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1 INTRODUCTION

Uncertainty principle plays an important role in harmonic analysis, quantum mechanics, and time-frequency analysis.1,2,3 The
classicalN-dimensional Heisenberg’s uncertainty principle is given by the inequality4,5

∫
ℝN

‖x − a‖2 |f (x)|2dx ∫
ℝN

‖w − b‖2 ||
|

f̂ (w)||
|

2
dw ≥ N2

16�2
‖f‖42 (1)

for any f (x) ∈ L2(ℝN ) equipped with a natural norm ‖⋅‖2 =
(

∫ℝN | ⋅ (x)|2dx
)

1
2 known as the L2-norm, and any a =

(a1, a2,⋯ , aN ),b = (b1, b2,⋯ , bN ) ∈ ℝN equipped with the 2-norm ‖⋅‖ =
√

(⋅)(⋅)T, where T denotes the transpose operator.
The function f̂ (w) denotes theN-dimensional Fourier transform (FT) of f (x),6

f̂ (w) = ∫
ℝN

f (x)e−2�ixwTdx, (2)

where x = (x1, x2,⋯ , xN ), w = (!1, !2,⋯ , !N ), and xwT =
N
∑

k=1
xk!k. This version of uncertainty principle states that a

multivariable square integrable function cannot be sharply localized in both the time domain and frequency domain. Given this
result, it is theoretically important and practically useful to study its extension to the time-frequency domain.

1.1 Overview and main result
In this paper we will focus on an interesting extension of the classical N-dimensional Heisenberg’s uncertainty principle to
the fractional Fourier transform (FRFT),7 which generalizes the FT by embedding another degree of freedom associated with
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rotational angle �. Our main goal is to show that the classical result can be extended to time-frequency domain characterized by
twoN-dimensional FRFTs.
Let us begin by recalling some background and notation on theN-dimensional FRFT.8

Definition 1. TheN-dimensional FRFT of a function f (x) ∈ L2(ℝN ) with the rotational angle � is defined as

�[f ](u) = f̂�(u) =
⎧

⎪

⎨

⎪

⎩

∫ℝN f (x)K�(x,u)dx, � ≠ n�
f (u), � = 2n�
f (−u), � = (2n + 1)�

, n ∈ ℤ, (3)

where u = (u1, u2,⋯ , uN ) and the kernel is

K�(x,u) = (1 − i cot �)
N
2 e�i(‖x‖2+‖u‖2) cot �−2�ixuT csc � . (4)

The corresponding inverse formula is given by f (x) = −�
[

f̂�
]

(x).

As it is seen, the N-dimensional FRFT of � =
(

2n + 1
2

)

�, n ∈ ℤ reduces to the N-dimensional FT. The fractional part of
FRFT comes from the fact that another degree of freedom was added to the FT by introducing the parameter � which can be
� ≠

(

n + 1
2

)

�, n�, n ∈ ℤ. It is such a parameter that enables the FRFT to have flexibility to be used in scenarios that the FT
is not applicable (non-stationary signal and image processing, time-frequency analysis, optical system analysis, etc.). There has
been particular interest in FRFT’s uncertainty principle since it can provide theoretical basis for many realistic applications,
such as the effective bandwidth estimation and the quadratic phase system analysis. To be specific, the uncertainty principle in
the FRFT domain was first investigated by Ozaktas et al..7 Shinde et al.9 proposed a stronger result on the uncertainty product
in two FRFT domains for real functions, and then Dang et al.10 extended this result to complex functions. In addition, Xu et
al.11,12 discussed some extensions of Heisenberg’s uncertainty principle on the FRFT, including the FRFT-based logarithmic,
entropic and Rényi entropic uncertainty principles. All of these results are dealing with single variable functions. However, in
the literature, there are only a few scattered results on the high-dimensional case, see3,13 for related results. The one proposed
in13 for theN-dimensional FRFT is essentially the classicalN-dimensional Heisenberg’s uncertainty principle, and therefore,
its lower bound is not the tightest. As for the latest one given by3 for two N-dimensional FRFTs, its lower bound works only
for real functions. The main contribution of this paper is to introduce a sharper lower bound on the uncertainty product for
multivariable complex functions in twoN-dimensional FRFT domains.
We shall also need necessary background and notation on moments and spreads in time, frequency and FRFT domains, and

the covariance and absolute covariance in order to give our main result.

Definition 2. Let f̂ (w) be theN-dimensional FT of f (x) = �(x)e2�i'(x) ∈ L2(ℝN ), and f̂�(u) be theN-dimensional FRFT of
f (x) with the rotational angle �. Assume that for any 1 ≤ k ≤ N the classical partial derivative )'

)xk
exists at any point x ∈ ℝN ,

and xf (x),wf̂ (w) ∈ L2(ℝN ). It is then well-defined that
(i) The spread in the time domain:

▵ x2 = ∫
ℝN

‖

‖

‖

x − x0‖‖
‖

2
|f (x)|2dx, (5)

where the moment vector in the time domain is

x0 = (x01, x
0
2,⋯ , x0N ), x

0
k = ∫

ℝN

xk|f (x)|2dx∕‖f‖22. (6)

(ii) The spread in the frequency domain:

▵ w2 = ∫
ℝN

‖

‖

‖

w − w0‖
‖

‖

2
|

|

|

f̂ (w)||
|

2
dw, (7)

where the moment vector in the frequency domain is

w0 = (!0
1, !

0
2,⋯ , !0

N ), !
0
k = ∫

ℝN

!k
|

|

|

f̂ (w)||
|

2
dw∕‖f‖22. (8)
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(iii) The spread in the FRFT domain:
▵ u2� = ∫

ℝN

‖

‖

‖

u − u�,0‖‖
‖

2
|

|

|

f̂�(u)
|

|

|

2
du, (9)

where the moment vector in the FRFT domain is

u�,0 = (u�,01 , u�,02 ,⋯ , u�,0N ), u�,0k = ∫
ℝN

uk
|

|

|

f̂�(u)
|

|

|

2
du∕‖f‖22. (10)

(iv) The covariance and absolute covariance:

Covx,w = ∫
ℝN

(

x − x0
) (

∇x' − w0)T �2(x)dx (11)

and
COVx,w = ∫

ℝN

|

|

|

x − x0||
|

|

|

|

∇x' − w0|
|

|

T
�2(x)dx, (12)

where ∇x' =
(

)'
)x1
, )'
)x2
,⋯ , )'

)xN

)

denotes the gradient vector of '. Here an absolute operator is applied to vectors and we mean
an element-wise absolute value. It should also be noted that there is an inequality COVx,w ≥ Covx,w.

Our main result is the following. This result presents an uncertainty principle associated with complex functions’ uncertainty
product in twoN-dimensional FRFT domains.

