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Abstract— This paper proposes a seven-compartment Markov decision process model for control of epidemic infections. Decision variables include vaccination, treatment, and quarantine. Cost function includes cost of treatment, cost of quarantine, and cost of vaccination. Transition probabilities have been represented by Bayesian network. Scalability of the proposed model has been discussed. Extensions of the proposed approach has also been included as well as comparison with the existing models. Superiority of the proposed approach has been elaborated through a case study.
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INTRODUCTION
Control of epidemic infections has been an active area of research in the past two decades or so [1] because it has the potential of saving lives with minimal possible expense and timely efforts. Many control techniques have been developed for control in epidemiology [2][1]. For example, predictive (or model predictive control based) techniques [3][4], stochastic techniques [5][6], Markov chain based techniques [7][8], Markov decision processes (MDP) based techniques [9][10][11], optimal control (mostly Pontryagin’s maximum principle) based techniques [2][12], and recently, network based techniques [13][14][15]. This paper proposes an MDP based model. To the best of our knowledge, this paper is the first to propose a seven compartment MDP model. 
Why would we propose a seven compartment model? The answer to this key question lies in the examination of existing models that are mostly three-compartment (or sometimes four compartment), i.e., susceptible, infected, and recovered (for diseases where a recovered individual has immunity to the disease). In such models, the decision of vaccinating or treating an individual is not informed about how many people are already under treatment or have been vaccinated. This means that the size of population is no longer constant as far as the model is concerned. However, in all the MDP based approaches that we have seen, the size of the population is considered to be constant other than the death or birth rate. Consider (for the sake of understanding) a simple example with population size of seven individuals. Suppose one of them is infected, five are susceptible, and one is recovered. Now, using an SIR (Susceptible-Infected-Recovered) model, suppose the optimal decision is to vaccinate two of the susceptible individuals. The problem after this decision is that these two (vaccinated individuals) are no longer represented in the model (and they are not dead). At best, in such a case, vaccinated can be counted as recovered by the model but vaccinations may not work 100% of the time so the model will be less realistic (similar argument can be made for individuals under treatment). Therefore, we have proposed a seven compartment model that is more realistic and represents vaccinated individuals, individuals under treatment, and individuals in quarantine as well as the SIR individuals. 
A side effect of making the model more realistic is the added computational complexity. A complete (or thorough) solution to the complexity problem is an avenue of future research. However, we have sketched a possible solution in Section III. Also, once a problem is formulated as an MDP, it is entitled to many approximate dynamic programming algorithms [16][17][18] for calculation of a quasi-optimal control policy with reduced computational complexity. 
Literature Review
There is a vast majority of models in epidemiology where differences between the models is trivial in many cases [19]. Most common model in epidemiology is the SIR (susceptible-infected-recovered) model in which the population is divided into three categories or compartments.
Inherently, the problem of control in epidemiology is a discrete and stochastic one. Therefore, MDP is a suitable candidate for modeling this problem. MDP based models have an added advantage of enabling the calculation of a control policy as opposed to a generic control strategy that does not take into account the current state of the population. For example, the geometric programming based approach in [20] provides a resource allocation strategy based on maximization of an eigenvalue. But this strategy is generalized and does not take into account the current situation or state.
Continuous time state space based models usually employ Pontryagin’s maximum principle for calculation of the solution [2][12]. Differences in such approaches lies in the definition of the cost function or in some cases in the type of dieses studied. Population is usually normalized (maximum size = 1) and the objective is to minimize infection at lowest cost of vaccination or treatment.
Predictive approaches and graph based approaches have gained popularity in recent years [21][20]. For example, [22] proposes a virus spread minimization algorithm with some theoretical guarantees based on discrete time LaSalle invariance principle. Graph theory has also been employed by [14] and [13] for distinguishing infections and developing curing policy respectively. Node removal in graphs has been used as a mode of actuation in [15].
There are a few MDP and dynamics Bayesian network based approaches available in literature. For example [23] provides an approximate solution for graph based MDPs but their approach is generic and not focus on the problem of control in epidemiology. Similarly, MDP for breast and ovarian cancer has been proposed in [10]. There have been some work on the stochastic prediction of epidemic curve [24] as well as on the analysis of epidemics behavior under stochastic perturbations [6], delay [5], and geographical data [25]. A dynamic Bayesian network based approach is proposed in [26] but this approach is specific to prognosis of coronary heart disease. Game theory based approach has been discussed in [27] in the context of SIRV (susceptible-infected-recovered-vaccinated) model. MDP based three-compartment model has been discussed recently in [9]. A good reference on stochastic modeling and estimation for epidemics is [28].
None of the previous MDP models discuss seven-compartment approach. As discussed in previous section, such an approach is more realistic and facilitates the control policy in making more informed decisions.      
MDP Based Stochastic Model
In this section we present our proposed MDP model for the following control problem.
Given the statistics and current status of various individuals in a population as infected, susceptible, recovered; device optimal control policy using vaccination, treatment, and isolation as means of preventing the spread of an epidemic disease.  
States
The state includes information that is available for decision making. For example, if the information available includes number of infected individuals (I), number of individuals susceptible to the disease (S), number of vaccinated individuals (V), number of individuals under treatment (T), number of individuals exposed to the disease but not yet infected (E), number of individuals in quarantine (Q), and number of individuals recovered from the disease (R). The resulting state space becomes,
																		(1)
Now, the number of states  (it is a solved problem in combinatorics that number of possible ways of placing N unlabeled objects in m labeled baskets is ). Each state is now a tuple of seven variables. However, in order to determine the state, it is enough to know the values of any six out of the seven variables in the tuple. One question that arises here is that of computational complexity and scalability of the representation with respect to the population size.
Discussion on scalability: Whenever a problem is formulated as an MDP, size of the state space has to be kept in-check because of the curse of dimensionality involved in the methods used to calculate optimal control policy. Therefore, it is important to discuss the scalability of the proposed modeling. Fig. 1 show how the size of the state space varies as a function of population size. In this figure, m is the number of compartments (e.g. S, I, R, V etc.) in the state space, N is the population size, and n is the size of the state space. Size of the state space is plotted in logarithm scale for clarity of representation. In the experience of the authors, a core i5 laptop with six gigabytes of random access memory can handle up to ten million states. This means that for a three compartment model, we can handle a population size of about 3,500. Whereas for five and seven compartment models, the limit on N is 120 and 40 respectively.
[image: ]
[bookmark: _Ref476067784]Fig. 1: Size of the state space versus population size
Population in real cities is of the order of several millions. Even in small towns the population is of the order of one hundred thousand. So the question arises that how an MDP model would handle such large numbers. A simple approach for this situation is state abstraction. Specifically, one unit of population in the state space may represent more than one person. In this way, a population size of 105,000 can be represented with 3,500 units of population where each unit represents 30 persons. Drawback of such abstraction is that if any number of persons between one and thirty get infected, the unit will show either zero or thirty people being infected. This is similar to a well-known term quantization error in digital systems. Worst case error is 15 persons for the case where each unit of population represents 30 persons. Now if we represent this worst case error as percentage of the total population, it is merely 0.014% which should be acceptable for policy calculations. Handling models with five or seven compartments is still not easy. Extending the same example with population of 105000 to a seven compartment model with 40 units (instead of 3500), we get an error of 2.5% (as opposed to 0.014% in three compartment case). Further study can be done to explore ways of reducing effective computational complexity involved in the problem without incorporating prohibitive error. In this regard, the techniques in Approximate Dynamic Programming (ADP) [16] may prove to be helpful.
Actions
There are three main types of actions in the epidemic infection problem i.e., vaccination, treatment, and isolation (or quarantine). Furthermore, within each type of action, there are divisions based on the number of individuals in the population upon which an action is applied. Consequently, we have  vaccination actions,  treatment actions, and  isolation actions. This leads to the list of actions as 

