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ABSTRACT 

A deep neural network-based program for sequence-based prediction of supersecondary structure 

codes (SSSCs), called SSSCPrediction (SSSCPred) was constructed. Furthermore, to predict the 

flexibility and conformational change of proteins, a comparison program of three deep-neural-

network-based prediction systems (SSSCPred200, SSSCPred100, and SSSCPred) was developed. 

I compared the predicted and observed flexible conformations of SARS-CoV-2 and SARS-CoV 

spike proteins by using SSSCs and the comparison program. The SARS-CoV SSSC sequences of 

the receptor-binding motif predicted by the three deep-neural-network-based systems well 

reproduced those of the Protein Data Bank (PDB) data, including the structured loops. In contrast, 

the receptor-binding motif SSSCs of SARS-CoV-2 differs greatly from those of SARS-CoV, with 

that of SARS-CoV-2 being more flexible. Only one common identical motif (SSSC: 

SSSHSSHHHH) among all of the compared SSSC sequences, including predicted and observed 

ones, was found at the S2 subunit. This motif has an extremely rare and relatively undeformable 

conformation. The comparison program may be helpful to explore undeformable drug discovery 

targets of many unsolved protein structures. 

 

Key words: Conformation; Deep neural network; SARS-CoV-2; Sequence-based prediction; 

Supersecondary structure code. 
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INTRODUCTION   

There are around 110.3 million non-redundant protein sequences in the RefSeq database,1,2 and 

many methods for sequence-based prediction of secondary and supersecondary structures have 

been developed in the past several years.3-11 Further, many secondary structure prediction methods 

based on deep learning have also been reported.12-16 However, the classification and prediction of 

fine structured loops other than α-helixes, β-strands, coiled coils,17-19 and disordered regions20,21 

remains elusive. 

Intrinsically disordered regions are protein regions that undergo conformation changes and 

therefore lack a stable three-dimensional structure. It has been shown that intrinsically disordered 

regions are important for protein–protein interactions and the binding of proteins to RNA and 

DNA; therefore, there is a need for an accurate way of predicting the conformations of these 

regions.22,23 

In the past decade, a means of identifying and codifying supersecondary structures 

(supersecondary structure code; SSSC) has been developed that uses the concept of Ramachandran 

plot data24-26 with ω angles, and the specification of positions of torsion angles in a protein derived 

from a fuzzy search of structural code homology using template patterns, represented as 

conformational codes 3a5c4a (α-helix-type conformation) and 6c4a4a (β-sheet-type conformation), 

to describe supersecondary structural motifs and their conformation.27,28 SSSC is transcribed using 

the letters H, S, T, and D to refer to an α-helix-type conformation, a β-sheet-type conformation, 

other-type conformations, and disordered residues or the C-terminus, respectively. 

The DSSP (Dictionary of Secondary Structure in Proteins) program has been used to standardize 

secondary structure assignments for all of the protein entries in the Protein Data Bank (PDB).29,30 

This program is able to identify hydrogen bonds between main chain carbonyl groups and amide 
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groups and then use that information to assign a secondary structure; however, it does not handle 

the fine characterization of loops or irregular regions very well because no hydrogen bonds exist 

in such regions. In contrast, supersecondary structure code is very sensitive to differences among 

similar protein supersecondary structures. For example, this code can distinguish the difference of 

characteristic loop structures between IgG immunoglobulin (SSSC: SHHSHSS) and IgM 

rheumatoid factor (SSSC: TTTSSSS).27,28 Interferon α, β, and γ, GroEL, and ubiquitin-associated 

domains also have a unique common motif (SSSC: HHHTTSHHH).27 

Recently, a deep-neural-network-based program for sequence-based prediction of SSSCs, called 

SSSCPrediction (SSSCPred) was constructed. For files containing the keywords ALKALINE, 

GLUCOSIDASE, OUTER MEMBRANE, ENVELOPE, PORIN, REPLICATION, 

INTERLEUKIN, and RIBOSOMAL PROTEIN, the concordance rate was <0.60; however, these 

keywords were sometimes found in files with concordance rate ≥ 0.90 and were associated with 

flexible conformations. Furthermore, to predict the flexibility and conformational change of 

proteins, a comparison program of three deep-neural-network-based prediction systems 

(SSSCPred200, SSSCPred100, and SSSCPred) was developed. 

