REFERENCES
Axelsson, L., Mercado, J. M., & Figueroa, F. L. (2000). Utilization of
HCO3- at high pH by the brown
macroalga Laminaria saccharina . European Journal of
Phycology , 35, 53–59. https://doi.org/ 10.1080/09670260010001735621
Bauer, H., & Martha, P. (1981). The CO2 compensation
point of C3 plants - A re-examination I. Interspecific variability.Zeitschrift für Pflanzenphysiologie , 103, 445–450.
https://doi.org/ 10.1016/S0044-328X(81)80167-5
Beer, S., & Rehnberg, J. (1997). The acquisition of inorganic carbon by
the seagrass Zostera marina . Aquatic Botany , 56, 277–283.
https://doi.org/ 10.1016/S0304-3770(96)01109-6
Björk, M., Weil, A., Semesi, S., & Beer, S. (1997). Photosynthetic
utilization of inorganic carbon by seagrasses from Zanzibar, East
Africa. Marine Biology , 129, 363–366. https://doi.org/
10.1007/s002270050176
Black, M. A., Maberly, S. C., & Spence, D. H. N. (1981). Resistance to
carbon dioxide fixation in four submerged freshwater macrophytes.New Phytologist , 89, 557–568. https://doi.org/
10.1111/j.1469-8137.1981.tb02335.x
Bowes, G. (2010). Chapter 5 Single-Cell C4 Photosynthesis in Aquatic
Plants. In: Raghavendra, A., & Sage, R. (eds) C4 Photosynthesis and
Related CO2 Concentrating Mechanisms. Advances in
Photosynthesis and Respiration, 32, 63–80. Springer, Dordrecht.
https://doi.org/ 10.1007/978-90-481-9407-0_5
Cabantchik, Z. I., & Greger, R. (1992). Chemical probes for anion
transporters of mammalian cell membranes. American Journalof Physiology, 262, C803–C827. https://doi.org/
10.1152/ajpcell.1992.262.4.C803
Cao, Y., Liu, Y., Ndirangu, L., Li, W., Xian, L., & Jiang, H. S.
(2019). The analysis of leaf traits of eight Ottelia populations
and their potential ecosystem functions in Karst freshwaters in China.Frontiers in Plant Science , 9, 1938. https://doi.org/
10.3389/fpls.2018.01938
Clement, R., Lignon, S., Mansuelle, P., Jensen, E., Pophillat, M.,
Lebrun, R., Denis, Y., Puppo, C., Maberly, S. C., & Gontero, B. (2017).
Responses of the marine diatom Thalassiosira pseudonana to
changes in CO2 concentration: a proteomic approach.Scientific Reports , 7, 42333. https://doi.org/10.1038/srep42333
Denny, P., & Weeks, D. C. (1970). Effects of light and bicarbonate on
membrane potential in Potamogeton schweinfurthii (Benn).Annals of Botany , 34, 483–496. https://doi.org/
10.1093/oxfordjournals.aob.a084384
DiMario, R. J, Machingura, M. C., Waldrop, G. L., & Moroney, J. V.
(2018). The many types of carbonic anhydrases in photosynthetic
organisms. Plant Science , 268, 11–17. https://doi.org/
10.1016/j.plantsci.2017.12.002
Drechsler, Z., Sharkia, R., Cabantchik, Z. I., & Beer, S. (1993).
Bicarbonate uptake in the marine macroalga Ulva sp. is inhibited
by classical probes of anion exchange by red blood cells. Planta ,
191, 34–40. https://doi.org/10.1007/BF00240893
Elzenga, J. T. M., & Prins, H. B. A. (1988). Adaptation ofElodea and Potamogeton to different inorganic carbon
levels and the mechanism for photosynthetic bicarbonate utilization.Australian Journal of Plant Physiology , 15, 727–735.
https://doi.org/ 10.1071/PP9880727
Emanuelsson, O., Brunak, S., von Heijne, G., & Nielsen, H. (2007).