																				(2)
Note that an additional action NOOP (no operation) has been included in the list of actions. This is to signify that it is not always desirable to vaccinate or isolate or treat somebody. For example, if the number of infected people is zero or probability of infection spread is too low etc. Furthermore, the ideal value of  is N, but their actual value shall depend upon the available vaccination, treatment, and quarantine resources. For example, assume that there are five individuals in a population. Ideally, we should have  where  means that we are vaccinating i individuals,  means we are starting treatment of j individuals etc. This would amount to a total of sixteen actions. But imagine that we only have two vaccines, three hospital beds (or treatment resources for three people at a time), and one isolation chamber. Then this would mean that . 
State Transitions
There are seven variables in the problem and evaluation of state transitions requires evaluation of the following joint probability distribution

(3)
Assuming that the actions have deterministic effect of transferring an individual from one compartment to another, we can remove  from above equation. Note that this assumption makes sense in seven-compartment model because once a susceptible individual is vaccinated, it will deterministically shift from being susceptible to vaccinated regardless of whether the vaccination saves him from being infected or not. Similar arguments can be made for the actions of treatment and quarantine. Therefore, . Furthermore, not all variables are dependent upon all other variables in our problem. We can construct Bayesian network for the variables involved in the problem based on realistic assumptions as shown in Fig. 2. The doted links in Fig. 2 cater for the uncertainty involved in vaccination. This is to reflect that vaccination may not be 100% successful. Therefore, a vaccinated individual may be exposed or get infected. For practical implementation of the proposed approach, it would be required to know the a priori probabilities represented by directed links in the transition map which in fact is a Bayesian Network. The advantage of having Bayesian Network is that one does not need all the conditional and marginal distributions in order to calculate the joint distribution [16]. The joint conditional probability in (3) can be written as a product of less complicated probabilities using Bayesian network of Fig. 2 as