To develop a vaccine against the coronavirus disease 2019 (COVID-19), which is currently 

prevalent all over the world, structural information on the virus is required.31 The sequence of 

severe acute respiratory syndrome coronavirus (SARS-CoV) moderately resembles that of SARS-

CoV-2 (about 79% identity).31 Several observed structures in SARS-CoV32-37 and SARS-CoV-

2,38-44 including cryo-electron microscopy (Cryo-EM) structures, have been registered in the PDB 

database30 and are thus available for use in comparing the predicted SSSCs of SARS-CoV-2. 

Here, I show the construction of the deep-neural-network-based program for sequence-based 

prediction of SSSCs (SSSCPrediction) and the comparison program of three deep-neural-network-
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based prediction systems (SSSCPred200, SSSCPred100, and SSSCPred) and that the receptor-

binding motif (binding to human angiotensin-converting enzyme 2, ACE2) SSSCs of SARS-CoV-

2 differs greatly from those of SARS-CoV, with that of SARS-CoV-2 being more flexible. I also 

describe the only shared, relatively undeformable motif (SSSC: SSSHSSHHHH), which in SARS-

CoV-2 S2 subunit is associated with cell adhesion and cell division. 

 

MATERIALS AND METHODS  

Dataset 

A total of 582,813 FASTA-format files containing the amino acid sequences and SSSCs of protein 

subunits were extracted from 139,932 PDB files30 by using the SSSCview program (available 

online at 

https://researchmap.jp/multidatabases/multidatabase_contents/detail/256924/6216cafbe7d56e9a6

5c649886edcb0a3?frame_id=708960).27 Of these FASTA files, 379,334 files containing subunits 

with more than or equal to 100 continuous amino acid residues were extracted, and from those 

files 150,000 files as training data for the deep neural network, 10,000 files as test data for the deep 

neural network, and three sets of 10,000 files as test data for the inference system were randomly 

selected.  

From each FASTA file, a set of 100 continuous amino acid residues and the corresponding SSSC 

were randomly extracted. SSSC terms “H”, “S”, “T”, and “D” were converted to [1,0,0,0], [0,1,0,0], 

[0,0,1,0], and [0,0,0,1], respectively, and a set of matrices (100, 4) was constructed. The amino 

acid sequence was also similarly converted.45 The dataset for the deep neural network was prepared 

by using python.46 
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SSSCPrediction 

Deep learning for the prediction of SSSCs from amino acid sequences was performed by using 

Neural Network Console (https://dl.sony.com/app/). The revised template of network 

“12_residual_learning.sdcproj” for the standard MNIST dataset was used to provide the initial 

structure of the deep neural network, which was then trained with our prepared training dataset. 

The obtained network is shown in Figure 1 (activation function: ReLU; cost function: HuberLoss; 

max epoch: 20; batch size: 64; precision: float; structure search: Network Feature + Gaussian 

Process; updater: Adam; update interval: 1 iteration; alpha: 0.001; beta1: 0.9; beta2: 0.999; epsilon: 

1E-8). The obtained network and parameters were introduced to the SSSCPrediction inference 

system, and the system was set to examine amino acid sequences containing at least 100 amino 

acid residues. For each amino acid sequence, SSSC terms were predicted for every 50 continuous 

amino acid residues and for the initial and final 100 amino acid residues in the sequence. Then, 

the first 70 SSSC terms in the sequence were selected, followed by every 50 SSSC terms; any 

remaining SSSC terms at the end of the sequence were also selected. The other prepared three sets 

of 10,000 test data files for the SSSCPrediction inference system were then used to evaluate 

concordance rate. 

Comparison of SSSCPrediction with Quick2D6 was carried out by using an amino acid sequence 

of a PDB file (1a00_A). The method was benchmarked by using 612 and 17,169 protein subunits 

containing at least 100 amino acid residues in the CB513 and CullPDB datasets.13 The CASP10, 

CASP11 and CASP12 datasets could not be used for the benchmark because all of the correct 

answer data could not be obtained for SSSCPrediction. The 150,000 training data files and the 

10,000 test data files for the prediction of SSSCs from amino acid sequences using the deep neural 

network were also tested to evaluate concordance rate. 
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SSSCPrediction is available as a standalone program at 

https://researchmap.jp/multidatabases/multidatabase_contents/detail/256924/8fe07c64e364d8218

108144f0d33c142?frame_id=708960. 

