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Abstract
The theory of inverse scattering is developed to investigate the initial-value problem for the fifth-
order nonlinear Schrödinger (foNLS) equation under the zero boundary conditions at infinity. The
spectral analysis is performed in the direct scattering process, including the establishment of the
analytical, asymptotic and symmetric properties of the scattering matrix and the Jost functions. In
the inverse scattering process, a suitable Riemann-Hilbert (RH) problem is successfully established
by using the modified eigenfunctions and scattering data, and the relationship between the potential
function and the solution of the RH problem is successfully established. In order to further analyze
the propagation behavior of the solutions of the foNLS equation, we present some new phenomena
of studying the one-, two-, and three- soliton solutions corresponding to simple zeros in scattered
data. Finally, we also analyze the one- and two-soliton solutions corresponding to double zeros.

Key words: The fifth-order nonlinear Schrödinger equation; Riemann Hilbert approach; Soliton
solutions.

1 Introduction

Nonlinear integrable partial differential equations (PDEs) can be used to establish con-
nections with many fields, including electromagnetics, plasma, and equations of motion
in Euclidean space. By studying these integrable models, one can obtain some important
data analysis, including soliton solution, as an accurate solution has the good property of
maintaining the speed and shape of the propagation process. Therefore, many scholars
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work hard to find the exact solutions of integrable PDEs by this reason, and have also
successfully put forward many effective methods, including the Darboux transformation
[1] and the Lie symmetric [2] and inverse scattering transformation (IST) [3], etc. Among
these methods, the IST is a very powerful tool, which is based on the Gel’fand-Levitan-
Marchenko [4, 5] integral equation at first, and then the Riemann-Hilbert (RH) problem
[6] was proposed, which greatly simplified the IST. At present, the RH problem has been
widely used in the related problems of integrable systems.

In this work, we mainly investigate the following simplified fifth-order nonlinear Schrödinger
equation (foNLS) equation proposed by Radha in [7] via the RH problem with the potential
function decays rapidly at infinity

iqt − iεqxxxxx − 10iε|q|2qxxx−20iεqxq
∗qxx − 30iε|q|4qx − 10iε(|qx|2q)x + qxx + 2q|q|2 − iqx = 0.

(1.1)

where q = q(x, t) is a complex variable, ε is the real constant, and the star ∗ represents
the complex conjugate. In [8], one of our authors Tian and his collaborators obtained the
breather solutions and rouge wave solutions of (1.1) by using n-fold Darboux transforma-
tion. Conservation laws and solitons of the inhomogeneous foNLS were investigated by
Wang in [9]. Darboux transformation and conservation laws for the inhomogeneous foNLS
were studied in [10].

In recent years, the RH problem has many applications in the zero boundary condition
(ZBC), that is, the potential function decays rapidly at infinity, including generalized
Sasa-Satsuma equation [11], Korteweg-de Vries equation, [12, 13] nonlinear Schrödinger
equation [14], coupled derivative Schrödinger equation [15], etc. [16]−[21] In addition,
the RH problem can also be used to deal with special boundaries. [23, 22] It is worth
noting that when many authors construct N -soliton solutions of integrable equations,
they often use a transformation to transform an irregular RH problem into a regular RH
problem when considering the RH problem with discrete spectral points. Motivated by
the idea from, [23]−[25] these authors transformed the irregular RH problem (only simple
zeros) into a regular RH problem by subtracting the asymptotic property and the residue
generated at the zero point. Therefore, we will combine these two ideas in this work, but
we should pay attention to the problem that the potential function does not tend to zero
at infinity, that is, the non-zero boundary value condition, which makes our work different
from it. Furthermore, we also consider the case that the scattering data has double zeros.
As far as we know, these are not reported before.

The frame of the work is arranged as: In section 2, the analytical property, asymptotic
property and symmetry of Jost function and scattering matrix are established by spectral
analysis. In section 3, according to the modified eigenfunction and the analyticity of
scattering data, we establish a suitable RH problem and derive the corresponding residue
by two kinds of zeros including simple zeros and double zeros, which is necessary to
regularize the original RH problem. In section 4, according to the reconstruction potential
function formula given in the third section under the condition of no reflection, we further
analyze the propagation behavior of the solutions, including the one-, two-, and three-
soliton solutions under simple zeros, and one- and two-soliton solutions under double
zeros. Finally some conclusions and discussions are presented in the last section.
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2 The direct problem for the foNLS equation

The Lax pair of (1.1) in [7] can be written as

ψx = Uψ, ψt = V ψ (2.1)

where

U = −ikσ3 +Q, Q =

(
0 q
−q∗ 0

)
, σ3 =

(
1 0
0 −1

)
,

and

V =(−16ik5ε− 2ik − ik)σ3 + 4k2ε[Qx, Q]σ3 − 2ikε(3Q4 −QxQ−QQxx)σ3

− iQ2σ3 + ε
(
[Q,Qxxx] + [Qxx, Qx] + 6Q2[Q,Qx]

)
σ3 + 16k4εQ+ 8ik3Qxσ3

− 4k2Qxxε+ 8k2Q3 − 2ikQxxxε+ 12ikQ2Qxε+ 2kQ+ iQx +Q

+ ε(Qxxxx − 8Q2Qxx − 2QQ∗Q∗x − 4Q2
xQ− 6QxQ

∗
xQ
∗ + 6Q5).

