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ABSTRACT 

I compared the predicted and observed flexible conformations of SARS-CoV and SARS-CoV-2 

(2019-nCoV) spike proteins by using supersecondary structure codes (SSSCs) and a comparison 

program of three deep-neural-network-based prediction systems (SSSCPred200, SSSCPred100, 

and SSSCPred). The SARS-CoV SSSC sequences predicted by the three deep-neural-network-

based systems well reproduced those of the Protein Data Bank (PDB) data, including the structured 

loops. Only one common identical motif (SSSC: SSSHSSHHHH) among all of the compared 

SSSC sequences, including predicted and observed ones, was found at the S2 position. This motif 

has an extremely rare rigid conformation. The antibody or ligand binding to the spike protein S2 

of SARS-CoV near the rigid motif may also have a more accessible effect on SARS-CoV-2 than 

those binding to the receptor-binding motif of SARS-CoV have. 
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INTRODUCTION  

To develop a vaccine against the coronavirus disease 2019 (COVID-19), which is currently 

prevalent mainly in Wuhan, China, structural information on the virus is required.1 Recently, a 

deep-neural-network-based program for sequence-based prediction of supersecondary structure 

codes (SSSCs), called SSSCPrediction 

(https://researchmap.jp/multidatabases/multidatabase_contents/detail/256924/8fe07c64e364d821

8108144f0d33c142?frame_id=708960) was constructed.2-4 An SSSC is transcribed by using the 

letters H, S, T, and D to refer to an α-helix-type conformation, a β-sheet-type conformation, other 

types of conformations, and disordered residues or the C-terminus, respectively. Furthermore, to 

predict the flexibility and conformational change of proteins, a comparison program of three deep-

neural-network-based prediction systems (SSSCPred200, SSSCPred100, and SSSCPred) was 

developed. The sequence of severe acute respiratory syndrome coronavirus (SARS-CoV) 

moderately resembles that of SARS-CoV-2 (about 79% identity).1 Several observed structures in 

SARS-CoV, including cryo-electron microscopy structures,5-10 have been registered in the Protein 

Data Bank (PDB) database11 and are thus available for use in comparing the predicted SSSCs of 

SARS-CoV-2. 

Here, I show that the receptor-binding motif (binding to human angiotensin-converting enzyme 

2, ACE2) SSSCs of SARS-CoV differs greatly from those of SARS-CoV-2, with that of SARS-

CoV-2 being more flexible. I also describe the only shared, relatively rigid motif (SSSC: 

SSSHSSHHHH), which in SARS-CoV is associated with cell adhesion and cell division. 
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MATERIALS AND METHODS  

I constructed two additional deep-neural-network-based prediction systems by using procedures 

similar to that used to construct SSSCPrediction (SSSCPred).2 A total of 582,666 FASTA-format 

files containing the amino acid sequences and SSSCs of protein subunits were extracted from 

139,932 PDB files11 by using the SSSCview program (available online at 

https://researchmap.jp/multidatabases/multidatabase_contents/detail/256924/6216cafbe7d56e9a6

5c649886edcb0a3?frame_id=708960).3 Of these FASTA files, 207,738 files containing subunits 

with more than or equal to 200 continuous amino acid residues were extracted, and from those 

files 150,000 files as training data for the deep neural network, 10,000 files as test data for the deep 

neural network, and 10,000 files as test data for the inference system were randomly selected for 

SSSCPred200. From each FASTA file, a set of 200 continuous amino acid residues and the 

corresponding SSSC were randomly extracted. SSSC terms “H”, “S”, “T”, and “D” were converted 

to [1,0,0,0], [0,1,0,0], [0,0,1,0], and [0,0,0,1], respectively, and a set of matrices (200, 4) was 

constructed. The amino acid sequence was also similarly converted. Deep learning for the 

prediction of SSSCs from amino acid sequences was performed by using Neural Network Console 

(https://dl.sony.com/app/). The revised template of network “12_residual_learning.sdcproj” for the 

standard MNIST dataset was used to provide the initial structure of the deep neural network, which 

was then trained with the prepared training dataset. The obtained network and parameters were 

introduced to the SSSCPred200 inference system, and the system was set to examine amino acid 

sequences containing at least 200 amino acid residues. For each amino acid sequence, SSSC terms 

were predicted for every 50 continuous amino acid residues and for the initial and final 200 amino 

acid residues in the sequence. Then, the first 125 SSSC terms in the sequence were selected, 
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followed by every 50 SSSC terms; any remaining SSSC terms at the end of the sequence were also 

selected. 

Training data of 200 continuous amino acid residues and 150,000 subunits were used to construct 

SSSCPred200; those of 100 continuous amino acid residues and 350,000 subunits were used for 

SSSCPred100; and those of 100 continuous amino acid residues and 150,000 subunits were used 

for SSSCPred. The systems well reproduced many SSSCs of the PDB subunit data; the 

benchmarks (average concordance rates) of the three systems were as follows: for SSSCPred200, 

CullPDB,12 0.905 (9851 subunits) and CB513,12 0.911 (361 subunits); for SSSCPred100, CullPDB, 

0.896 (17,169 subunits) and CB513, 0.907 (612 subunits); and for SSSCPred, CullPDB, 0.861 

(17,169 subunits) and CB513, 0.882 (612 subunits). The differences in concordance rates among 

the three systems provides a good indication of the flexibility of the protein subunits. 