 

Comparison program of three deep-neural-network-based prediction systems 

I constructed two additional deep-neural-network-based prediction systems by using procedures 

similar to that used to construct SSSCPrediction (SSSCPred). A total of 582,666 FASTA-format 

files containing the amino acid sequences and SSSCs of protein subunits were extracted from 

139,932 PDB files30 by using the SSSCview program.27 Of these FASTA files, 207,738 files 

containing subunits with more than or equal to 200 continuous amino acid residues were extracted, 

and from those files 150,000 files as training data for the deep neural network, 10,000 files as test 

data for the deep neural network, and 10,000 files as test data for the inference system were 

randomly selected for SSSCPred200. From each FASTA file, a set of 200 continuous amino acid 

residues and the corresponding SSSC were randomly extracted. SSSC terms “H”, “S”, “T”, and 

“D” were converted to [1,0,0,0], [0,1,0,0], [0,0,1,0], and [0,0,0,1], respectively, and a set of 

matrices (200, 4) was constructed. The amino acid sequence was also similarly converted. Deep 

learning for the prediction of SSSCs from amino acid sequences was performed by using Neural 

Network Console (https://dl.sony.com/app/). The revised template of network 

“12_residual_learning.sdcproj” for the standard MNIST dataset was used to provide the initial 

structure of the deep neural network, which was then trained with the prepared training dataset. 

The obtained network and parameters were introduced to the SSSCPred200 inference system, and 

the system was set to examine amino acid sequences containing at least 200 amino acid residues. 

For each amino acid sequence, SSSC terms were predicted for every 50 continuous amino acid 
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residues and for the initial and final 200 amino acid residues in the sequence. Then, the first 125 

SSSC terms in the sequence were selected, followed by every 50 SSSC terms; any remaining SSSC 

terms at the end of the sequence were also selected. 

Training data of 200 continuous amino acid residues and 150,000 subunits were used to construct 

SSSCPred200; those of 100 continuous amino acid residues and 350,000 subunits were used for 

SSSCPred100; and those of 100 continuous amino acid residues and 150,000 subunits were used 

for SSSCPred. The systems well reproduced many SSSCs of the PDB subunit data; the 

benchmarks (average concordance rates) of the three systems were as follows: for SSSCPred200, 

CullPDB,13 0.905 (9851 subunits) and CB513,13 0.911 (361 subunits); for SSSCPred100, CullPDB, 

0.896 (17,169 subunits) and CB513, 0.907 (612 subunits); and for SSSCPred, CullPDB, 0.861 

(17,169 subunits) and CB513, 0.882 (612 subunits). 

 

RESULT AND DISCUSSION 

Translation of amino acid sequences to SSSCs 

The comparison of SSSCPrediction with Quick2D6 was carried out by using the PDB file 

(1a00_A). As shown in Figure 2, the main difference between SSSCPrediction and Quick2D was 

found in the structured loop regions. Only SSSCPrediction could predict the fine loop 

conformations. Although a direct comparison could not be made because of the difference of 

correct data between SSSCPrediction and other prediction methods, the concordance rates for the 

translation of amino acid sequences to SSSCs using 612 and 17,169 protein subunits containing at 

least 100 amino acid residues in the CB513 and CullPDB datasets13 for the benchmark of 

SSSCPrediction were 0.88 and 0.86, respectively. 
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The average concordance rate for the translation of amino acid sequences to SSSCs using the 

three test datasets comprising 10,000 FASTA files each was 0.90. A total of 3450 files in the test 

dataset had a concordance rate ≥ 0.95, and 6000 files had a concordance rate ≥ 0.90 (Figure 3). In 

the past three decades, much progress has been made in the development of accurate predictors of 

protein secondary structure. Recently, prediction accuracy has increased from about 82% to 84%, 

which is approaching the estimated upper accuracy limit of around 88%.3,12-14 Although a direct 

comparison of accuracy is impossible due to the differences between secondary structures and 

supersecondary structures, these prediction accuracies are comparable. 