Theorem 1. Let f̂ (w) be the N-dimensional FT of f (x) = �(x)e2�i'(x) ∈ L2(ℝN ), and f̂�(u), f̂�(u) be the N-dimensional
FRFTs of f (x) with rotational angles �, � respectively. Assume that for any 1 ≤ k ≤ N the classical partial derivatives
)�
)xk
, )'
)xk
, )f
)xk

exist at any point x ∈ ℝN , and xf (x),wf̂ (w) ∈ L2(ℝN ). Then,

▵ u2� ▵ u2� ≥
(

N2

16�2
‖f‖42 + COV2

x,w − Cov2x,w

)

sin2(� − �)

+
[

cos � cos � ▵ x2 + sin � sin � ▵ w2 + sin(� + �)Covx,w
]2 , (13)

where ▵ x2,▵ w2,▵ u2� ,▵ u2� ,Covx,w,COVx,w are defined as shown in Definition 2. If ∇x' is continuous and � is non-zero
almost everywhere, then the equality holds if and only if f (x) is a chirp function with the form

f (x) = e−
1
2� ‖

x−x0
‖

2+de
2�i

[

1
2"

N
∑

m=1
�(xm)(xm−x0m)

2+w0xT+d�(x1),�(x2),⋯,�(xN )

]

(14)

for some �, " > 0 and d, d�(x1),�(x2),⋯,�(xN ) ∈ ℝ, where

�(xm) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, m ∈ kj1
−1, m ∈ kj2
sgn

(

xm − x0m
)

, m ∈ kj3
−sgn

(

xm − x0m
)

, m ∈ kj4

, (15)

and where
kj1 =

{

k11, k12,⋯ , k1j1
}

=
{

1 ≤ k ≤ N|

)'
)xk

= 1
"
(

xk − x0k
)

+ !0
k

}

, (16)

kj2 =
{

k21, k22,⋯ , k2j2
}

=
{

1 ≤ k ≤ N|

)'
)xk

= −1
"
(

xk − x0k
)

+ !0
k

}

, (17)

kj3 =
{

k31, k32,⋯ , k3j3
}

=

{

1 ≤ k ≤ N|

)'
)xk

=

{

1
"

(

xk − x0k
)

+ !0
k, xk ≥ x0k

− 1
"

(

xk − x0k
)

+ !0
k, xk < x

0
k

}

(18)

and

kj4 =
{

k41, k42,⋯ , k4j4
}

=

{

1 ≤ k ≤ N|

)'
)xk

=

{

− 1
"

(

xk − x0k
)

+ !0
k, xk ≥ x0k

1
"

(

xk − x0k
)

+ !0
k, xk < x0k

}

(19)

satisfying
4
⋃

p=1
kjp = {1, 2,⋯ , N} and kjp

⋂

kjq = ∅ for p ≠ q.
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Inequality (13) of Theorem 1 gives a lower bound on the uncertainty product for multivariable complex functions in twoN-
dimensional FRFT domains. As it is seen, this result includes particular cases some well-known uncertainty inequalities, such
as:
(i) ForN = 1, it becomes the uncertainty inequality for one-dimensional FRFT introduced by Dang et al..10
(ii) For � = m�,m ∈ ℤ, it becomes

▵ x2 ▵ u2� ≥
(

N2

16�2
‖f‖42 + COV2

x,w − Cov2x,w

)

sin2 � +
[

cos � ▵ x2 + sin �Covx,w
]2 , (20)

which improves the uncertainty inequality for theN-dimensional FRFT proposed in13, i.e.,

▵ x2 ▵ u2� ≥
N2

16�2
‖f‖42 sin

2 � (21)

through providing a tighter lower bound.
(iii) For Covx,w = 0 (e.g., real functions satisfying ∇x' ≡ 0), it becomes

▵ u2� ▵ u2� ≥
(

N2

16�2
‖f‖42 + COV2

x,w

)

sin2(� − �) +
[

cos � cos � ▵ x2 + sin � sin � ▵ w2]2 , (22)

which improves the uncertainty inequality for twoN-dimensional FRFTs given by3, i.e.,

▵ u2� ▵ u2� ≥
N2

16�2
‖f‖42 sin

2(� − �) +
[

cos � cos � ▵ x2 + sin � sin � ▵ w2]2 (23)

through providing a tighter lower bound.
Moreover, Theorem 1 of � = n�, � =

(

m + 1
2

)

�, n, m ∈ ℤ reduces to an uncertainty principle for N-dimensional FT given
by the following corollary.

Corollary 1. Let f̂ (w) be the N-dimensional FT of f (x) = �(x)e2�i'(x) ∈ L2(ℝN ). Assume that for any 1 ≤ k ≤ N the
classical partial derivatives )�

)xk
, )'
)xk
, )f
)xk

exist at any point x ∈ ℝN , and xf (x),wf̂ (w) ∈ L2(ℝN ). Then,

∫
ℝN

‖

‖

‖

x − x0‖‖
‖

2
|f (x)|2dx ∫

ℝN

‖

‖

‖

w − w0‖
‖

‖

2
|

|

|

f̂ (w)||
|

2
dw ≥ N2

16�2
‖f‖42 +

⎡

⎢

⎢

⎣

∫
ℝN

|

|

|

x − x0||
|

|

|

|

∇x' − w0|
|

|

T
�2(x)dx

⎤

⎥

⎥

⎦

2

, (24)

where x0,w0 are the moment vectors in time and frequency domains respectively, and ∇x' is the gradient vector of '. If ∇x' is
continuous and � is non-zero almost everywhere, then the equality holds if and only if f (x) is a chirp function with the form (14).

Inequality (24) of Corollary 1 gives a lower bound on the product of a multivariable complex function’s spread in time domain
and that in frequency domain. In reality, the proof of Theorem 1 requires a main preparatory lemma proving that the moment
vectors x0,w0 found in inequality (24) can be replaced by arbitrary a,b ∈ ℝN . Thus this lemma can be stated as follows.

Lemma 1. Let f̂ (w) be the N-dimensional FT of f (x) = �(x)e2�i'(x) ∈ L2(ℝN ), and a = (a1, a2,⋯ , aN ), b =
(b1, b2,⋯ , bN ) ∈ ℝN . Assume that for any 1 ≤ k ≤ N the classical partial derivatives )�

)xk
, )'
)xk
, )f
)xk

exist at any point x ∈ ℝN ,
and xf (x),wf̂ (w) ∈ L2(ℝN ). Then,

∫
ℝN

‖x − a‖2 |f (x)|2dx ∫
ℝN

‖w − b‖2 ||
|

f̂ (w)||
|

2
dw ≥ N2

16�2
‖f‖42 +

⎡

⎢

⎢

⎣

∫
ℝN

|x − a| |
|

∇x' − b|
|

T �2(x)dx
⎤

⎥

⎥

⎦

2

, (25)

where ∇x' is the gradient vector of '. If ∇x' is continuous and � is non-zero almost everywhere, then the equality holds if and
only if f (x) is a chirp function with the form

f (x) = e−
1
2�
‖x−a‖2+de

2�i

[

1
2"

N
∑

m=1
�(xm)(xm−am)2+bxT+d�(x1),�(x2),⋯,�(xN )

]

(26)
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for some �, " > 0 and d, d�(x1),�(x2),⋯,�(xN ) ∈ ℝ, where

�(xm) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, m ∈ kj1
−1, m ∈ kj2
sgn

(

xm − am
)

, m ∈ kj3
−sgn

(

xm − am
)

, m ∈ kj4

, (27)

and where
kj1 =

{

k11, k12,⋯ , k1j1
}

=
{

1 ≤ k ≤ N|

)'
)xk

= 1
"
(

xk − ak
)

+ bk

}

, (28)

kj2 =
{

k21, k22,⋯ , k2j2
}

=
{

1 ≤ k ≤ N|

)'
)xk

= −1
"
(

xk − ak
)

+ bk

}

, (29)

kj3 =
{

k31, k32,⋯ , k3j3
}

=

{

1 ≤ k ≤ N|

)'
)xk

=

{

1
"

(

xk − ak
)

+ bk, xk ≥ ak
− 1
"

(

xk − ak
)

+ bk, xk < ak

}

(30)

and

kj4 =
{

k41, k42,⋯ , k4j4
}

=

{

1 ≤ k ≤ N|

)'
)xk

=

{

− 1
"

(

xk − ak
)

+ bk, xk ≥ ak
1
"

(

xk − ak
)

+ bk, xk < ak

}

(31)

satisfying
4
⋃

p=1
kjp = {1, 2,⋯ , N} and kjp

⋂

kjq = ∅ for p ≠ q.