Considering the initial value

q(x, t = 0) = q0(x) ∈ S(R), (2.2)

where the S(R) represents the Schwartz space, one can obtain the Jost functions

ψ± ∼ e−i[kx+(16k5ε+2k2+k)t]σ3 , x→ ±∞, (2.3)

note that detψ±(x, t; k) = 1 and we take θ(x, t; k) = kx + (16k5ε + 2k2 + k)t. Then
introducing the modified eigenfunctions

u±(x, t; k) = ψ±(x, t; k)eiθ(x,t;k)σ3 → I, x→ ±∞. (2.4)

and substituting (2.4) into the Lax pair (2.1), one has

u±,x(x, t; k) + ik[σ3, u±(x, t; k)] = Q(x, t)u±(x, t; k), (2.5a)

u±,t(x, t; k) + i(16k5ε+ 2k2 + k)[σ3, u±(x, t; k)] = Q̂(x, t)u±(x, t; k), (2.5b)

where

Q̂(x, t) =4k2ε[Qx, Q]σ3 − 2ikε(3Q4 −QxQ−QQxx)σ3 + 8ik3Qx

− iQ2σ3 + ε
(
[Q,Qxxx] + [Qxx, Qx] + 6Q2[Q,Qx]

)
σ3 + 16k4εQσ3

− 4k2Qxxε+ 8k2Q3 − 2ikQxxxε+ 12ikQ2Qxε+ 2kQ+ iQx +Q

+ ε(Qxxxx − 8Q2Qxx − 2QQ∗Q∗x − 4Q2
xQ− 6QxQ

∗
xQ
∗ + 6Q5).

The ordinary differential equations of the functions u±(x, t; k) can be expressed by the
following integral equations

u−(x, t; k) = I +
∫ x
−∞ e

−ik(x−y)σ3Q(y, t)u−(y, t; k)eik(x−y)σ3 dy,

u+(x, t; k) = I−
∫∞
x e−ik(x−y)σ3Q̂(y, t)u+(y, t; k)eik(x−y)σ3 dy.

(2.6)
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Similar to the analysis in [23], we can establish the analyticity of the modified eigen-
functions as follow:
Proposition 2.1. The modified eigenfunctions u±(x, t; k) admit that: u−,1(x, t; k) and
u+,2(x, t; k) are analytic in the region C+, in addition, u−,2(x, t; k) and u+,1(x, t; k) are
analytic in the region C−, where u±,i(x, t; k) (i = 1, 2) denote the i-th column of u±(x, t; k),
C+ denotes the upper half-plane: C+ = {k ∈ C|=(k) > 0}, and similarly C− denotes the
lower half-plane: C− = {k ∈ C|=(k) < 0}.

Since the spectral problem is a first order homogeneous ordinary differential equation,
it has a unique solution. Therefore, for the two Jost functions solutions ψ±(x, t; k) of
the spectral problem, they are linearly related, that is, there exits a matrix S(k) (it is
independent of variables x and t) which makes the following expression hold

ψ+(x, t; k) = ψ−(x, t; k)S(k), S(k) =

(
s11(k) s12(k)
s21(k) s22(k)

)
, (2.7)

note that S(k) is generally called the scattering matrix, and its elements are called scat-
tering data. Through direct calculation, these scattering data can be expressed using the
Jost functions and the Wronskian determinant Wr[•, •], i.e.,

s11(z) = Wr[ψ+,1, ψ−,2], s22(z) = Wr[ψ−,1, ψ+,2], (2.8)

and combining with the proposition 2.1 one can get the following corollary
Corollary 2.2. The scattering data s11(k) and s22(k) are analytic in C− and C+, respec-
tively. In addition, the scattering data s12(k) and s21(k) are not analytic but continuous
to the real axis.

Corollary 2.3. The modified eigenfunction u±(x, t; k) and scattering matrix S(k) satisfy
the following relations respectively

u∗±(k∗) = σu±(k)σ, S(k) = −σS∗(k∗)σ, (2.9)

where σ =

(
0 1
−1 0

)
.