Locating proteins in the cell using TargetP, SignalP and related tools.Nature Protocol , 2, 953–971. https://doi.org/
10.1038/nprot.2007.131
Fernández, P. A., Hurd, C. L., & Roleda, M. Y. (2014). Bicarbonate
uptake via an anion exchange protein is the main mechanism of inorganic
carbon acquisition by the giant kelp Macrocystis pyrifera(Laminariales, Phaeophyceae) under variable pH. Journal of
Phycology , 50, 998–1008. https://doi.org/ 10.1111/jpy.12247
Fernández, P. A., Roleda, M. Y., Rautenberger, R., & Hurd, C. L.
(2018). Carbonic anhydrase activity in seaweeds: overview and
recommendations for measuring activity with an electrometric method,
using Macrocystis pyrifera as a model species. Marine
Biology , 165, 88. https://doi.org/10.1007/s00227-018-3348-5
Fujiwara, S., Fukuzawa, H., Tachiki, A., & Miyachi, S. (1990).
Structure and differential expression of 2 genes encoding
carbonic-anhydrase in Chlamydomonas reinhardtii .Proceedings of the National Academy of Sciences USA , 87,
9779–9783. https://doi.org/ 10.1073/pnas.87.24.9779
Giordano, M., Beardall, J., & Raven, J. A. (2005). CO2concentrating mechanisms in algae: mechanisms, environmental modulation,
and evolution. Annual Review of Plant Biology , 56, 99–131.
https://doi.org/ 10.1146/annurev.arplant.56.032604.144052
Granbom, M., & Pedersén, M. (1999). Carbon acquisition strategies of
the red alga Eucheuma denticulatum . Hydrobiologia ,
398/399, 349–354. https://doi.org/10.1023/A:1017059607075
Gravot, A., Dittami, S. M., Rousvoal, S., Lugan, R., Eggert, A., Collen,
J., Boyen, C., Bouchereau, A., & Tonon, T. (2010). Diurnal oscillations
of metabolite abundances and gene analysis provide new insights into
central metabolic processes of the brown alga Ectocarpus
siliculosus . New Phytologist , 188, 98–110. https://doi.org/
10.1111/j.1469-8137.2010.03400.x
Hackl, T., Hedrich, R., Schultz, J., & Förster, F. (2014). Proovread:
large-scale high-accuracy pacbio correction through iterative short read
consensus. Bioinformatics , 30, 3004–3011. https://doi.org/
10.1093/bioinformatics/btu392
Han, S. J., Maberly, S. C., Gontero, B., Xing, Z. F., Li, W., Jiang, H.
S., & Huang, W. M. (2020). Structural basis for C4 photosynthesis
without Kranz anatomy in leaves of the submerged freshwater plantOttelia alismoides. Annals of Botany . doi: https://doi.org/
10.1093/aob/mcaa005
Harada, H., & Matsuda, Y. (2005). Identification and characterization
of a new carbonic anhydrase in the marine diatom Phaeodactylum
tricornutum . Canadian Journal of Botany , 83, 909–916.
https://doi.org/ 10.1139/B05-078
Harada, H., Nakatsuma, D., Ishida, M., & Matsuda, Y. (2005). Regulation
of the expression of intracellular β-carbonic anhydrase in response to
CO2 and light in the marine diatom Phaeodactylum
tricornutum. Plant Physiology , 139, 1041–1050. https://doi.org/
10.1104/pp.105.065185
Huang, W. M., Shao, H., Zhou, S. N., Zhou, Q., Fu, W. L., Zhang T.,
Jiang, H. S., Li, W., Gontero, B., & Maberly, S. C. (2018). Different
CO2 acclimation strategies in juvenile and mature leaves
of Ottelia alismoides . Photosynthesis Research , 138,
219–232. https://doi.org/ 10.1007/s11120-018-0568-y
Iversen, L. L., Winkel, A., Baastrup-Spohr, L., Hinke, A. B., Alahuhta,
J., Baatrup-Pedersen, A., Birk, S., Brodersen, P., Chambers, P. A.,
Ecke, F., Feldmann, T., Gebler, D., Heino, J., Jespersen, T. S., Moe, S.