Inequality (25) of Lemma 1 is a sharper N-dimensional Heisenberg’s uncertainty inequality which improves the classical
result (1) through providing a tighter lower bound.
The remainder of this paper is structured as follows. Section 2 contains the proof of our main preparatory result, Lemma 1.

Section 3 contains the proof of our main result, Theorem 1. To be specific, Section 3.1 proves an important relation between
spreads of a multivariable complex function in time, frequency and FRFT domains, and Section 3.2 combines Lemma 1 with
this relation to prove Theorem 1. Section 4 presents example and experimental results. Potential applications are in Section 5,
and the conclusions follow in Section 6.
In the sequel, we denote by ℝ the set of real numbers, by ℝN the Cartesian product of N real number collections, by ℤ the

set of integers, by T the transpose operator, and by — the complex conjugate operator. The 2-norm operator for vectors and
L2-norm operator for functions denote ‖⋅‖ =

√

(⋅)(⋅)T and ‖⋅‖2 =
(

∫ℝN | ⋅ (x)|2dx
)

1
2 , respectively. The function has a complex

form f (x) = �(x)e2�i'(x), unless we emphasize that it is real-valued. The notation ▵ x2, ▵ w2 and ▵ u2� ,▵ u2� denote spreads in
time, frequency and FRFT domains respectively, the notation Covx,w and COVx,w denote the covariance and absolute covariance
respectively, the notation x0, w0 and u�,0,u�,0 denote moment vectors in time, frequency and FRFT domains respectively, and
the notation∇x' denotes the gradient vector of'. When an absolute operator is applied to vectors and we mean an element-wise
absolute value.

2 PROOF OF THE MAIN LEMMA

This section gives the proof of our main preparatory result, Lemma 1 which is crucially needed in the proof of our main theorem.
Lemma 1 presents a stronger Heisenberg’s uncertainty principle for N-dimensional FT, as we discussed in Section 1.1.

The proof of such an N-dimensional FT type of uncertainty principle involving the absolute covariance requires an additional
preparatory result, Lemma 2. We first state and prove this preparatory result, and then use it to prove Lemma 1 at the end of this
section.
Let us begin proofs by collecting Parseval’s relations inN-dimensional FT and FRFT domains.6,7
(Parseval’s Relation.) Let f̂ (w), ĝ(w) be the N-dimensional FTs of f (x), g(x) ∈ L2(ℝN ) respectively, and f̂�(u), ĝ�(u) be

theN-dimensional FRFTs of f (x), g(x) with the rotational angle � respectively, then

∫
ℝN

|f (x)|2dx = ∫
ℝN

|

|

|

f̂ (w)||
|

2
dw = ∫

ℝN

|

|

|

f̂�(u)
|

|

|

2
du (32)
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and

∫
ℝN

f (x)g(x)dx = ∫
ℝN

f̂ (w)ĝ(w)dw = ∫
ℝN

f̂�(u)ĝ�(u)du. (33)

Here is the additional preparatory lemma.

Lemma 2. Let f̂ (w) be the N-dimensional FT of f (x) = �(x)e2�i'(x) ∈ L2(ℝN ), b ∈ ℝ, and 1 ≤ k ≤ N . Assume that the
classical partial derivatives )�

)xk
, )'
)xk
, )f
)xk

exist at any point x ∈ ℝN , and !kf̂ (w) ∈ L2(ℝN ). Then,

∫
ℝN

(!k − b)2
|

|

|

f̂ (w)||
|

2
dw = 1

4�2 ∫
ℝN

(

)�
)xk

)2

dx + ∫
ℝN

(

)'
)xk

− b
)2

�2(x)dx. (34)

Proof. Using (32) of Parseval’s relation inN-dimensional FT domain yields

∫
ℝN

(!k − b)2
|

|

|

f̂ (w)||
|

2
dw = ∫

ℝN

!2
k
|

|

|

f̂ (w)||
|

2
dw + b2 ∫

ℝN

|f (x)|2dx − 2b∫
ℝN

!k
|

|

|

f̂ (w)||
|

2
dw. (35)

Since functions 1
2�i

)f
)xk

and !kf̂ (w) compose an N-dimensional FT pair, using (32) and (33) of Parseval’s relation in
N-dimensional FT domain, the above equation becomes

∫
ℝN

(!k − b)2
|

|

|

f̂ (w)||
|

2
dw = ∫

ℝN

|

|

|

|

1
2�i

)f
)xk

|

|

|

|

2
dx + b2 ∫

ℝN

|f (x)|2dx − 2b∫
ℝN

1
2�i

)f
)xk

f (x)dx

= 1
4�2 ∫

ℝN

[

(

)�
)xk

)2

+ 4�2
(

)'
)xk

)2

�2(x)
]

dx + b2 ∫
ℝN

�2(x)dx

+bi
� ∫

ℝN

)�
)xk

�(x)dx − 2b∫
ℝN

)'
)xk

�2(x)dx

= 1
4�2 ∫

ℝN

(

)�
)xk

)2

dx + ∫
ℝN

(

)'
)xk

− b
)2

�2(x)dx, (36)

which gives the required result (34).

We are now ready to prove Lemma 1.

Proof of Lemma 1. It follows from (34) of Lemma 2 that for any a, b ∈ ℝ

∫
ℝN

(xk − a)2|f (x)|2dx ∫
ℝN

(!k − b)2
|

|

|

f̂ (w)||
|

2
dw = 1

4�2
I1 + I2, (37)

where

I1 = ∫
ℝN

(xk − a)2|f (x)|2dx ∫
ℝN

(

)�
)xk

)2

dx (38)

and

I2 = ∫
ℝN

(xk − a)2|f (x)|2dx ∫
ℝN

(

)'
)xk

− b
)2

�2(x)dx. (39)

Because of the smoothness and integrability assumptions of �2(x) and xk�2(x), using the Cauchy-Schwarz inequality14 yields

I1 ≥
⎡

⎢

⎢

⎣

∫
ℝN

(xk − a)�(x)
)�
)xk

dx
⎤

⎥

⎥

⎦

2

=
⎡

⎢

⎢

⎣

1
2 ∫
ℝN

|f (x)|2dx
⎤

⎥

⎥

⎦

2

=
‖f‖42
4

(40)

and

I2 ≥
⎡

⎢

⎢

⎣

∫
ℝN

|

|

|

|

|

(xk − a)
(

)'
)xk

− b
)

|

|

|

|

|

�2(x)dx
⎤

⎥

⎥

⎦

2

. (41)
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With (37), (40) and (41), there is