The correlation between keywords in the training files and concordance rate was examined to 

understand more about the target subunits for SSSCPrediction. For files containing the keywords 

PROTEASOME, FAB, LYSOZYME, HEMOGLOBIN, MICROGLOBULIN, HLA, and 

MYOGLOBIN, the ratio of files with that keyword and concordance rate ≥ 0.90 to total no. of files 

with that keyword was extremely high (≥0.92; Table 1). In contrast, for files containing the 

keywords ALKALINE (ratio of files with that keyword and concordance rate ≥ 0.90 to total no. of 

files with that keyword: 4/97), GLUCOSIDASE (81/245), OUTER MEMBRANE (158/362), 

ENVELOPE (122/271), PORIN (126/262), REPLICATION (134/271), INTERLEUKIN 

(265/472), and RIBOSOMAL PROTEIN (1259/1908), the concordance rate was much lower 

(<0.60); however, these keywords were sometimes found in files with concordance rate ≥ 0.90 and 

were associated with flexible conformations, and there were no keywords found only in files with 

a low concordance rate. In the 379,334 files in the overall dataset, the keywords KINASE 

(4219/6080), TRANSFERASE (3812/6010), SYNTHASE (2868/4159), REDUCTASE 

(3050/4302), DEHYDROGENASE (2545/3815), HYDROGENASE (2732/4120), 

POLYMERASE (1863/2888), HYDROLASE (1199/2041), PROTEASE (1344/1765), 
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PHOSPHATASE (990/1,690), ISOMERASE (1279/1912), and OXIDASE (1086/1682) 

frequently appeared, and the ratios of files with that keyword and concordance rate ≥ 0.90 to total 

no. of files with that keyword ranged from 0.59 to 0.76. Thus, there were no keywords associated 

only with a low concordance rate, and many files with the same keywords were found to have 

different SSSCs. 

To confirm whether the flexibility and conformational change of proteins can be predicted or 

not, I constructed two additional deep-neural-network-based prediction systems by using 

procedures similar to that used to construct SSSCPrediction (SSSCPred). The benchmarks 

(average concordance rates) of the three systems were as follows: for SSSCPred200, CullPDB,13 

0.905 (9851 subunits) and CB513,13 0.911 (361 subunits); for SSSCPred100, CullPDB, 0.896 

(17,169 subunits) and CB513, 0.907 (612 subunits); and for SSSCPred, CullPDB, 0.861 (17,169 

subunits) and CB513, 0.882 (612 subunits). For CullPDB files, total no. of files with that 

concordance rate < 0.65 between SSSCPred200 and PDB data was 66. Of these CullPDB files, the 

ratio of files with that concordance rate < 0.70 between SSSCPred200 and SSSCPred100 data to 

total no. of files was 0.83 (see Table S1). For CB513 files, total no. of files with that concordance 

rate < 0.75 between SSSCPred200 and PDB data was 17. Of these CB513 files, the ratio of files 

with that concordance rate < 0.80 between SSSCPred200 and SSSCPred100 data to total no. of 

files was 0.59 (see Table S2). Exceptionally, in the CB513 files, the subunit with the keyword 

PHOSPHOGLYCERATE MUTASE 1 (3pgm_A) showed the high concordance rate (0.91) 

between SSSCPred200 and SSSCPred100 data in contrast with the low concordance rate (0.62) 

between SSSCPred200 and PDB data. In that case, the PDB file (1qhf_A) of the same keyword 

with the high concordance rate (0.96) between SSSCPred200 and PDB data was found. This means 

that the PDB files 3pgm_A and 1qhf_A have the identical amino acid sequence, but the SSSC 
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sequences, which reflect the subunit flexibility, are largely different. The value size of concordance 

rates among the three systems provides a good indication of the flexibility of the protein subunits. 

 

Predicted and observed SSSC sequences of SARS-CoV-2 spike protein 

I then compared the predicted and observed SSSC sequences of spike proteins of SARS-CoV-2 

and SARS-CoV at the receptor-binding domain (Figure 4; see Figure S1 for complete sequences). 