Proof: Given that the modified eigenfunctions u±(k) satisfie (2.5a), i.e.,

Gx(x, t) + ik[σ3, G(x, t)] = Q(x, t)G(x, t),

it is not difficult to verify that the functions u∗±(k∗) and σu±(k)σ also satisfy the equation.
Then Combining with the asymptotic property (2.4), the first relation can be obtained.
Combined with (2.7), it is not difficult to verify that the second equation is also true.

Corollary 2.4. The componentwise satisfy:

u±,1(k) = σu∗±,2(k
∗), u±,2(k) = −σu∗±,1(k∗), (2.10a)

u±,11(k) = u∗±,22(k
∗), u±,22(k) = u∗±,11(k

∗), (2.10b)

u±,12(k) = −σu∗±,21(k∗), u±,21(k) = −σu∗±,12(k∗), (2.10c)

s11(k) = s∗22(k
∗), s22(k) = s∗11(k

∗). (2.10d)
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Next, we will analyze the asymptotic property of the modified eigenfunctions and
scattering matrix, as well as establish the relationship between the potential function and
the modified eigenfunctions. Taking the following expansion about u±(k)

u± = u
(0)
± +

u
(1)
±
k

+ · · · k →∞, (2.11)

and substituting (2.11) into (2.5a) we can get the following relationships by comparing
the coefficient of ki (i = 0, 1)

0 = i[σ3, u
(0)
± ], (2.12a)

u
(0)
±,x = i[u

(1)
± , σ3] +Qu

(0)
± . (2.12b)

Similarly substituting (2.11) into (2.5b) yields

0 = i[16εu
(1)
± , σ3] + 16εQu

(0)
± . (2.13)

Summing up equations (2.12a)-(2.13), we obtain that u
(0)
± is a diagonal matrix and is

independent of x. Note that (2.4) u± → I implies

u
(0)
± → I, x, k →∞. (2.14)

In addition, from (2.12b), the relationship between potential function and modified eigen-
functions

q(x, t) = 2i lim
k→∞

(ku±)12, (2.15)

where Aij (i, j = 1, 2) denote that the element of the matrix A. Finally the asymptotic
behavior of scattering matrix S(k) can be derived by (2.4), (2.7) and (2.14)

S(k)→ I, k →∞. (2.16)

3 The inverse problem for the foNLS equation

To sum up the above analysis, we have established the analytical and asymptotic properties
of the modified eigenfunctions and scattering matrix. Next, we will combine the modified
eigenfunction and scattering data to construct a suitable RH problem. The purpose is to
reconstruct the expression of the modified eigenfunction and finally restore the potential
function q(x, t). Introducing the sectionally meromorphic functions

M(k) =


(
u−,1(k),

u+,2(k)

s22(k)

)
, k ∈ C+,(

u+,1(k)

s11(k)
, u−,2(k)

)
, k ∈ C−.

(3.1)

ε, k ∈ R, we can establish the RH problem:
Definition 3.1. The RH problem admits the following conditions:
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(a) : M(k) is meromorphic function in C±,
(b) : The jump condition

M−(x, t; k) = M+(x, t; k)(I−G(x, t; k)), (3.2)

where M±(k) = lim
ε→0+

M(k ± iε), with the matrix

G(x, t; z) =

(
0 −ρ̃(k)e−2iθ(k)

ρ(k)e2iθ(k) ρ(k)ρ̃(k)

)
,

(c) : M(k)→ I, k →∞,
where the reflection coefficients ρ(k) = s21(k)

s11(k)
and ρ̃(k) = s12(k)

s22(k)
.

It is noticed that when the scattering coefficients s11(k) and s22(k) are not equal to
zero for any k ∈ C±, the RH problem is regular and can be solved directly by Plemelj’s
formulate. When there are some points that make the scattering coefficients equal to zero,
i.e., s11(kj) = 0 (kj ∈ C−, j = 1, 2, · · · , N), it is an irregular RH problem. This problem
can be solved by transforming the irregular RH problem into a regular RH problem (please
refer to Ref.[26] for details). However, we will not adopt this idea in our work, but calculate
the residue at the singularity, and regularize RH problem by subtracting the asymptotic
behavior and the contribution value of the singularity. In this work, we will discuss the
residue of the singularity in two cases, including simple zeros and double zeros.

Case(A) : Similar to [23], suppose the scattering coefficient s11(k) is of N simple zero
in the region C−, i.e., s11(kn) = 0 (kn ∈ C−, n = 1, 2, · · · , N) and s′11(kn) 6= 0. Similarly,
from symmetry (2.10d), we know that the scattering coefficient s22(k) has N simple zeros
in C+, i.e., s22(k

∗
n) = 0 (kn ∈ C+, n = 1, 2, · · · , N) and s′22(k

∗
n) 6= 0, where the notation ′

indicates the derivation of the independent variable k.

