[1, 2, 9, 10, 11].
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Figure 1. Random Polyphenyl Chains for n = 1, 2, 3 and n > 3
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If we squeeze each cut edge between each consecutive hexagons in RPCn, then we
will obtained a spiro chain, which is denoted by RSCn. Similarly, for n > 2 its is
easy to see that RSCn is not unique and has three types denoted by RSC1

n, RSC2
n,

and RSC3
n (see Figure 2), respectively. Thus, getting a RSCn from a fixed RSCn−1

is a random process. Namely, the probability of getting RSC1
n, RSC2

n, and RSC3
n

from a fixed RSCn−1 are ρ1, ρ2 and 1 − ρ1 − ρ2, respectively. Suppose that ρ1 and
ρ2 are constants and independent of n, then this process is a zeroth-order Markov
process. The the obtained polyphenyl chain denoted by RSC(n; ρ1, ρ2) is known to
be a random sprio chain. The Wiener index of random polyphenyl chain has been
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Figure 2. Random Sprio Chains for n = 1, 2, 3 and n > 3

computed in [32] . The Kirchhoff index in random polypheny and spiro chains has
been determined by Huang et al. [18] . In 2016, Deng et al. [19] established exact
formulas for the expected values of the Hosoya index and Merrifield-Simmons index
of a random polyphenylene and spiro chain. The spiro and polypheny hexagonal
chains with respect to the number of BC-subtrees has been consider in [31]. The
comparison of excepted values of ABC and GA indices in random spiro chains has
been given in [27]. For more details one may refer to [5, 6, 9, 10, 30].

2. Results and Discussion

In this section, we will give our main results related with the two types of chains.

2.1. The multiplicative ABC and GA indices in random spiro chains. Let
us consider randon spiro chain RSCn obtained from RSCn−1 as described in Figure
2. It easy to see that we have only (2, 2), (2, 4), and (4, 4)-edges in RSCn and by
equations (1.1) and (1.2). We have the following expression for multiplicative ABC
and GA indices:

(2.1) ABC
∏

(RSCn) = (

√
2

2
)m22(RSCn)+m24(RSCn) ∗ (

√
6

4
)m44(RSCn)
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(2.2) GA
∏

(RSCn) = (1)m22(RSCn)+m44(RSCn) ∗ (
2
√

2

3
)m24(RSCn)

Thus, to compute the multiplicative ABC and GA indices of RSCn, we just need
to determine m22(RSCn),m24(RSCn) and m24(RSCn) and for simplicity of the no-
tation, we denote mij(RSCn) just mij in the rest of the section.

Since RSC(n; ρ1, ρ2) is a random spiro chain. So, ABC
∏

RSC(n; ρ1, ρ2) and
GA

∏
RSC(n; ρ1, ρ2) are random variables. For simplicity, we denote their expected

values by En = E[ABC
∏

RSC(n; ρ1, ρ2)] and En = E[GA
∏

RSC(n; ρ1, ρ2)], re-
spectively.

Theorem 2.1. For n > 1, and a random spiro chains RSC(n; ρ1, ρ2), we have

Ea
n = E[ABC

∏
RSC(n; ρ1, ρ2)] =

(ρ1(
√

3− 2) + 2)n−2

24n−2 .

Proof. From the definition of multiplicative ABC index, we have

(2.3) ABC
∏

(RSCn) = (
1√
2

)m22+m24(

√
6

4
)m44

It is easy to see that for n = 2, Ea
1 = (1

2
)6. Now when n ≥ 3, it is obvious that

then numbers of edges of type m22, m24 and m44 depends on the three possibilities
as described in Figure 2

i. If RSC1
n is obtained from fixed RSCn−1 with probability ρ1, then

m22(RSC1
n) = m22(RSCn−1) + 3, m24(RSC1

n) = m24(RSCn−1) + 2
m44(RSC1

n) = m44(RSCn−1) + 1 and by 2.3 we have,

ABC
∏

(RSC1
n) = (

1√
2

)m22+m24(

√
6

4
)m44(

1√
2

)5(

√
6

4
)

= ABC
∏

(RSCn−1)(

√
3

16
)

ii. If ρ2 is the probability to obtained RSC2
n from a fixed RSCn−1, thenm22(RSC2

n) =
m22(RSCn−1)+2, m24(RSC2

n) = m24(RSCn−1)+4, m44(RSC2
n) = m44(RSCn−1),

and by 2.3 we have

ABC
∏

(RSC2
n) = ABC

∏
(RSCn−1)