(4)
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[bookmark: _Ref476848244]Fig. 2 Bayesian Network for compartment transitions

Reward/Cost Function
First, we discuss the elements in the problem that have positive or negative impact on the solution. Most important element in the cost is the number of infected individuals (I). Secondly, when the vaccination is available, the number of susceptible individuals should also be part of the cost function otherwise the optimal control would never use vaccination [9]. Next, keeping individuals in quarantine is costly and hence Q should be in the cost function. The cost of treatment and vaccination can be included by using either variables T and V or the cost can be included in the actions uv and ut for vaccination and treatment respectively. Finally, we must include the cost of exposed individuals (E) in the cost function since exposure leads to infection. The resulting cost function can be written as
 											(5)
Where α and β are positive constants. Notice that the above cost function is an incremental cost. Total cost incorporated in an MDP problem is the expected sum of the cost over the whole decision horizon given as
															(6)
In above equation, h is the decision horizon i.e. the number of decisions to be made before the end of the problem. In (6), h varies from 0 to infinity indicating an infinite horizon. In general, horizon can be finite rather in some cases, horizon should be finite. Such cases arise in the problems where the deadline of decision making is predefined or the number of decisions allowed is limited such as in blackjack (cards game).
The cost function defined in (5) is a linear function of the variables in state and actions. In general, the cost does not have to be linear. A comparison of two different types of reward functions in discussed in [9]. For example, the cost of having patients may depend upon thresholds such as for first few patients, the cost is low, then the number of patients above a certain threshold cost more and so on.
Furthermore, one could use exponential or quadratic functions instead of linear to reflect any realistic effect of the problem specific to the time and place (town/city) for which the optimal policy is to be calculated.
Calculation of the optimal Control Policy
There are several methods available for calculation of the optimal policy from an MDP. Most common methods are policy iteration, value iteration, and backward induction. Other methods include linear programming and dynamics Bayesian network based methods. In this section we discuss how value iteration is applied to the problem formulated so far. 
Value iteration uses iterations on the value function in order to determine the optimal policy. Optimization is in terms of the expected value provided in (6). The decision making horizon h in value iteration is infinite. Value of each state is given by

(7)
Value of a state depends upon the sum of cost incurred by that state and the value of the states that it can lead to. This definition of the value function converges to optimal value for each state via iterative calculations of the form

(8)
Note that the iteration in (8) can be started with arbitrary (finite) state values. However, better the initial guess, lesser is the number of iterations required before the convergence. The number of iterations required for convergence is estimated using

	 																	(9)
Here Cmax is the maximum value of the cost function and ε is the error tolerance for convergence. It is interesting to note that the number of iterations depend upon the cost function and the discount factor. Specification of the cost function is usually an intuitive task while the discount factor is mostly dictated in problems. In case of epidemic infections, taking quick actions is desirable hence the discount factor value should be low e.g. between 0.5 and 0.8. Discount factor with value 0.5 means that the value of reaching the state decreases by half in each passing decision. Low discount factor results in less iteration before the convergence is achieved. 
Once the optimal value is obtained, the optimal policy is calculated using the following expression

(10)
Here V* represents optimal value and P* represents optimal policy. Note that the optimal policy in this case is stationary i.e. the optimal decision at each state is independent of the time at which the state is reached. This is because in infinite decision horizon, time is irrelevant. Only factor affecting the early verses late decisions is the discount factor. 
Case Study
In this section, shows how the optimal policy can be summarized and analyzed parametrically. Also the sample trajectory has been shown to demonstrate the performance of the optimal policy in terms of confining and diminishing the epidemic disease. Case study presented here involves 736,281 states where each state has four possible actions and each action can lead to one of the 384 possible next states (all possible combinations of the transitions as in Fig. 2). Values of the parameters used in the simulations are summarized in Table I. 
The values related to the transition probabilities are presented in Table II. First column of the table shows the label transition (please refer to Fig. 2) for a single unit of population. Remaining four columns represent the corresponding probabilities of these transitions for each of the four possible actions. For example, the probability that a susceptible unit of population shall stay susceptible is 0.65 if no action (NOOP) is executed. Similarly, the probability of recovery of an infected individual is 0.1 for NOOP. Sum of all possible transitions from each of the seven variables is one. 
The MDP for the seven-compartment model is solved using value iteration. The resulting optimal policy is summarized in Table III. This table summarizes which actions are deemed optimal more often than the others i.e. it can be seen that vaccination and treatment are deemed optimal quite often. 
[bookmark: _Ref536784111]Table I: Parameter values for the case study
	Parameter Name
	Value