 

RESULT AND DISCUSSION  

I then compared the predicted and observed SSSC sequences of spike proteins of SARS-CoV-2 

and SARS-CoV at the receptor-binding domain (Figure 1; see Figure S1 for complete sequences). 

The SSSC sequences of SARS-CoV predicted by the three deep-neural-network-based systems 

well reproduced those of the PDB data (6acc_A, 5xlr_A, 5x58_A, and 5wrg_A), including the 

structured loops. The newest observed SSSC sequence of SARS-CoV-2 main protease (6lu7_A) 

corresponded well to the predicted ones (av. 0.919, see Figure S2). In contrast with the relatively 

rigid receptor-binding motif (binding to human ACE2) of SARS-CoV, the corresponding motif of 

SARS-CoV-2 indicated the possibility of conformational change between the α-helix and β-strand. 

This possibility was also supported by a Quick2D analysis, including a series of secondary 

structure predictions.13-27 
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The sequence identity of spike protein S2 between SARS-CoV-2 and SARS-CoV (aa 668 to 

1255, about 90% identity) was greater than that of S1 (see Figure S1). Only one identical motif 

(SSSC: SSSHSSHHHH) among all of the compared SSSC sequences, including predicted and 

observed ones, was found at the S2 position (Figure 2). This motif is extremely rare: only 200 

subunit files containing the SSSC sequence of the motif exist among all of the 582,666 PDB 

subunit files (see Figure S3). Usually, the number of subunits for a commonplace motif (SSSC: 

SSSHHTSSS) is about 140,000. Even for an already reported common motif (SSSC: 

SSSHHSHSSS) in antibodies and in major histocompatibility complex class I and II molecules, 

34,039 subunits exist.4 Apart from virus proteins, integrin αL (leukocyte function associated 

antigen 1),28,29 and cell division protein kinase 2 (CDK2),30 which are involved in cell adhesion 

and cell division, are the main proteins that have such a rigid motif (Figure 3). For CDK2 with 

cyclin A, an adenosine-5’-triphosphate molecule interacts with this motif.31 The rigid motif 

protrudes on the molecular surface, and the amino acid sequence of the motif for SARS-CoV 

differs from the other proteins (6acc_A: LPPLLTDDMI; 3f74_A: YKTEFDFSDY; 3ig7_A: 

EFLHQDLKKF). Therefore, the antibody or ligand binding to the spike protein S2 of SARS-CoV 

near the rigid motif may also have a more accessible effect on SARS-CoV-2 than those binding to 

the receptor-binding motif of SARS-CoV have. 

During a format check of the Journal's style, the Cryo-EM structure data of the SARS-CoV-2 

spike protein (6vsb) was registered.32 The rigid motif (SSSC: SSSHSSHHHH) was confirmed at 

the S2 position (see Figure S4). Actually, the receptor-binding motif SSSCs of SARS-CoV-2 with 

blanks differs greatly from those of SARS-CoV, with that of SARS-CoV-2 being more flexible 

(see Figure S4). Although spike protein S1 of SARS-CoV-2 binds human ACE2 with higher 

affinity than that of SARS-CoV, several published SARS-CoV receptor-binding-domain-specific 
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monoclonal antibodies do not have appreciable binding to that of SARS-CoV-2. This would be 

associated with the flexible receptor-binding motif of SARS-CoV-2. 
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FIGURE LEGEND 

Figure 1 

Comparison of predicted and observed SSSC sequences of spike proteins in SARS-CoV-2 (first 

four lines) and SARS-CoV (next nine lines) at the receptor-binding domain (red), including the 

receptor-binding motif (purple, binding to human ACE2). A comparison of the SSSCPred200 

(SARS-CoV-2) results with those of Quick2D (from 14 to 27 lines)13-27 is also shown. The 

receptor-binding motif of SARS-CoV is more rigid than that of SARS-CoV-2. 

Figure 2 

Comparison of predicted and observed SSSC sequences of spike proteins in SARS-CoV-2 (first 

four lines) and SARS-CoV (next eleven lines) at aa 851 to 935 (green, heptad repeat 1). A 

comparison of SSSCPred200 (SARS-CoV-2) results with those of Quick2D (from 16 to 29 lines)13-

27 is also shown. Only one rigid motif, the structured loop (red and blue, SSSC: SSSHSSHHHH), 

was common to the compared SSSC sequences. 

Figure 3 

Common rigid motif of structured loop (blue, SSSC: SSSHSSHHHH). (A) SARS-CoV (6acc, 

monomer), (B) SARS-CoV (6acc, trimer), (C) integrin αL (3f74), (D) leukocyte function-

associated antigen 1 (1zop), and (E) cell division protein kinase 2 (3ig7). The rigid motif protrudes 

on the molecular surface. 
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