1

8

iii. If RSCn−1 → RSC3
n with probability 1−ρ1−ρ2, thenm22(RSC3

n) = m22(RSCn−1)+
2, m24(RSC3

n) = m24(RSCn−1) + 4, m44(RSC3
n) = m44(RSCn−1), so

ABC
∏

(RSC3
n) = ABC

∏
(RSCn−1)

1

8
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From above three types, we can obtain the followings:,

Ea
n

= E[ABC
∏

(RSC(n, ρ1, ρ2))]

= ρ1ABC
∏

(RSC1
n) + ρ2ABC

∏
(RSC2

n)

+ (1− ρ1 − ρ2)ABC
∏

(RSC3
n)

= ρ1[ABC
∏

(RSCn−1)

√
3

16
] + ρ2[ABC

∏
(RSCn−1)

1

8
]

+ (1− ρ1 − ρ2)ABC
∏

(RSCn−1)

= ABC
∏

(RSCn−1)[ρ1

√
3

16
+ ρ2

1

8
+

1

8
− ρ1

1

8
− ρ2

1

8
]

= ABC
∏

(RSCn−1)[

√
3

16
ρ1 − ρ1

1

8
+

1

8
]

Since E[Ea
n] = Ea

n and apply the operator E to the above equation, we get

Ea
n = Ea

n−1[ρ1

√
3− 2

16
+

1

8
] n > 2(2.4)

Using the initial condition and the recurrence relation of equation 2.4, we get our
result

Ea
n =

(ρ1(
√

3− 2) + 2)n−2

24n−2 .

�

Theorem 2.2. Let RSC(n; ρ1, ρ2) be a spiro chains. Then

E[GA
∏

(RSC(n; ρ1, ρ2))] =
64

81
(
8ρ1 + 64

81
)n−2; n > 1

Proof. From the the formula in (2.2), we have GA
∏

(RSCn) = (1)m22+m44(2
√
2

3
)m24 .

It is easy to see that for n = 2, E2 = 64
91

. Now when n ≥ 2, it is easy to see that
m22, m24 and m44 depend on the three possibilities as described in Figure 2.

i. If RSCn−1 → RSC1
n with probability ρ1, thenm22(RSC1

n) = m22(RSCn−1)+3,
m24(RSC1

n) = m24(RSCn−1) + 2, m44(RSC1
n) = m44(RSCn−1) + 1, thus

GA
∏

(RSC1
n) = 1m22+m44(

2
√

2

3
)m24+2

= (
8

9
)GA

∏
(RSCn−1)

ii. If RSCn−1 → RSC2
n with probability ρ2, thenm22(RSC2

n) = m22(RSCn−1)+2,
m24(RSC2

n) = m24(RSCn−1) + 4, m44(RSC2
n) = m44(RSCn−1), thus we have

GA
∏

(RSC2
n) = GA(RSCn−1)(

2
√
2

3
)4

iii. If RSCn−1 → RSC3
n with probability 1−ρ1−ρ2, thenm22(RSC3

n) = m22(RSCn−1)+
2, m24(RSC3

n) = m24(RSCn−1) + 4, m44(RSC3
n) = m44(RSCn−1)

GA
∏

(RSC3
n) = GA(RSCn−1)(

2
√
2

3
)4.
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En[GA
∏

(RSCn)]

= ρ1GA
∏

(RSC1
n) + ρ2GA

∏
(RSC2

n)

+ (1− ρ1 − ρ2)GA
∏

(RSC3
n)

= ρ1[GA
∏

(RSCn−1)
8

9
] + ρ2[GA

∏
(RSCn−1)(

2
√

2

3
)4]

+ (1− ρ1 − ρ2)GA
∏

(RSCn−1)(
2
√

2

3
)4

= GA
∏

(RSCn−1)[
8

9
ρ1 − ρ1(

8

9
)2 + (

8

9
)2]

= GA
∏

(RSCn−1)[ρ1(1−
8

9
)
8

9
+ (

8

9
)2]

= GA
∏

(RSCn−1)[
8ρ1 + 64

81
]

Since E[En] = En and apply the operator E to the above equation, we get

En = En−1[
8ρ1 + 64

81
].(2.5)

Using the initial condition and the recurrence relation of equation 2.5, we get our
result

En =
64

81
[
8ρ1 + 64

81
]n−2 n > 1

�

It is easy to notice from Theorems 2.1 and 2.2 that the expected valued func-
tions E[ABC

∏
(RSC(n; ρ1, ρ2))] and E[ABC

∏
(RSC(n; ρ1, ρ2))] are linear in ρ1

and asymptotic to n. In particular, we can obtain the multiplicative ABC and
GA indices of polyphenyl orth-chain Mn = RSC(n; 0, 1), polyphenyl para-chain
Pn = RSC(n; 0, 0), and polyphenyl meta-chain On = RSC(n; 1, 0).