∫
ℝN

(xk − a)2|f (x)|2dx ∫
ℝN

(!k − b)2
|

|

|

f̂ (w)||
|

2
dw ≥

‖f‖42
16�2

+
⎡

⎢

⎢

⎣

∫
ℝN

|

|

|

|

|

(xk − a)
(

)'
)xk

− b
)

|

|

|

|

|

�2(x)dx
⎤

⎥

⎥

⎦

2

. (42)

It follows from the Cauchy-Schwarz inequality14,15 that for any a = (a1, a2,⋯ , aN ),b = (b1, b2,⋯ , bN ) ∈ ℝN

∫
ℝN

‖x − a‖2 |f (x)|2dx ∫
ℝN

‖w − b‖2 ||
|

f̂ (w)||
|

2
dw =

N
∑

k=1
∫
ℝN

(

xk − ak
)2
|f (x)|2dx

N
∑

k=1
∫
ℝN

(

!k − bk
)2
|

|

|

f̂ (w)||
|

2
dw

≥
⎡

⎢

⎢

⎢

⎣

N
∑

k=1

⎛

⎜

⎜

⎝

∫
ℝN

(

xk − ak
)2
|f (x)|2dx ∫

ℝN

(

!k − bk
)2
|

|

|

f̂ (w)||
|

2
dw

⎞

⎟

⎟

⎠

1
2 ⎤

⎥

⎥

⎥

⎦

2

. (43)

Using (42) yields

∫
ℝN

‖x − a‖2 |f (x)|2dx ∫
ℝN

‖w − b‖2 ||
|

f̂ (w)||
|

2
dw ≥

⎡

⎢

⎢

⎢

⎢

⎣

N
∑

k=1

⎛

⎜

⎜

⎜

⎝

‖f‖42
16�2

+
⎛

⎜

⎜

⎝

∫
ℝN

|

|

|

|

|

(

xk − ak
)

(

)'
)xk

− bk

)

|

|

|

|

|

�2(x)dx
⎞

⎟

⎟

⎠

2
⎞

⎟

⎟

⎟

⎠

1
2 ⎤

⎥

⎥

⎥

⎥

⎦

2

=
‖f‖42
16�2

⎡

⎢

⎢

⎢

⎢

⎣

N
∑

k=1

⎛

⎜

⎜

⎜

⎝

1 +
⎛

⎜

⎜

⎝

4�
‖f‖22 ∫ℝN

|

|

|

|

|

(

xk − ak
)

(

)'
)xk

− bk

)

|

|

|

|

|

�2(x)dx
⎞

⎟

⎟

⎠

2
⎞

⎟

⎟

⎟

⎠

1
2 ⎤

⎥

⎥

⎥

⎥

⎦

2

≥
‖f‖42
16�2

⎡

⎢

⎢

⎢

⎣

N2 +
⎛

⎜

⎜

⎝

N
∑

k=1

4�
‖f‖22 ∫ℝN

|

|

|

|

|

(

xk − ak
)

(

)'
)xk

− bk

)

|

|

|

|

|

�2(x)dx
⎞

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎦

= N2

16�2
‖f‖42 +

⎡

⎢

⎢

⎣

∫
ℝN

|x − a| |
|

∇x' − b|
|

T �2(x)dx
⎤

⎥

⎥

⎦

2

, (44)

which gives the required result (25).
Next we deduce the conditions under which the equality holds in (25).
The inequality (40) brings in conditions obeyed by the amplitude function �(x). The equality in (40) is attained if and only if

there exists a positive number � such that
(xk − a)�(x) = � )�

)xk
(45)

or
−(xk − a)�(x) = � )�

)xk
. (46)

The first case shall not happen because it could result in a function �(x) ∉ L2(ℝN ).16 Then, −
(

xk − ak
)

�(x) = �k
)�
)xk

holds for
all 1 ≤ k ≤ N as the first equality in (44) holds. Solving the system of partial differential equations gives

�(x) = e
N
∑

k=1
− 1

2�k
(xk−ak)2+d . (47)

The inequality (41) brings in conditions obeyed by the phase function '(x). The equality in (41) is attained if and only if there
exists a positive number " such that

|

|

(xk − a)�(x)|| = "
|

|

|

|

|

(

)'
)xk

− b
)

�(x)
|

|

|

|

|

, (48)

or equivalently,
|

|

xk − a|| = "
|

|

|

|

)'
)xk

− b
|

|

|

|

(49)
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because of the almost everywhere non-zero of � and the continuity assumption of )'
)xk

. Then, |
|

xk − ak|| = "k
|

|

|

)'
)xk

− bk
|

|

|

holds for
all 1 ≤ k ≤ N as the first equality in (44) holds. As it is seen, there can be altogether four cases:16

)'
)xk

= 1
"k

(

xk − ak
)

+ bk, (50)

)'
)xk

= − 1
"k

(

xk − ak
)

+ bk, (51)

)'
)xk

=

{ 1
"k

(

xk − ak
)

+ bk, xk ≥ ak
− 1
"k

(

xk − ak
)

+ bk, xk < ak
(52)

and

)'
)xk

=

{

− 1
"k

(

xk − ak
)

+ bk, xk ≥ ak
1
"k

(

xk − ak
)

+ bk, xk < ak
, (53)

from which the set of {1, 2,⋯ , N} can be partitioned into the following four components:

kj1 =
{

k11, k12,⋯ , k1j1
}

=
{

1 ≤ k ≤ N|

)'
)xk

= 1
"k

(

xk − ak
)

+ bk

}

, (54)

kj2 =
{

k21, k22,⋯ , k2j2
}

=
{

1 ≤ k ≤ N|

)'
)xk

= − 1
"k

(

xk − ak
)

+ bk

}

, (55)

kj3 =
{

k31, k32,⋯ , k3j3
}

=

{

1 ≤ k ≤ N|

)'
)xk

=

{ 1
"k

(

xk − ak
)

+ bk, xk ≥ ak
− 1
"k

(

xk − ak
)

+ bk, xk < ak

}

(56)

and

kj4 =
{

k41, k42,⋯ , k4j4
}

=

{

1 ≤ k ≤ N|

)'
)xk

=

{

− 1
"k

(

xk − ak
)

+ bk, xk ≥ ak
1
"k

(

xk − ak
)

+ bk, xk < ak

}

. (57)

Solving the system of partial differential equations yields

'(x) =
N
∑

m=1

1
2"m

�(xm)
(

xm − am
)2 + bxT + d�(x1),�(x2),⋯,�(xN ), (58)

where

�(xm) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, m ∈ kj1
−1, m ∈ kj2
sgn

(

xm − am
)

, m ∈ kj3
−sgn

(

xm − am
)

, m ∈ kj4

. (59)

The inequality (43) brings in conditions obeyed by the parameters �k and "k, k = 1, 2,⋯ , N . The equality in (43) is attained
if and only if the ratio

∫ℝN

(

xk − ak
)2
|f (x)|2dx

∫ℝN

(

!k − bk
)2
|

|

|

f̂ (w)||
|

2
dw

(60)

is a constant independent of k. Using (34), (47) and (58), it follows that
1

4�2�2k
+ 1
"2k

= 1
4�2�2l

+ 1
"2l

for k, l = 1, 2,⋯ , N. (61)