The SSSC sequences of SARS-CoV predicted by the three deep-neural-network-based systems 

well reproduced those of the PDB data (6acc_A, 5xlr_A, 5x58_A, and 5wrg_A), including the 

structured loops. The observed SSSC sequence of SARS-CoV-2 main protease (6lu7_A) 

corresponded well to the predicted ones (av. 0.919, see Figure S2). In contrast with the relatively 

undeformable receptor-binding motif (binding to human ACE2) of SARS-CoV, the corresponding 

motif of SARS-CoV-2 indicated the possibility of conformational change between the α-helix and 

β-strand. This possibility was also supported by a Quick2D analysis, including a series of 

secondary structure predictions (Figure 4).6 Actually, the receptor-binding motif SSSCs of SARS-

CoV-2 with blanks for the Cryo-EM structure data of the entire SARS-CoV-2 spike protein (6vsb, 

6vxx, and 6vyb) differs greatly from those of SARS-CoV, with that of SARS-CoV-2 being more 

flexible (Figure 4). On the other hand, the receptor-binding motif SSSCs of SARS-CoV-2 

connected with human ACE2 for the Cryo-EM or X-ray structure data of the partial receptor-

binding domain (6m17, 6vw1_E, 6lzg_B, 6m0j_E, and 6w41_C) are very similar to those of 

SARS-CoV. Wrapp and coworkers reported that although spike protein S1 of SARS-CoV-2 binds 

human ACE2 with higher affinity than that of SARS-CoV, several published SARS-CoV receptor-

binding-domain-specific monoclonal antibodies do not have appreciable binding to that of SARS-

CoV-2.38 Yuan and coworkers described that a neutralizing antibody previously isolated from a 
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convalescent SARS patient, in complex with the receptor-binding domain of the SARS-CoV-2 

spike protein, targets a highly conserved epitope, distal from the receptor-binding site, that enables 

cross-reactive binding between SARS-CoV-2 and SARS-CoV.44 The observed SSSCs of the 

highly conserved epitope (6w41_C) resembles those of SSSCPred100, and the gap of the epitope 

SSSCs among the three systems is smaller than that of the receptor-binding-motif SSSCs (see 

Figure S1). It is suggested that although the binding of receptor-binding motif to human ACE2 

stabilizes the connected conformation, the flexibility of receptor-binding motif in SARS-CoV-2 

disturbs the appreciable binding of the SARS-CoV receptor-binding-motif-specific monoclonal 

antibodies. 

The sequence identity of spike protein S2 between SARS-CoV-2 and SARS-CoV (aa 668 to 

1255, about 90% identity) was greater than that of S1 (see Figure S1). Only one identical motif 

(SSSC: SSSHSSHHHH) among all of the compared SSSC sequences, including predicted and 

observed ones, was found at the S2 subunit (Figure 5). This motif is extremely rare: only 200 

subunit files containing the SSSC sequence of the motif exist among all of the 582,666 PDB 

subunit files (see Figure S3). Usually, the number of subunits for a commonplace motif (SSSC: 

SSSHHTSSS) is about 140,000. Even for an already reported common motif (SSSC: 

SSSHHSHSSS) in antibodies and in major histocompatibility complex class I and II molecules, 

34,039 subunits exist.28 Apart from virus proteins, integrin αL (leukocyte function associated 

antigen 1),47,48 and cell division protein kinase 2 (CDK2),49 which are involved in cell adhesion 

and cell division, are the main proteins that have such a relatively undeformable motif (Figure 6). 

For CDK2 with cyclin A, an adenosine-5’-triphosphate (ATP) molecule interacts with this motif.50 

The SSSC of this motif in the free-form of CDK2 (1buh_A)51 is identical to that in the ATP-

binding form (1fin_A).50 The relatively undeformable motif protrudes on the molecular surface, 
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and the amino acid sequence of the motif for SARS-CoV differs from the other proteins (6acc_A: 

LPPLLTDDMI; 3f74_A: YKTEFDFSDY; 3ig7_A: EFLHQDLKKF). Walls and coworkers found 

that the SARS-CoV-2 S glycoprotein harbors a furin cleavage site (NSPRRAR↓S) at the 

boundary between the S1/S2 subunits, which is processed during biogenesis and sets this virus 

apart from SARS-CoV and SARS-related CoVs.41 Therefore, the relatively undeformable motif at 

the S2 subunit may be available for the drug discovery targets. 

 

CONCLUSIONS 

SSSCPrediction (SSSCPred) is a program for the prediction of SSSCs from amino acid 

sequences. SSSCPred was tested using three datasets each comprising 10,000 FASTA files 

containing the amino acid sequences and SSSCs of protein subunits and two datasets of subunits 

from CB513 and CullPDB. To confirm whether the flexibility and conformational change of 

proteins can be predicted or not, two additional deep-neural-network-based prediction systems 

(SSSCPred200 and SSSCPred100) were constructed. The value size of concordance rates among 

the three systems provides a good indication of the flexibility of the protein subunits. The 

comparison program may be helpful to explore undeformable drug discovery targets of many 

unsolved protein structures. 