Corollary 2.3. For n > 1, we have

(1) • ABC
∏

(Pn) = ABC
∏

(Mn) = 1
23n
.

• ABC
∏

(On) = (
√
3)n−2

24n−2 .

(2) • GA
∏

(Pn) = GA
∏

(Mn) = (64
81

)n−1.

• GA
∏

(On) = (8
9
)n.

2.2. The average value of multiplicative ABC and GA for a random and
spiro chains. In this section, the average values of the multiplicative version of
the ABC and GA indices with respect to the set of all spiro chains SPn has been
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determined. The average values over the set SPn are defined by

ABCave

∏
(SPn) =

1

|SPn|
∑

G∈SPn

ABC
∏

(G)

and

GAave

∏
(SPn) =

1

|SPn|
∑

G∈SPn

GA
∏

(G)

respectively. Actually, these are the population means of the ABC and GA indices
of all elements in SPn. Since ρ1 = ρ2 = 1− ρ1 − ρ2, thus, we may apply Theorems
2.1 and 2.2 by putting ρ1 = ρ2 = 1− ρ1 − ρ2 = 1/3 and obtain the following result.

Theorem 2.4. Let SPn be the set of spiro chains, then

ABCavg

∏
(SPn) =

(
√
3+4
3

)n−2

24n−2

GAavg

∏
(SPn) = 52n−4 ∗ 23n

35n−1

From Corollary 2.3, it is easy to see that

ABC
∏

(On) + ABC
∏

(Pn) + ABC
∏

(Mn)

3

=

√
3
n−2

24n−2 + 1
23n

+ 1
23n

3

=
(
√

3)n−2 + 2 ∗ 2n−2

24n−23

=
(
√
3)n−2+2n−1

3

24n−2 .

and

GA
∏

(On) +GA
∏

(Pn) +GA
∏

(Mn)

3

=
1

3

[
(
8

9
)n + 2(

64

81
)n−1

]

= (
8

9
)n

[
9n−2 + 2 ∗ 8n−2

9n−2

]

=
23n(32n−4 + 23n−5)

34n−4

Since (
√
3+4
3

)n−2 ≥ (
√
3)n−2+2n−1

3
∀ n ≥ 4. Thus the average value of theABC

∏
avg(RSC(n, ρ1, ρ2))

or GA
∏

avg(RSC(n, ρ1, ρ2)) is always greater or equal to the average value of the

multiplicative ABC index over the set {On, Pn,Mn}.
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2.3. The multiplicative ABC and GA indices in random polyphenyl chain.
In this section, we consider the multiplicative version of ABC and GA indices in
RPCn a random polyphenyl chain. Let RPCn be the polyphenyl chain obtained
by from RPCn−1 as described in Figure 1. Clearly, there are only (2, 2), (2, 3), and
(3, 3)-edges in RPCn. By the definitions of the multiplicative ABC and GA indices
we can directly check that

(2.6) ABC
∏

(RPCn) = (

√
2

2
)m22(RPCn)+m23(RPCn) ∗ (

2

3
)m33(RSCn)

(2.7) GA
∏

(RPCn) = (1)m22(RPCn)+m33(RPCn) ∗ (
2
√

6

5
)m23(RPCn)

Thus, to compute the multiplicative ABC and GA indices of RPCn, we just need to
determine m22(RPCn),m24(RPCn) and m24(RPCn) and for simplicity of the nota-
tion, we denote mij(RPCn) just mij in the rest of the section.

Since RPC(n; ρ1, ρ2) is a random polyphenyl chain. So, ABC
∏

RPC(n; p1, p2)
and GA

∏
RPC(n; p1, p2) are random variables. For simplicity, we denote expected

values by En = E[ABC
∏

RPC(n; p1, p2)] and En = E[GA
∏

RPC(n; p1, p2)], re-
spectively.

Theorem 2.5. Let RPC(n; ρ1, ρ2) be a random polyphenyl chain of length n, where
n ≥ 1. Then

Ea
n = ABC

∏
(RPCn) =

[3 + ρ1(2
√

2− 3)]n−2

22n+1 ∗ 32n−3 .

Proof. It is easy to see that for n = 2, Ea
2 = 1

25∗3 . Now when n ≥ 2, it is obvious
that m22, m23 and m33 depend on the three possibilities as shown in Figure 1.