The second inequality in (44) brings in conditions obeyed by the parameters �k and "k, k = 1, 2,⋯ , N . It follows from (47)
and (58) that

‖f‖22 = e2d
N
∏

k=1
(��k)

1
2 (62)
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and

∫
ℝN

|

|

|

|

|

(

xk − ak
)

(

)'
)xk

− bk

)

|

|

|

|

|

�2(x)dx = e2d
�k
2"k

N
∏

k=1
(��k)

1
2 , (63)

and then
4�
‖f‖22 ∫ℝN

|

|

|

|

|

(

xk − ak
)

(

)'
)xk

− bk

)

|

|

|

|

|

�2(x)dx = 2�
�k
"k
. (64)

Thus, the second equality in (44) is attained if and only if the ratio
[

1 +
(

2� �k
"k

)2
]

1
2

− 1

[

1 +
(

2� �k
"k

)2
]

1
2

+ 1

(65)

is a constant independent of k. It follows that
�k
"k

=
�l
"l

for k, l = 1, 2,⋯ , N. (66)

With (61) and (66), it concludes that �k and "k are constants independent of k, and denoted respectively by

�k = �, k = 1, 2,⋯ , N (67)

and
"k = ", k = 1, 2,⋯ , N. (68)

Then, the amplitude function (47) and the phase function (58) turn into

�(x) = e−
1
2�
‖x−a‖2+d (69)

and

'(x) = 1
2"

N
∑

m=1
�(xm)

(

xm − am
)2 + bxT + d�(x1),�(x2),⋯,�(xN ) (70)

respectively, giving rise to the required result (26).

3 PROOF OF THE MAIN THEOREM

This section gives the proof of our main result, Theorem 1. In Section 3.1, we prove a technical lemma on the relationship
between spreads of multivariable complex functions in time, frequency and FRFT domains. Then, in Section 3.2 we combine
this lemma with Lemma 1 to prove Theorem 1.

3.1 Relation between a multivariable complex function’s spreads in time, frequency and FRFT
domains
The spreads of a multivariable function f (x) ∈ L2(ℝN ) in time, frequency and FRFT domains stand for its duration, bandwidth
and FRFT-bandwidth, which are defined respectively as shown in (5), (7) and (9) of Definition 2. For a specific complex function
f (x) = �(x)e2�i'(x), the relation between these spreads is given below.

Lemma 3. Let f̂ (w) be the N-dimensional FT of f (x) = �(x)e2�i'(x) ∈ L2(ℝN ), and f̂�(u) be the N-dimensional FRFT of
f (x) with the rotational angle �. Assume that for any 1 ≤ k ≤ N the classical partial derivatives )�

)xk
, )'
)xk
, )f
)xk

exist at any point
x ∈ ℝN , and xf (x),wf̂ (w) ∈ L2(ℝN ). Then,

▵ u2� = cos2 � ▵ x2 + sin2 � ▵ w2 + 2 sin � cos �Covx,w, (71)

where ▵ x2,▵ w2,▵ u2� ,Covx,w are defined as shown in Definition 2.
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Proof. It follows from the definition ofN-dimensional FRFT in the case of � = n�, n ∈ ℤ that f̂�(u) = f (u) or f̂�(u) = f (−u),
and then

▵ u2� = ∫
ℝN

‖

‖

‖

u − u�,0‖‖
‖

2
|

|

|

f̂�(u)
|

|

|

2
du = ∫

ℝN

‖

‖

‖

x − x0‖‖
‖

2
|f (x)|2dx =▵ x2, (72)

which gives the required result (71) of � = n�, n ∈ ℤ. As for the case of � ≠ n�, n ∈ ℤ, using (32) of Parseval’s relation in
N-dimensional FRFT domain gives for any 1 ≤ k ≤ N

∫
ℝN

(

uk − u
�,0
k

)2
|

|

|

f̂�(u)
|

|

|

2
du = ∫

ℝN

u2k
|

|

|

f̂�(u)
|

|

|

2
du −

(

u�,0k
)2

‖f‖22. (73)

In view of theN-dimensional FRFT’s inverse formula, there is
sin �
2�i

)f
)xk

+ cos �xkf (x) = ∫
ℝN

ukf̂�(u)K−�(u, x)du, (74)

which indicates that functions sin �
2�i

)f
)xk

+ cos �xkf (x) and ukf̂�(u) compose an N-dimensional FRFT pair. From (32) and (33)
of Parseval’s relation inN-dimensional FRFT domain, (73) becomes

∫
ℝN

(

uk − u
�,0
k

)2
|

|

|

f̂�(u)
|

|

|

2
du = ∫

ℝN

|

|

|

|

sin �
2�i

)f
)xk

+ cos �xkf (x)
|

|

|

|

2
dx −

⎡

⎢

⎢

⎣

∫
ℝN

(

sin �
2�i

)f
)xk

+ cos �xkf (x)
)

f (x)dx
⎤

⎥

⎥

⎦

2

∕‖f‖22. (75)

Because of (36), the relations

∫
ℝN

!2
k
|

|

|

f̂ (w)||
|

2
dw = 1

4�2 ∫
ℝN

[

(

)�
)xk

)2

+ 4�2
(

)'
)xk

)2

�2(x)
]

dx (76)

and

∫
ℝN

!k
|

|

|

f̂ (w)||
|

2
dw = ∫

ℝN

)'
)xk

�2(x)dx (77)

hold, resulting in

∫
ℝN

|

|

|

|

sin �
2�i

)f
)xk

+ cos �xkf (x)
|

|

|

|

2
dx = cos2 � ∫

ℝN

x2k|f (x)|
2dx + sin2 �

4�2 ∫
ℝN

[

(

)�
)xk

)2

+ 4�2
(

)'
)xk

)2

�2(x)
]

dx

+2 sin � cos � ∫
ℝN

xk
)'
)xk

�2(x)dx

= cos2 � ∫
ℝN

x2k|f (x)|
2dx + sin2 � ∫

ℝN

!2
k
|

|

|

f̂ (w)||
|

2
dw

+2 sin � cos � ∫
ℝN

xk
)'
)xk

�2(x)dx (78)

and

∫
ℝN

(

sin �
2�i

)f
)xk

+ cos �xkf (x)
)

f (x)dx = cos � ∫
ℝN

xk|f (x)|2dx + sin � ∫
ℝN

)'
)xk

�2(x)dx

= cos � ∫
ℝN

xk|f (x)|2dx + sin � ∫
ℝN

!k
|

|

|

f̂ (w)||
|

2
dw

=
(

cos �x0k + sin �!0
k

)

‖f‖22. (79)

Substituting into (75), and using (32) of Parseval’s relation inN-dimensional FT domain and (77) yields

∫
ℝN

(

uk − u
�,0
k

)2
|

|

|

f̂�(u)
|

|

|

2
du = cos2 � ∫

ℝN

(

xk − x0k
)2
|f (x)|2dx + sin2 � ∫

ℝN

(

!k − !0
k

)2
|

|

|

f̂ (w)||
|

2
dw

+2 sin � cos � ∫
ℝN

(

xk − x0k
)

(

)'
)xk

− !0
k

)

�2(x)dx, (80)
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and then

▵ u2� = ∫
ℝN

‖

‖

‖

u − u�,0‖‖
‖

2
|

|

|

f̂�(u)
|

|

|

2
du

= cos2 � ∫
ℝN

‖

‖

‖

x − x0‖‖
‖

2
|f (x)|2dx + sin2 � ∫

ℝN

‖

‖

‖

w − w0‖
‖

‖

2
|

|

|

f̂ (w)||
|

2
dw + 2 sin � cos � ∫

ℝN

(

x − x0
) (

∇x' − w0)T �2(x)dx

= cos2 � ▵ x2 + sin2 � ▵ w2 + 2 sin � cos �Covx,w. (81)

Combining (72) and (81) gives the required result (71).