J., Riis, T., Sass, L., Vestergaard, O., Maberly, S. C., Sand-Jensen,
K., & Pedersen, O. (2019). Catchment properties and the photosynthetic
trait composition of freshwater plant communities. Science , 366,
878–881. https://doi.org/ 10.1126/science.aay5945
James, P. L., & Larkum, A. W. D. (1996). Photosynthetic inorganic
carbon acquisition of Posidonia australis . Aquatic Botany ,
55, 149–157. https://doi.org/ 10.1016/S0304-3770(96)01074-1
Jensen, E.L., Clement, R., Kosta, A., Maberly, S. C., & Gontero, B.
(2019). A new widespread subclass of carbonic anhydrase in marine
phytoplankton. The ISME Journal , 13, 2094–2106. https://doi.org/
10.1038/s41396-019-0426-8
Karlsson, J., Clarke, A. K., Chen, Z. Y., Hugghins, S. Y., Park, Y. I.,
Husic, H. D., Moroney, J. V., & Samuelsson, G. (1998). A novel
alpha-type carbonic anhydrase associated with the thylakoid membrane inChlamydomonas reinhardtiiis required for growth at ambient CO2. EMBO
Journal , 17, 1208–1216. https://doi.org/ 10.1093/emboj/17.5.1208
Klavsen, S. K., Madsen, T. V., & Maberly, S. C. (2011). Crassulacean
acid metabolism in the context of other carbon-concentrating mechanisms
in freshwater plants: a review. Photosynthesis Research, 109,
269–279. https://doi.org/ 10.1007/s11120-011-9630-8
Klenell, M., Snoeijs, P., & Pedersén, M. (2004). Active carbon uptake
in Laminaria digitata and L. saccharina (Phaeophyta) is
driven by a proton pump in the plasma membrane. Hydrobiologia ,
514, 41–53. https://doi.org/ 10.1023/B:hydr.0000018205.80186.3e
Larsson, C., & Axelsson, L. (1999). Bicarbonate uptake and utilization
in marine macroalgae. European Journal of Phycology, 34, 79–86.
https://doi.org/ 10.1080/09670269910001736112
Maberly, S. C., & Spence, D. H. N. (1983). Photosynthetic inorganic
carbon use by freshwater plants. Journal of Ecology , 71,
705–724. https://doi.org/ 10.2307/2259587
Maberly, S. C. (1990). Exogenous sources of inorganic carbon for
photosynthesis by marine macroalgae. Journal of Phycology , 26,
439–449. https://doi.org/ 10.1111/j.0022-3646.1990.00439.x
Maberly, S. C. (1996). Diel, episodic and seasonal changes in pH and
concentrations of inorganic carbon in a productive lake.Freshwater Biology , 35, 579–598. https://doi.org/
10.1111/j.1365-2427.1996.tb01770.x
Maberly, S. C., & Madsen, T. V. (1998). Affinity for
CO2 in relation to the ability of freshwater macrophytes
to use HCO3. Functional Ecology, 12, 99–106.
http://www.jstor.org/stable/2390529
Maberly, S. C., & Gontero, B. (2017). Ecological imperatives for
aquatic CO2-concentrating mechanisms. Journal of
Experimental Botany , 68, 3797–3814. https://doi.org/
10.1093/jxb/erx201
Maberly, S. C., & Gontero, B. (2018). Trade-offs and synergies in the
structural and functional characteristics of leaves photosynthesizing in
aquatic environments. In: Adams III, W. W., Terashima, I., eds. The
leaf: a platform for performing photosynthesis. Advances in
photosynthesis and respiration (Including bioenergy and related
processes). Springer, Cham. 307–343. https://doi.org/
10.1007/978-3-319-93594-2_11
Millhouse, J., & Strother, S. (1986). Salt-stimulated
bicarbonate-dependent photosynthesis in the marine angiospermZostera muelleri . Journal of Experimental Botany , 37,
965–976. https://doi.org/ 10.1093/jxb/37.7.965
Moroney, J. V., Husic,
H.