1. If RPCn−1 → RPC1
n with probability ρ1, then

m22(RPC1
n) = m22(RPCn−1)+3,m23(RPC1

n) = m23(RPCn−1)+2 andm33(RPC1
n) =

m33(RPCn−1) + 2. Then from (2.6), we have

ABC
∏

(RPC1
n) = ABC

∏
(RPCn−1)

√
2

18

2. If RPCn−1 → RPC2
n with probability ρ2, then

m22(RPC1
n) = m22(RPCn−1)+2,m23(RPC1

n) = m23(RPCn−1)+4 andm33(RPC1
n) =

m33(RPCn−1) + 1. Then from (2.6), we have

ABC
∏

(RPC2
n) = (

√
2
2

)6(2
3
)ABC

∏
(RPCn−1) = 1

12
ABC

∏
(RPCn−1)

3. If RPCn−1 → RPC3
n with probability 1− ρ1 − ρ2, then

m22(RPC1
n) = m22(RPCn−1)+2,m23(RPC1

n) = m23(RPCn−1)+4 andm33(RPC1
n) =

m33(RPCn−1) + 1.Then from (2.6), we have

ABC
∏

(RPC3
n) = (

√
2
2

)6(2
3
)ABC

∏
(RPCn−1) = 1

12
ABC

∏
(RPCn−1)
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Thus, we obtain

Ea
n = ρ1ABC

∏
(RPC1

n) + ρ2ABC
∏

(RPC2
n)

+ (1− ρ1 − ρ2)ABC
∏

(RPC3
n)

= ρ1

√
2

18
ABC

∏
(RPCn−1) +

ρ2
12
ABC

∏
(RPCn−1)

+
(1− ρ1 − ρ2)

12
ABC

∏
(RPCn−1)

= ABC
∏

(RPCn−1)
[3 + ρ1(2

√
2− 3)

36

]
Since E[En]a = En

a and apply the operator E to the above equation, we get

Ea
n = Ea

n−1

[3 + ρ1(2
√

2− 3)

36

]
.(2.8)

Using the initial condition and the recurrence relation of equation (2.8), we get our
result

Ea
n =

[3 + ρ1(2
√

2− 3)]n−2

22n+1 ∗ 32n−3 n > 1

�

Theorem 2.6. Let RPC(n; ρ1, ρ2) be a random polyphenyl chain of length n, where
n ≥ 2. Then

GA(RPCn) = (
2
√

6

5
)4
[
(
2
√

6

5
)4 + ρ1((

2
√

6

5
)2 − (

2
√

6

5
)4)

]n−2
.

Proof. It is easy to see that for n = 2, E2 = (24
25

)2. Now when n ≥ 3, we have to
consider the three possibilities as shown in Figure 1.

1. If RPCn−1 → RPC1
n with probability ρ1, then

m22(RPC1
n) = m22(RPCn−1)+3,m23(RPC1

n) = m23(RPCn−1)+2 andm33(RPC1
n) =

m33(RPCn−1) + 2. Then from (2.7), we have

GA
∏

(RPC1
n) = GA

∏
(RPCn−1)(

2
√
6

5
)2

2. If RPCn−1 → RPC2
n with probability ρ2, then

m22(RPC1
n) = m22(RPCn−1)+2,m23(RPC1

n) = m23(RPCn−1)+4 andm33(RPC1
n) =

m33(RPCn−1) + 1. Then from (2.7), we have

GA
∏

(RPC2
n) = GA

∏
(RPCn−1)(

2
√
6

5
)4

3. If RPCn−1 → RPC3
n with probability 1− ρ1 − ρ2, then

m22(RPC1
n) = m22(RPCn−1)+2,m23(RPC1

n) = m23(RPCn−1)+4 andm33(RPC1
n) =

m33(RPCn−1) + 1.Then from (2.7), we have

GA
∏

(RPC3
n) = GA

∏
(RPCn−1)(

2
√
6

5
)4

Thus, we obtain

En = ρ1GA
∏

(RPC1
n) + ρ2GA

∏
(RPC2

n)

+ (1− ρ1 − ρ2)GA
∏

(RPC3
n)
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Since E[En] = En and apply the operator E to the above equation, we get

En = En−1

[
(
2
√

6

5
)4 + ρ1((

2
√

6

5
)2 − (

2
√

6

5
)4)

]
(2.9)

Using the initial condition and the recurrence relation of equation (2.9), we get our
result

En = (
2
√

6

5
)4
[
(
2
√

6

5
)4 + ρ1((

2
√

6

5
)2 − (

2
√

6

5
)4)

]n−2
n > 1

�

From Theorems 2.5 and 2.6, it is easy to obtain the multiplicative ABC and
GA indices of polyphenyl meta-chain On = RPC(n; 1, 0), polyphenyl orth-chain
Mn = RPC(n; 0, 1), and polyphenyl para-chain P n = RPC(n; 0, 0).