3.2 Combining Lemma 1 with the preparatory result: proof of the main theorem
In this section, we combine Lemma 3 with Lemma 1 to prove Theorem 1.

Proof of Theorem 1. Using (71) of Lemma 3 gives

▵ u2� ▵ u2� =
(

cos2 � ▵ x2 + sin2 � ▵ w2 + 2 sin � cos �Covx,w
) (

cos2 � ▵ x2 + sin2 � ▵ w2 + 2 sin � cos �Covx,w
)

=
(

▵ x2 ▵ w2 − Cov2x,w
)

sin2(� − �) +
[

cos � cos � ▵ x2 + sin � sin � ▵ w2 + sin(� + �)Covx,w
]2 . (82)

Setting a = x0,b = w0 in (25) of Lemma 1, it follows that (24) holds, i.e.,

▵ x2 ▵ w2 ≥ N2

16�2
‖f‖42 + COV2

x,w. (83)

Combining (82) with (83) yields

▵ u2� ▵ u2� ≥
(

N2

16�2
‖f‖42 + COV2

x,w − Cov2x,w

)

sin2(� − �)

+
[

cos � cos � ▵ x2 + sin � sin � ▵ w2 + sin(� + �)Covx,w
]2 , (84)

which gives the required result (13). As for the condition that reaches the equality relation, it is none other than the one giving
rise to the equality in (83) (i.e., (24)). Thus the chirp function (26) of a = x0,b = w0 gives the required result (14).

4 EXAMPLE AND NUMERICAL SIMULATION

In this section, we perform a two-dimensional example and simulation to illustrate the correctness of the derived results.
TakingN = 2 for example, the two-dimensional complex function is chosen as

f (x1, x2) = e
2
∑

k=1
− 1

2�k
(xk−x0k)

2+d
e
2�i

[

1
2"1
(x1−x01)

2− 1
2"2
(x2−x02)

2+
2
∑

m=1
!0
mxm+d1

]

(85)

that is a function of the amplitude form (47) and the phase form (58), where �k, "k > 0, k = 1, 2, d, d1 ∈ ℝ, and e2d
2
∏

k=1
(��k)

1
2 =

1. Then, it calculates that

‖f‖22 = ∫
ℝ

∫
ℝ

e2de
2
∑

k=1
− 1
�k
(xk−x0k)

2

dx1dx2 = e2d
2
∏

k=1
∫
ℝ

e−
1
�k
x2kdxk = e2d

2
∏

k=1
(��k)

1
2 = 1, (86)

▵ x2 = e2d ∫
ℝ

∫
ℝ

(

x1 − x01
)2 e

2
∑

k=1
− 1
�k
(xk−x0k)

2

dx1dx2 + e2d ∫
ℝ

∫
ℝ

(

x2 − x02
)2 e

2
∑

k=1
− 1
�k
(xk−x0k)

2

dx1dx2

= e2d ∫
ℝ

x21e
− 1
�1
x21dx1 ∫

ℝ

e−
1
�2
x22dx2 + e2d ∫

ℝ

x22e
− 1
�2
x22dx2 ∫

ℝ

e−
1
�1
x21dx1

=
�1 + �2

2
, (87)
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▵ w2 =
2
∑

k=1
∫
ℝ

∫
ℝ

(

!k − !0
k

)2
|

|

|

f̂ (w)||
|

2
dw

=
2
∑

k=1

⎡

⎢

⎢

⎣

1
4�2 ∫

ℝ
∫
ℝ

|

|

|

|

)f
)xk

|

|

|

|

2
dx1dx2 −

(

!0
k

)2
⎤

⎥

⎥

⎦

= 1
4�2 ∫

ℝ
∫
ℝ

[

1
�21

(

x1 − x01
)2 + 4�2

(

1
"1

(

x1 − x01
)

+ !0
1

)2
]

e
2
∑

k=1
− 1
�k
(xk−x0k)

2+2d
dx1dx2 −

(

!0
1

)2

+ 1
4�2 ∫

ℝ
∫
ℝ

[

1
�22

(

x2 − x02
)2 + 4�2

(

− 1
"2

(

x2 − x02
)

+ !0
2

)2
]

e
2
∑

k=1
− 1
�k
(xk−x0k)

2+2d
dx1dx2 −

(

!0
2

)2

=
�1
2

(

1
4�2�21

+ 1
"21

)

+
�2
2

(

1
4�2�22

+ 1
"22

)

, (88)

Covx,w =
2
∑

k=1
∫
ℝ

∫
ℝ

(

xk − x0k
)

(

)'
)xk

− !0
k

)

e
2
∑

m=1
− 1
�m
(xm−x0m)

2+2d
dx1dx2

= 1
"1 ∫

ℝ
∫
ℝ

(

x1 − x01
)2 e

2
∑

m=1
− 1
�m
(xm−x0m)

2+2d
dx1dx2 −

1
"2 ∫

ℝ
∫
ℝ

(

x2 − x02
)2 e

2
∑

m=1
− 1
�m
(xm−x0m)

2+2d
dx1dx2

=
�1
2"1

−
�2
2"2

, (89)

COVx,w =
2
∑

k=1
∫
ℝ

∫
ℝ

|

|

|

xk − x0k
|

|

|

|

|

|

|

)'
)xk

− !0
k

|

|

|

|

e
2
∑

m=1
− 1
�m
(xm−x0m)

2+2d
dx1dx2

=
2
∑

k=1

1
"k ∫

ℝ
∫
ℝ

(

xk − x0k
)2 e

2
∑

m=1
− 1
�m
(xm−x0m)

2+2d
dx1dx2

=
�1
2"1

+
�2
2"2

, (90)

▵ u2� = cos2 � ▵ x2 + sin2 � ▵ w2 + 2 sin � cos �Covx,w

=
�1 + �2

2
cos2 � +

[

�1
2

(

1
4�2�21

+ 1
"21

)

+
�2
2

(

1
4�2�22

+ 1
"22

)]

sin2 � +
(

�1
"1

−
�2
"2

)

sin � cos �, (91)

▵ u2� = cos2 � ▵ x2 + sin2 � ▵ w2 + 2 sin � cos �Covx,w

=
�1 + �2

2
cos2 � +

[

�1
2

(

1
4�2�21

+ 1
"21

)

+
�2
2

(

1
4�2�22

+ 1
"22

)]

sin2 � +
(

�1
"1

−
�2
"2

)

sin � cos �. (92)

From (87) and (88), there is

▵ x2 ▵ w2 =
�1 + �2

2

[

�1
2

(

1
4�2�21

+ 1
"21

)

+
�2
2

(

1
4�2�22

+ 1
"22

)]

= 1
16�2

(

1
�1

+ 1
�2

)

(�1 + �2) +
�21
4"21

+
�22
4"22

+

(

1
4"21

+ 1
4"22

)

�1�2. (93)

Using the fact that the inequalities
�2
�1

+
�1
�2

≥ 2 (94)
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and
1
"21

+ 1
"22

≥ 2
"1"2

(95)

hold, it follows that

▵ x2 ▵ w2 ≥ 1
4�2

+
(

�1
2"1

+
�2
2"2

)2

. (96)

It therefore concludes from (90) that
▵ x2 ▵ w2 ≥ 1

4�2
+ COV2

x,w >
1

4�2
. (97)

From (87) and (91), there is

▵ x2 ▵ u2� =
(�1 + �2)2

4
cos2 � +

�1 + �2
2

[

�1
2

(

1
4�2�21

+ 1
"21

)

+
�2
2

(

1
4�2�22

+ 1
"22

)]

sin2 � +
�1 + �2

2

(

�1
"1

−
�2
"2

)

sin � cos �.