	N (size of scaled population)
	25

	x (total number of states)
	736,281

	p (number of partitions in actions)
	1 (each action applied to single individual of scaled population)

	α0 (weighting factor in (5))
	100

	β (weighting factor in (5))
	20

	α1 (weighting factor in (5))
	40

	α2 (weighting factor in (5))
	70

	α3 (weighting factor in (5))
	40 for T ≤ 10, 50 for 10 < T ≤ 20, and 60 for T > 20

	α4 (weighting factor in (21))
	45



[bookmark: _Ref536783757]Table II: Transition Probabilities for a unit of population given against possible actions
	State Transition
	Probability Value (NOOP)
	Probability Value (Vaccination) 
	Probability Value (Treatment)
	Probability Value (Quarantine)

	S  S
	0.65
	0.05
	0.65
	0.65

	S  I
	0.25
	0
	0.25
	0.25

	S  V
	0
	0.95
	0
	0

	S  E
	0.1
	0
	0.1
	0.1

	I  I
	0.9
	0.9
	0
	0

	I  R
	0.1
	0.1
	0
	0

	I  T
	0
	0
	1
	0

	I  Q
	0
	0
	0
	1

	R  R
	1
	1
	1
	1

	V  I
	0
	0
	0
	0

	V  V
	1
	1
	1
	1

	V  E
	0
	0
	0
	0

	E  I
	0.5
	0.5
	0.5
	0.5

	E  E
	0.5
	0.5
	0.5
	0.5

	T  R
	0.3
	0.3
	0.3
	0.3

	T  T
	0.7
	0.7
	0.7
	0.7

	Q  R
	0.1
	0.1
	0.1
	0.1

	Q  Q
	0.9
	0.9
	0.9
	0.9



A deeper parametric analysis of the policy is presented in Table IV. The values (or ranges) in this table present insights into the behavior of the optimal policy. For example, if the number of susceptible units of population (S) is greater than five, then it is not optimal to do nothing. Similarly, NOOP is not an optimal choice if the number of infected units in the population (I) is greater than two. Another interesting insight is that vaccination is no longer optimal when “I” is greater than ten. This means that when there are quite a few people infected, treating the infected individuals takes precedence over vaccinating the susceptible ones. In our case study, treatment is highly preferred over quarantine. This is because treatment yields a higher probability of recovering. In another setting where treatment is too costly or the spread probability of the infection is too high, quarantine may be preferable over treatment.
Traditional way of analyzing the control policy for epidemic infections is to show how it renders the susceptible and infected individuals to zero asymptotically. Therefore, a similar analysis of the proposed approach has also been presented. Figures 3 and 4 show the results of the optimal control policy with initially 20 units of population being susceptible and five units being infected. Exogenous events in these simulations have been selected using uniform distribution (an exogenous event refers to a possible state transition in the model given current state and action). Notice that the infected individuals recover after treatment and quarantine the susceptible units of population are vaccinated. This kind of an insight and those in Table IV could be used to determine soft rules for epidemic control (the details of development of such rules is beyond the scope of this paper.
[bookmark: _Ref536784038]Table III: Summary of the optimal policy
	Optimal decision
	Number of states

	NOOP
	44,812

	Vaccination 
	2,43,263

	Treatment
	4,45,314

	Quarantine
	2,892


[bookmark: _Ref536784024]Table IV: Parametric analysis of the optimal policy
	Action
	Variable Range
	S
	I
	R
	V
	T
	E
	Q

	NOOP
	0-5
	0-2
	0-25
	0-25
	0-24
	0-25
	0-24

	Vaccination 
	1-25
	0-10
	0-24
	0-24
	0-24
	0-24
	0-24

	Treatment
	0-23
	0-25
	0-24
	0-24
	0-22
	0-23
	0-25

	Quarantine
	0-19
	0-5
	0-24
	0-24
	0-25
	0-24
	0-0


Conclusion
An MDP based model for the control of epidemic infection has been proposed. The optimal control policy generated from the MDP model offers certain insights into its behavior that cannot be offered by a difference equations based discrete control law. Specifically, the boundaries (or thresholds) relating possible optimal actions with number of units of population in a certain compartment and ranges of the number of units of population for each possibly optimal action. In traditional difference equation based models, the population could be in fractions and so could be the control signal. Whereas the MDP based policy gives exact numbers (as positive integers) for control signals and population which is easier to interpret, implement, and understand.
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Fig. 3: Results from the optimal policy with initial condition S = 20, I = 5
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[bookmark: _Ref487476338]Fig. 4: Results from the optimal policy with initial condition S = 20, I = 5
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