  



 14 

 

REFERENCES 

1. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O'Neill K, Li WJ, Chitsaz F, 

Derbyshire MK, Gonzales NR et al. Derbyshire MK, Gonzales NR, Gwadz M, Lu F, Marchler GH, 

Song JS, Thanki N, Yamashita RA, Zheng C, Thibaud-Nissen F, Geer LY, Marchler-Bauer A, 

Pruitt KD. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 

2018;46:D851–D860. 

2. Pruitt KD, Tatusova T, Klimke W, Maglott DR. NCBI Reference Sequences: current status, 

policy and new initiatives. Nucleic Acids Res 2009;37:D32–D36. 

3. Oldfield CJ, Chen K, Kurgan L. Computational prediction of secondary and supersecondary 

structures from protein sequences. Methods Mol Biol 2019;1958:73–100. 

4. Montgomerie S, Sundararaj S, Gallin WJ, Wishart DS. Improving the accuracy of protein 

secondary structure prediction using structural alignment. BMC Bioinformatics 2006;7:301. 

5. Zheng C, Kurgan L. Prediction of beta-turns at over 80% accuracy based on an ensemble of 

predicted secondary structures and multiple alignments. BMC Bioinformatics 2008;9:430. 

6. Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, Gabler F, Söding J, Lupas 

AN, Alva V. A completely reimplemented MPI bioinformatics toolkit with a new HHpred Server 

at its core. J Mol Biol 2018;430:2237–2243. 

7. Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. 

J Mol Biol 1999;292:195–202. 



 15 

8. Yan R, Xu D, Yang J, Walker S, Zhang Y. A comparative assessment and analysis of 20 

representative sequence alignment methods for protein structure prediction. Sci Rep 2013;3:2619. 

9. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein 

topology with a hidden Markov model: application to complete genomes. J Mol Biol 

2001;305:567–580. 

10. Käll L, Krogh A, Sonnhammer EL. A combined transmembrane topology and signal peptide 

prediction method. J Mol Biol 2004;338:1027–1036. 

11. Käll L, Krogh A, Sonnhammer EL. An HMM posterior decoder for sequence feature 

prediction that includes homology information. Bioinformatics 2005;21:i251–i257. 

12. Heffernan R, Yang Y, Paliwal K, Zhou Y. Capturing non-local interactions by long short-

term memory bidirectional recurrent neural networks for improving prediction of protein 

secondary structure, backbone angles, contact numbers and solvent accessibility. Bioinformatics 

2017;33:2842–2849. 

13. Wang S, Peng J, Ma J, Xu J. Protein secondary structure prediction using deep convolutional 

neural fields. Sci Rep 2016;6:18962. 

14. Klausen MS, Jespersen MC, Nielsen H, Jensen KK, Jurtz VI, Sønderby CK, Sommer MOA, 

Winther O, Nielsen M, Petersen B, Marcatili P. NetSurfP-2.0: Improved prediction of protein 

structural features by integrated deep learning. Proteins 2019;87:520–527. 

15. Hanson J, Yang Y, Paliwal K, Zhou Y. Improving protein disorder prediction by deep 

bidirectional long short-term memory recurrent neural networks. Bioinformatics 2017;33:685–692. 



 16 

16. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, 

von Heijne G, Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural 

networks. Nat Biotechnol 2019;37:420–423. 

17. Lupas A, Van Dyke M, Stock J. Predicting coiled coils from protein sequences. Science 

1991;252:1162–1164. 

18. Gruber M, Söding J, Lupas AN. Comparative analysis of coiled-coil prediction methods. J 

Struct Biol 2006;155:140–145. 

19. Delorenzi M, Speed T. An HMM model for coiled-coil domains and a comparison with 

PSSM-based predictions. Bioinformatics 2002;18:617–625. 

20. Jones DT, Cozzetto D. DISOPRED3: precise disordered region predictions with annotated 

protein-binding activity. Bioinformatics 2015;31:857–863. 

21. Dosztányi Z, Csizmók V, Tompa P, Simon I. The pairwise energy content estimated from 

amino acid composition discriminates between folded and intrinsically unstructured proteins. J 

Mol Biol 2005;347:827–839. 