D., & Tolbert, N. E. (1985). Effect of carbonic anhydrase inhibitors
on inorganic carbon accumulation by Chlamydomonas reinhardtii .Plant Physiology , 79, 177–183. https://doi.org/
10.1104/pp.79.1.177
Moroney, J. V., & Chen, Z. Y. (1998). The role of the chloroplast in
inorganic carbon uptake by eukaryotic algae. Canadian Journal of
Botany , 76, 1025–1034. https://doi.org/ 10.1139/b98-077
Moroney, J. V., Bartlett, S. G., & Samuelsson, G. (2001). Carbonic
anhydrases in plants and algae. Plant Cell & Environment , 24,
141–153. https://doi.org/ 10.1111/j.1365-3040.2001.00669.x
Moroney, J. V., Ma, Y., Frey, W. D., Fusilier, K. A., Pham, T. T.,
Simms, T. A., DiMario, R. J., Yang, J., & Mukherjee, B. (2011). The
carbonic anhydrase isoforms of Chlamydomonas reinhardtii :
intracellular location, expression, and physiological roles.Photosynthesis Research , 109, 133–149. https://doi.org/
10.1007/s11120-011-9635-3
Nakajima, K., Tanaka, A., & Matsuda, Y. (2013). SLC4 family
transporters in a marine diatom directly pump bicarbonate from seawater.Proceedings of the National Academy of Sciences USA , 110,
1767–1772. https://doi.org/ 10.1073/pnas.1216234110
Poliner,
E.,
Panchy,
N.,
Newton,
L.,
Wu,
G.,
Lapinsky,
A.,
Bullard,
B.,
Zienkiewicz,
A.,
Benning,
C.,
Shiu,
S. H., &
Farré,
E. M. (2015). Transcriptional coordination of physiological responses
in Nannochloropsis oceanica CCM1779 under light/dark cycles.Plant Journal , 83, 1097–1113. https://doi.org/ 10.1111/tpj.12944
Prins, H. B. A., Snel, J. F. H., Helder, R. J., & Zanstra, P. E.
(1980). Photosynthetic HCO3−utilization and OH− excretion in aquatic angiosperms:
light induced pH changes at the leaf surface. Plant Physiology ,
66, 818–822. https://doi.org/ 10.1104/pp.66.5.818
Raven, J. A. (1970). Exogenous inorganic carbon sources in plant
photosynthesis. Biological Reviews , 45, 167–221.
https://doi.org/10.1111/j.1469-185X.1970.tb01629.x
Roberts, R. J., Carneiro, M. O., & Schatz, M. C. (2013). The advantages
of SMRT sequencing. Genome Biology , 14, 405. https://doi.org/
10.1186/gb-2013-14-6-405
Romero, M. F., Chen, A. P., Parker, M. D., & Boron, W. F. (2013). The
SLC4 family of bicarbonate (HCO3-)
transporters. Molecular Aspects of Medicine , 34, 159–182.
https://doi.org/ 10.1016/j.mam.2012.10.008
Samukawa, M., Shen, C., Hopkinson, B. M., & Matsuda, Y. (2014).