Corollary 2.7. For n > 1, we have

(1) • ABC
∏

(P n) = ABC
∏

(Mn) = 1
22n+1∗3n−1 .

• ABC
∏

(On) = (
√
2)n−2

2n+3∗32n−3 .

(2) • GA
∏

(P n) = GA
∏

(Mn) = (24
25

)2n−2.

• GA
∏

(On) = (24
25

)n.

3. A comparison between the expected values of multiplicative ABC
and GA indices

Recently, in [27] authors compared the expected values of the GA index and ABC
index for a random polyphenyl chain. Now with the help of Theorems 2.1,2.2,2.5,
and 2.6, we will make a comparison between the expected values for the multiplica-
tive ABC and GA indices of a random spiro chain and random polyphenyl chain
with the same probabilities ρi(i = 1, 2). The following lemma is easy to prove by
induction, we we omit its proof.

Lemma 3.1. For all m ≥ 2, we have

f(m) =
(
√

3)m−232m

27m−2 < 1.

Theorem 3.2. For n ≥ 2, we have

E[GA
∏

(RSC(n; ρ1, ρ2))] > E[ABC
∏

(RSC(n; ρ1, ρ2))].

Proof. Obviously for n = 1, the statement is true. So, when n > 2, by Theorems
2.1 and 2.2, we have

E[GA
∏

(RSC(n; ρ1, ρ2))]− E[ABC
∏

(RSC(n; ρ1, ρ2))]
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=
64

81
(
8ρ1 + 64

81
)n−2 − (ρ1(

√
3− 2) + 2)n−2

24n−2

= (
8

9
)n − (

√
3)n−2

24n−2 ∵ 0 ≤ ρ1 ≤ 1

=
23n

32n

[
1− (

√
3)n−2 ∗ 32n

27n−2

]
> 0

�

GA
Y

(RSC(n; ;1; ;2)

ABC
Y

(RSC(n; ;1; ;2)

Figure 3. Difference between the Geometric index and ABC index
with respect to the random chain

Figure 3 show that the expected value of the index GA
∏

(RSC(n; ρ1, ρ2)) is always
greater than the expected value of the ABC

∏
(RSC(n; ρ1, ρ2)).

Theorem 3.3. For n ≥ 1, we have

E[GA
∏

(RPC(n; ρ1, ρ2))] > E[ABC
∏

(RPC(n; ρ1, ρ2))].

Proof. When n > 2, by Theorems 2.5 and 2.6, we have

E[GA
∏

(RPC(n; ρ1, ρ2))]− E[ABC
∏

(RPC(n; ρ1, ρ2))]

= (
24

25
)2
[ 24

252
(24 + ρ1)

]n−2
− [3 + ρ1(2

√
2− 3)]n−2

22n+1 ∗ 32n−3

= (
24

25
)n − (

√
2)n−2

2n+3 ∗ 32n−3 ∵ 0 ≤ ρ1 ≤ 1

= (
√

2)n−2
[4n ∗ (

√
2)n+2 ∗ 3n

52n
− 1

2n+3 ∗ 32n−3

]
= (
√

2)n−2
[
2(

12
√

2

25
)n − 1

2n+3 ∗ 32n−3

]
> 0

�

Figure 4 show that the expected value of the index GA
∏

(RSC(n; ρ1, ρ2)) is always
greater than the expected value of the ABC

∏
(RSC(n; ρ1, ρ2)).
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ABC
Y

(RPC(n; ;1; ;2)

GA
Y

(RPC(n; ;1; ;2)

Figure 4. Difference between the Geometric index and ABC index
with respect to the random chain

4. Conclusion

In this paper, we compute and compare the expected values of the multiplicative
ABC and GA index over the set of all random and spiro polyphenyl chains. Firstly,
the explicit formulae for the expected values of multiplicative ABC and GA indices
in random polyphenyl and spiro chains are presented. Secondly, the average values
of ABC

∏
and GA

∏
indices are presented with respect to the set of all polyphenyl

chains with n hexagons. Finally, we compare the expected values of ABC
∏

and
GA

∏
indices in random polyphenyl chains, the expected values of ABC

∏
and

GA
∏

indices between random polyphenyl chains and spiro chains. In the aspect
of research, there are still two problems considered. On one hand, one can continue
to discuss the problem about other degree-based topological indices (such as Zagreb
index and sum-connectivity index) for the polyphenyl and spiro chains. On the
other, one may also calculating the ABC

∏
and GA

∏
indices in random polygonal

chains and makes the same comparisons between them from pure graph theory.
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