22. Peng ZL, Kurgan L. High-throughput prediction of RNA, DNA and protein binding regions 

mediated by intrinsic disorder. Nucleic Acids Res 2015;43:e121. 

23. Yan J, Kurgan L. DRNApred, fast sequence-based method that accurately predicts and 

discriminates DNA- and RNA-binding residues. Nucleic Acids Res 2017;45:e84. 

24. Ho BK, Brasseur R. The Ramachandran plots of glycine and pre-proline. BMC Struct Biol 

2005;5:14. 



 17 

25. Kleywegt GJ, Jones TA. Phi/psi-chology: Ramachandran revisited. Structure. 1996;4:1395–

1400. 

26. Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain 

configurations. J Mol Biol 1963;7:95–99. 

27. Izumi H. Homology searches using supersecondary structure code. Methods Mol Biol 

2019;1958:329–340. 

28. Izumi H, Wakisaka A, Nafie LA, Dukor RK. Data mining of supersecondary structure 

homology between light chains of immunogloblins and MHC molecules: absence of the common 

conformational fragment in the human IgM rheumatoid factor. J Chem Inf Model 2013;53:584–

591. 

29. Kabsch W, Sander C. Dictionary of protein secondary structure—pattern-recognition of 

hydrogen-bonded and geometrical features. Biopolymers 1983;22:2577–2637. 

30. Touw WG, Baakman C, Black J, te Beek TAH, Krieger E, Joosten RP, Vriend G. A series 

of PDB-related databanks for everyday needs. Nucleic Acids Res 2015;43:D364–D368. 

31. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, 

Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan 

J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. 

Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus 

origins and receptor binding. Lancet 2020;395:22–28. 

32. Song WF, Gui M, Wang WQ, Xiang Y. Cryo-EM structure of the SARS coronavirus spike 

glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 2018;14:e1007236. 



 18 

33. Gui M, Song WF, Zhou HX, Xu JW, Chen SL, Xiang Y, Wang X. Cryo-electron 

microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational 

state for receptor binding. Cell Res 2017;27:119–129. 

34. Yuan Y, Cao DF, Zhang YF, Ma J, Qi JX, Wang QH, Lu G, Wu Y, Yan J, Shi Y, Zhang 

X, Gao GF. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the 

dynamic receptor binding domains. Nature Commun 2017;8:15092. 

35. Kirchdoerfer RN, Wang N, Pallesen J, Wrapp D, Turner HL, Cottrell CA, Corbett KS, 

Graham BS, McLellan JS, Ward AB. Stabilized coronavirus spikes are resistant to conformational 

changes induced by receptor recognition or proteolysis. Sci Rep 2018;8:15701. 

36. Xu YH, Lou ZY, Liu YW, Pang H, Tien P, Gao GF, Rao Z. Crystal structure of severe 

acute respiratory syndrome coronavirus spike protein fusion core. J Biol Chem 2004;279:49414–

49419. 

37. Duquerroy S, Vigouroux A, Rottier PJM, Rey FA, Bosch BJ. Central ions and lateral 

asparagine/glutamine zippers stabilize the post-fusion hairpin conformation of the SARS 

coronavirus spike glycoprotein. Virology 2005;335:276–285. 

38. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, 

McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 

2020;367:1260–1263. 

39. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-

CoV-2 by full-length human ACE2. Science 2020;367:1444–1448. 



 19 

40. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F. Structural basis 

of receptor recognition by SARS-CoV-2. Nature 2020. https://doi.org/10.1038/s41586-020-2179-

y. 

41. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, 

and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020. 

https://doi.org/10.1016/j.cell.2020.02.058. 

42. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, Wang 

Q, Zhou H, Yan J, Qi J. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human 

ACE2. Cell 2020. https://doi.org/10.1016/j.cell.2020.03.045. 

43. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X. 

Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 

2020. https://doi.org/10.1038/s41586-020-2180-5. 

44. Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Lv H, Mok CKP, Wilson IA. A highly conserved 

cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. Science 2020. 

https://doi.org/10.1126/science.abb7269. 

45. Jurtz VI, Johansen AR, Nielsen M, Armenteros JJA, Nielsen H, Sonderby CK, Winther O, 

Sonderby SK. An introduction to deep learning on biological sequence data: examples and 

solutions. Bioinformatics 2017;33:3685–3690. 