(98)
Using (96) gives

▵ x2 ▵ u2� ≥
(�1 + �2)2

4
cos2 � +

[

1
4�2

+
(

�1
2"1

+
�2
2"2

)2
]

sin2 � +
�1 + �2

2

(

�1
"1

−
�2
"2

)

sin � cos �

=

[

1
4�2

+
(

�1
2"1

+
�2
2"2

)2

−
(

�1
2"1

−
�2
2"2

)2
]

sin2 � +
[

�1 + �2
2

cos � +
(

�1
2"1

−
�2
2"2

)

sin �
]2

. (99)

It therefore concludes from (87), (89) and (90) that

▵ x2 ▵ u2� ≥
( 1
4�2

+ COV2
x,w − Cov2x,w

)

sin2 � +
[

cos � ▵ x2 + sin �Covx,w
]2 > 1

4�2
sin2 �. (100)

From (91) and (92), there is

▵ u2� ▵ u2�

=

[

�1 + �2
2

cos2 � +

(

�1
2

(

1
4�2�21

+ 1
"21

)

+
�2
2

(

1
4�2�22

+ 1
"22

))

sin2 � +
(

�1
"1

−
�2
"2

)

sin � cos �

]

×

[

�1 + �2
2

cos2 � +

(

�1
2

(

1
4�2�21

+ 1
"21

)

+
�2
2

(

1
4�2�22

+ 1
"22

))

sin2 � +
(

�1
"1

−
�2
"2

)

sin � cos �

]

=

[

�1 + �2
2

(

�1
2

(

1
4�2�21

+ 1
"21

)

+
�2
2

(

1
4�2�22

+ 1
"22

))

−
(

�1
2"1

−
�2
2"2

)2
]

sin2(� − �)

+

[

�1 + �2
2

cos � cos � +

(

�1
2

(

1
4�2�21

+ 1
"21

)

+
�2
2

(

1
4�2�22

+ 1
"22

))

sin � sin � +
(

�1
2"1

−
�2
2"2

)

sin(� + �)

]2

.(101)

Using (96) yields

▵ u2� ▵ u2�

≥

[

1
4�2

+
(

�1
2"1

+
�2
2"2

)2

−
(

�1
2"1

−
�2
2"2

)2
]

sin2(� − �)

+

[

�1 + �2
2

cos � cos � +

(

�1
2

(

1
4�2�21

+ 1
"21

)

+
�2
2

(

1
4�2�22

+ 1
"22

))

sin � sin � +
(

�1
2"1

−
�2
2"2

)

sin(� + �)

]2

.(102)

It therefore concludes from (87)–(90) that

▵ u2� ▵ u2� ≥
( 1
4�2

+ COV2
x,w − Cov2x,w

)

sin2(� − �) +
[

cos � cos � ▵ x2 + sin � sin � ▵ w2 + sin(� + �)Covx,w
]2 . (103)

Particularly, for �1
"1

= �2
"2
, i.e., Covx,w = 0, (103) becomes

▵ u2� ▵ u2� ≥
( 1
4�2

+ COV2
x,w

)

sin2(� − �) +
[

cos � cos � ▵ x2 + sin � sin � ▵ w2]2

> 1
4�2

sin2(� − �) +
[

cos � cos � ▵ x2 + sin � sin � ▵ w2]2 . (104)
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When �1 = �2 = � and "1 = "2 = ", the equality relations in (94) and (95) hold, implying that the equality in (96) is attained.
It therefore concludes that

▵ x2 ▵ w2 = 1
4�2

+ COV2
x,w = 1

4�2
+
�2

"2
> 1

4�2
, (105)

▵ x2 ▵ u2� =
( 1
4�2

+ COV2
x,w − Cov2x,w

)

sin2 � +
[

cos � ▵ x2 + sin �Covx,w
]2

=
(

1
4�2

+
�2

"2

)

sin2 � + �2 cos2 �

> 1
4�2

sin2 �, (106)

▵ u2� ▵ u2� =
( 1
4�2

+ COV2
x,w − Cov2x,w

)

sin2(� − �) +
[

cos � cos � ▵ x2 + sin � sin � ▵ w2 + sin(� + �)Covx,w
]2

=
(

1
4�2

+
�2

"2

)

sin2(� − �) +
[

� cos � cos � + �
(

1
4�2�2

+ 1
"2

)

sin � sin �
]2

> 1
4�2

sin2(� − �) +
[

cos � cos � ▵ x2 + sin � sin � ▵ w2]2

= 1
4�2

sin2(� − �) +
[

� cos � cos � + �
(

1
4�2�2

+ 1
"2

)

sin � sin �
]2

. (107)

In the example let �1 = 1, �2 =
1
2
, "1 = 2, "2 = 1, � = 2�

3
and � = �

6
, it calculates that

▵ x2 ▵ w2 ≈ 0.309746582899407, (108)

1
4�2

+ COV2
x,w ≈ 0.275330295910584, (109)

1
4�2

≈ 0.025330295910584, (110)

▵ x2 ▵ u2� ≈ 0.372934937174556, (111)

( 1
4�2

+ COV2
x,w − Cov2x,w

)

sin2 � +
[

cos � ▵ x2 + sin �Covx,w
]2 ≈ 0.347122721932938, (112)

1
4�2

sin2 � ≈ 0.018997721932938, (113)

▵ u2� ▵ u2� ≈ 0.331041346184749, (114)

( 1
4�2

+ COV2
x,w − Cov2x,w

)

sin2(� − �) +
[

cos � cos � ▵ x2 + sin � sin � ▵ w2 + sin(� + �)Covx,w
]2 ≈ 0.296625059195926,

(115)

1
4�2

sin2(� − �) +
[

cos � cos � ▵ x2 + sin � sin � ▵ w2]2 ≈ 0.046625059195926, (116)

then it concludes from the view point of numerical simulation that the results (97), (100), (103) and (104) hold.
In the example let �1 = �2 = 1, "1 = "2 = 2, � = 2�

3
and � = �

6
, it calculates that

▵ x2 ▵ w2 ≈ 0.275330295910584, (117)

1
4�2

+ COV2
x,w ≈ 0.275330295910584, (118)

1
4�2

≈ 0.025330295910584, (119)

▵ x2 ▵ u2� ≈ 0.456497721932938, (120)
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( 1
4�2

+ COV2
x,w − Cov2x,w

)

sin2 � +
[

cos � ▵ x2 + sin �Covx,w
]2 ≈ 0.456497721932938, (121)

1
4�2

sin2 � ≈ 0.018997721932938, (122)

▵ u2� ▵ u2� ≈ 0.373795204665280, (123)

( 1
4�2

+ COV2
x,w − Cov2x,w

)

sin2(� − �) +
[

cos � cos � ▵ x2 + sin � sin � ▵ w2 + sin(� + �)Covx,w
]2 ≈ 0.373795204665280,

(124)

1
4�2

sin2(� − �) +
[

cos � cos � ▵ x2 + sin � sin � ▵ w2]2 ≈ 0.123795204665280, (125)

then it concludes from the view point of numerical simulation that the results (105), (106) and (107) hold.