Localization of putative carbonic anhydrases in the marine diatom,Thalassiosira pseudonana . Photosynthsis Research , 121,
235–249. https://doi.org/ 10.1007/s11120-014-9967-x
Satoh, D., Hiraoka, Y., Colman, B., & Matsuda, Y. (2001). Physiological
and molecular biological characterization of intracellular carbonic
anhydrase from the marine diatom Phaeodactylum tricornutum.Plant Physiology , 126,
1459–1470. https://doi.org/ 10.1104/pp.126.4.1459
Shao, H., Gontero, B., Maberly, S. C., Jiang, H. S., Cao, Y., Li, W., &
Huang, W. M. (2017). Responses of Ottelia alismoides , an aquatic
plant with three CCMs, to variable CO2 and light.Journal of Experimental Botany , 68, 3985–3995. https://doi.org/
10.1093/jxb/erx064
Sharkia, R., Beer, S., & Cabantchik, Z. I. (1994). A membrane-located
polypeptide of Ulva sp. which may be involved in
HCO3- uptake is recognized by
antibodies raised against the human red-blood-cell anion-exchange
protein. Planta , 194, 247–249. https://doi.org/
10.1007/BF00196394
Silva, T. S. F., Melack, J. M., & Novo, E. M. L. M. (2013). Responses
of aquatic macrophyte cover and productivity to flooding variability on
the Amazon floodplain. Global Change Biology , 19, 3379–3389.
https://doi.org/ 10.1111/gcb.12308
Sowah, D., & Casey, J. R. (2011). An intramolecular transport
metabolon: fusion of carbonic anhydrase II to the COOH terminus of the
Cl-/HCO3- exchanger,
AE1. American Journal of Physiology-Cell Physiology , 301,
C336–C346. https://doi.org/ 10.1152/ajpcell.00005. 2011
Staal, M., Elzenga, J. T. M., & Prins, H. B. A. (1989).14C fixation by leaves and leaf cell protoplasts of
the submerged aquatic angiosperm Potamogeton lucens: carbon
dioxide or bicarbonate? Plant Physiology , 90, 1035–1040.
https://doi.org/ 10.1104/pp.90.3.1035
Steemann-Nielsen, E. (1947). Photosynthesis of aquatic plants with
special reference to the carbon sources. Dansk Botanisk Arkiv
Udgivet af Dansk Botanisk Forening , 8, 3–71.
Sterling, D., Reithmeier, R. A. F., & Casey, J. R. (2001). A transport
metabolon: Functional interaction of carbonic anhydrase II and
chloride/bicarbonate exchangers. The Journal of Biological
Chemistry, 276, 47886–47894. https://doi.org/ 10.1074/jbc.M105959200
Tachibana, M., Allen, A. E., Kikutani, S., Endo, Y., Bowler, C., &
Matsuda, Y. (2011). Localization of putative carbonic anhydrases in two
marine diatoms, Phaeodactylum tricornutum andThalassiosira pseudonana . Photosynthesis Research , 109,
205–221. https://doi.org/ 10.1007/s11120-011-9634-4
Thornell, I. M., & Bevensee, M. O. (2015). Regulators of Slc4bicarbonate transporter activity. Frontiers in Physiology , 6,
166. https://doi.org/ 10.3389/fphys.2015.00166
Tsuji, Y., Nakajima, K., & Matsuda, Y. (2017). Molecular aspects of the
biophysical CO2-concentrating mechanism and its
regulation in marine diatoms. Journal of Experimental Botany , 68,
3763–3772. https://doi.org/ 10.1093/jxb/erx173
van Hille, R., Fagan, M., Bromfield, L., & Pott, R. (2014). A modified
pH drift assay for inorganic carbon accumulation and external carbonic
anhydrase activity in microalgae. Journal of Applied Phycology ,
26, 377–385. https://doi.org/ 10.1007/s10811-013-0076-6
Zhang, Y. Z., Yin, L. Y., Jiang, H. S., Li, W., Gontero, B., & Maberly,
S. C. (2014). Biochemical and biophysical CO2concentrating mechanisms in two species of freshwater macrophyte within
the genus Ottelia (Hydrocharitaceae). Photosynthesis
Research , 121, 285–297. https://doi.org/ 10.1007/s11120-013-9950-y
Zou, D. H., & Gao, K. S. (2010). Acquisition of inorganic carbon byEndarachne binghamiae (Scytosiphonales, Phaeophyceae).European Journal of Phycology , 45, 117–126. https://doi.org/
10.1080/09670260903383909