46. Hopf TA, Green AG, Schubert B, Mersmann S, Scharfe CPI, Ingraham JB, Toth-Petroczy 

A, Brock K, Riesselman AJ, Palmedo P, Kang C, Sheridan R, Draizen EJ, Dallago C, Sander C, 



 20 

Marks DS. The EVcouplings Python framework for coevolutionary sequence analysis. 

Bioinformatics 2019;35:1582–1584. 

47. Zhang H, Astrof NS, Liu JH, Wang JH, Shimaoka M. Crystal structure of isoflurane bound 

to integrin LFA-1 supports a unified mechanism of volatile anesthetic action in the immune and 

central nervous systems. FASEB J 2009;8:2735–2740. 

48. Qu A, Leahy DJ. The role of the divalent cation in the structure of the I domain from the 

CD11a/CD18 integrin. Structure 1996;4:931–942. 

49. Helal CJ, Kang Z, Lucas JC, Gant T, Ahlijanian MK, Schachter JB, Richter KEG, Cook JM, 

Menniti FS, Kelly K, Mente S, Pandit J, Hosea N. Potent and cellularly active 4-aminoimidazole 

inhibitors of cyclin-dependent kinase 5/p25 for the treatment of Alzheimer’s disease. Bioorg Med 

Chem Lett 2009;19:5703–5707. 

50. Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massagué J, Pavletich NP. Mechanism 

of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 1995;376:313–

320. 

51. Bourne Y, Watson MH, Hickey MJ, Holmes W, Rocque W, Reed SI, Tainer JA. Crystal 

Structure and Mutational Analysis of the Human CDK2 Kinase Complex with Cell Cycle–

Regulatory Protein CksHs1. Cell 1996;84:863–874. 

 

 

 



 21 

 

Table 1. Keywords included in the training dataset files that afforded high concordance rates 

Keyword Files with concordance rate 

≥ 0.90 (A) 

Total number of files (B) A/B ratio 

PROTEASOME 3283 3551 0.92 

FAB 1989 2071 0.96 

LYSOZYME 786 830 0.95 

HEMOGLOBIN 760 825 0.92 

MICROGLOBULIN 501 534 0.94 

HLA 402 424 0.95 

MYOGLOBIN 174 178 0.98 
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FIGURE LEGEND 

Figure 1 Network architecture of SSSCPrediction. 

Figure 2 Comparison of SSSCPrediction with Quick2D.6 The PDB file (1a00_A) was used for the 

comparison (SSSCPrediction: H, α-helix-type conformation; S, β-sheet-type conformation; T, 

other-type conformation; and D, disordered residue or C-terminus. Quick2D: H, α-helix; E, β-

strand; and D, disorder). 

Figure 3 Distribution map of concordance rate. The average concordance rate of translation of 

amino acid sequences to SSSCs was 0.90. 

Figure 4 

Comparison of predicted and observed SSSC sequences of spike proteins in SARS-CoV-2 (first 

19 lines) and SARS-CoV (next 12 lines) at the receptor-binding domain (red), including the 

receptor-binding motif (purple, binding to human ACE2). A comparison of the SSSCPred200 

(SARS-CoV-2 and SARS-CoV) results with those of Quick2D (from 32 to 59 lines)6 is also shown. 

The receptor-binding motif of SARS-CoV is more undeformable than that of SARS-CoV-2. 

Figure 5 

Comparison of predicted and observed SSSC sequences of spike proteins in SARS-CoV-2 (first 

14 lines) and SARS-CoV (next 11 lines) at aa 851 to 935 (green, heptad repeat 1). A comparison 

of SSSCPred200 (SARS-CoV-2) results with those of Quick2D (from 26 to 39 lines)6 is also 

shown. Only one undeformable motif, the structured loop (red and blue, SSSC: SSSHSSHHHH), 

was common to the compared SSSC sequences. 

Figure 6 

Common undeformable motif of structured loop (blue, SSSC: SSSHSSHHHH). (A) SARS-CoV 

(6acc, monomer), (B) SARS-CoV (6acc, trimer), (C) integrin αL (3f74), (D) leukocyte function-

associated antigen 1 (1zop), and (E) cell division protein kinase 2 (3ig7). The relatively 

undeformable motif protrudes on the molecular surface. 
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