5 POTENTIAL APPLICATIONS

In the classical N-dimensional Heisenberg’s uncertainty principle case the largest universal lower bound N2

16�2
‖f‖42 for all

functions can be reached only if COVx,w = 0. The proposed new corollary provides full characterization of the functions
that make the equality relation hold in the uncertainty inequality, giving rise to a tighter lower bound N2

16�2
‖f‖42 + COV2

x,w,
which includes particular case the classical one when COVx,w = 0. The philosophy of the N-dimensional FRFT based
uncertainty principles is similar to that for the uncertainty principles in the classical setting. In the classical uncertainty prin-
ciple in two N-dimensional FRFT domains case the largest universal lower bound for all functions is N2

16�2
‖f‖42 sin

2(� − �).
Our previous work shows that a sharper lower bound can be N2

16�2
‖f‖42 sin

2(� − �) +
[

cos � cos � ▵ x2 + sin � sin � ▵ w2]2,
but this holds only for real functions. In our current work, the proposed new theorem gives a further larger lower bound
(

N2

16�2
‖f‖42 + COV2

x,w

)

sin2(� − �) +
[

cos � cos � ▵ x2 + sin � sin � ▵ w2]2 for real functions, a special form of the derived uni-

versal lower bound
(

N2

16�2
‖f‖42 + COV2

x,w − Cov2x,w
)

sin2(�−�)+
[

cos � cos � ▵ x2 + sin � sin � ▵ w2 + sin(� + �)Covx,w
]2 for

complex functions. In such a way the new results present stronger uncertainty inequalities that imply the weaker ones, disclos-
ing more information on the uncertainty products to be estimated. Thus, the new uncertainty principles could be able to process
whatever practical application problems the old ones might be useful in solving, resulting in better performance.
An alternative mathematical formulation of the classicalN-dimensional Heisenberg’s uncertainty principle is

N2

16�2
‖f‖42 = min

{

▵ x2 ▵ w2 ∶ xf (x),wf̂ (w) ∈ L2(ℝN )
}

, (126)

where the minimum value N2

16�2
‖f‖42 of the uncertainty product ▵ x2 ▵ w2 can be reached. For most functions this limit usually

cannot be achieved, and the corresponding uncertainty product is actually larger than N2

16�2
‖f‖42. Our result indicates that a better

estimate is N2

16�2
‖f‖42 +COV2

x,w. Similarly, an alternative mathematical formulation of the classical uncertainty principle for the
N-dimensional FRFT is

N2

16�2
‖f‖42 sin

2 � = min
{

▵ x2 ▵ u2� ∶ xf (x),wf̂ (w) ∈ L2(ℝN )
}

, (127)

where the minimum value N2

16�2
‖f‖42 sin

2 � of the uncertainty product ▵ x2 ▵ u2� can be reached. Our previous result provides a
better estimate which says that the uncertainty product cannot be smaller than N2

16�2
‖f‖42 sin

2 �+cos2 �
(

▵ x2
)2 for real functions.

Our current result shows that, because of COV2
x,w ≥ Cov2x,w, a further better estimate is

(

N2

16�2
‖f‖42 + COV2

x,w − Cov2x,w
)

sin2 �+
[

cos � ▵ x2 + sin �Covx,w
]2. Uncertainty principles are suitable for the effective estimation of bandwidths. For instance, if ▵ x2

is known, it follows that

▵ w2 ≥
N2

16�2
‖f‖42 + COV2

x,w

▵ x2
≥

N2

16�2
‖f‖42

▵ x2
(128)
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and

▵ u2� ≥

(

N2

16�2
‖f‖42 + COV2

x,w − Cov2x,w
)

sin2 � +
[

cos � ▵ x2 + sin �Covx,w
]2

▵ x2

≥
N2

16�2
‖f‖42 sin

2 � + cos2 �
(

▵ x2
)2

▵ x2

≥
N2

16�2
‖f‖42 sin

2 �

▵ x2
. (129)

Note that even the second term of the above inequality chains usually cannot be reached, except it is a chirp function given by
(14) of Theorem 1.
The FRFT provides a mathematical model for analyzing and describing optical systems composed of an arbitrary sequence

of thin lenses and sections of free space. Uncertainty relations are often used to estimate spreads in transformation domains.
Therefore, uncertainty principles related to the spread in the FRFT domain reveal that the immediate application can be found in
the discussion of some well-known optical physics phenomenons, such as the Fresnel diffraction and the FRFT system between
planar surfaces.17 We first consider a planar reference plane related to the scale parameter s. Fresnel diffracting it in the order
observed at a distance d from the screen can be described by an FRFT with the rotational angle � satisfying tan � = d

s2
. Using

(20), there exist an estimate to the spread of the observed field at the distance

▵ u2� ≥
1

1 +
(

s2

d

)2

N2

16�2
‖f‖42 + COV2

x,w

▵ x2
+ 1

1 +
(

d
s2

)2
▵ x2 + 2

d
s2
+ s2

d

Covx,w, (130)

implying that for short d the effective spread 2
√

▵ u2� is slightly larger than that at the planar reference plane 2
√

▵ x2 and for
large distances d the spread of the field is almost independent of d and reciprocally proportional to the field spread in the planar
reference plane. We then focus on two planar surfaces associated with the scale parameter s. Using a lens to compensate the
spherical phase factors at both surfaces yields an FRFT systemwith the rotational angle � satisfying sin � = d

s2
and tan

(

�
2

)

= z
s2
,

where d and z denote the separation of the lenses and their focal length respectively. Therefore the relation (20) becomes

▵ u2� ≥
d2

s4

N2

16�2
‖f‖42 + COV2

x,w

▵ x2
+
(d
z
− 1

)2
▵ x2 + 2 d

s2
(d
z
− 1

)

Covx,w, (131)

implying that for small d the effective spread 2
√

▵ u2� is slightly larger than that at the planar surfaces 2
√

▵ x2 and for a pair
of d and z with similar values the spread of the field is proportional to d or z and reciprocally proportional to the field spread in
the planar surfaces.

6 CONCLUSIONS

Uncertainty principles in two N-dimensional FRFT domains are investigated. The lower bounds obtained are tighter than the
existing forms for three categories, those are,N-dimensional FT,N-dimensional FRFT and twoN-dimensional FRFTs, in the
literature. It turns out that the lower bounds are attainable by a chirp function with Gaussian envelop and quadratic phase. The
correctness of the derived results is validated by example and experiment, and the effectiveness is illustrated by applications in
the effective estimation of bandwidths in time-frequency analysis and spreads in optical system analysis.
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