Since kn ∈ C− and k∗n ∈ C+ are the zero point of s11(k) and s22(k), respectively, we
know from expression (2.8) that there are the constants bn and dn satisfy that

ψ+,1(kn) = bnψ−,2(kn), ψ+,2(k
∗
n) = dnψ−,1(k

∗
n), (3.3)

which imply taht

u+,1(kn) = bne
2iθ(kn)u−,2(kn), u+,2(k

∗
n) = dne

−2iθ(k∗n)u−,1(k
∗
n). (3.4)

Obviously, we can calculate the residue of meromorphic function M(k) at zero points kn
and k∗n, namely

Res
k=kn

M−1 (k) = Res
k=kn

u+,1(k)

s11(k)
=

bn
s′11(kn)

e2iθ(kn)u−,2(kn) , Cn(kn)e2iθ(kn)u−,2(kn),

Res
k=k∗n

M+
2 (k) = Res

k=k∗n

u+,2(k)

s22(k)
=

dn
s′22(k

∗
n)
e−2iθ(k

∗
n)u−,1(k

∗
n) , C̃n(k∗n)e−2iθ(k

∗
n)u−,2(k

∗
n).

(3.5)

It is not difficult to verify the following relationship from the symmetry (2.10a)

bn = −d∗n, (3.6)
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which can lead to

Cn(kn) = −C̃∗n(k∗n), (3.7)

combining with the symmetry (2.10c).

Case(B) : Similar to [24], suppose the scattering coefficient s11(k) is of N double zero
in the region C−, i.e., s11(kn) = s′11(kn) = 0 (kn ∈ C−, n = 1, 2, · · · , N) and s′′11(kn) 6= 0.
Similarly, from symmetry (2.10d), we know that the scattering coefficient s22(k) has N
simple zeros in C+, i.e., s22(k

∗
n) = s′22(k

∗
n) = 0 (kn ∈ C+, n = 1, 2, · · · , N) and s′′22(k

∗
n) 6= 0.

Since kn ∈ C− and k∗n ∈ C+ are the double zero point of s11(k) and s22(k), respectively,
similar to the Case(A), there are the constants fn and hn satisfy that

u+,1(kn) = fne
2iθ(kn)u−,2(kn), (3.8)

u′+,1(kn) = e2iθ(kn)
[
(hn + 2iθ′(kn)fn)u−,2(kn) + fnu

′
−,2(kn)

]
. (3.9)

Obviously for the double zeros k∗n ∈ C+ of the s22(k), one has

u+,2(k
∗
n) = f̃ne

−2iθ(k∗n)u−,1(k
∗
n), (3.10)

u′+,2(k
∗
n) = e2iθ(k

∗
n)
[
(h̃n − 2iθ′(k∗n)f̃n)u−,1(k

∗
n) + f̃nu

′
−,1(k

∗
n)
]
. (3.11)

Also from the symmetries (2.10a) and (2.10d), one has

f̃n = −f∗n, h̃n = −h∗n, (3.12)

In what follows, we will establish the residue corresponding to the double zeros. Similar
to the double zeros in the Ref.[24], we can get

Res
k=kn

[
M−1 (k)

]
= Res

k=kn

[
u+,1(k)

s11(k)

]
=

2u′+,1(kn)

s′′11(kn)
− 2u+,1(kn)s′′′11(kn)

3[s′′11(kn)]2

=
2fn

s′′11(kn)
e2iθ(kn)

[
u′−,2(kn) + u−,2(kn)

(
fn
hn

+ 2iθ′(kn)− s′′′11(kn)

3s′′11(kn)

)]
,

P−,2
k=kn

[
M−1 (k)

]
= P−,2

k=kn

[
u+,1(k)

s11(k)

]
=

2u+,1(kn)

s′′11(kn)
=

2fn
s′′11(kn)

e2iθ(kn)u−,2(kn),

where P−,2
k=kn

[•] represents the coefficient of 1
(k−kn)2 in Laurent series of • at k = kn. For

the double zeros k∗n ∈ C+, a similar result is obtained

Res
k=k∗n

[
u+,2(k)

s22(k)

]
=

2f̃n
s′′22(k

∗
n)
e−2iθ(k

∗
n)

[
u′−,1(k

∗
n) + u−,1(k

∗
n)

(
f̃n

h̃n
− 2iθ′(k∗n)− s′′′22(k

∗
n)

3s′′22(k
∗
n)

)]
,

P−,2
k=k∗n

[
u+,2(k)

s22(k)

]
=

2u+,2(k
∗
n)

s′′22(k
∗
n)

=
2f̃n

s′′22(k
∗
n)
e2iθ(k

∗
n)u−,1(k

∗
n),

for convenience, we take the notation

An =
2fn

s′′11(kn)
, Bn =

fn
hn
− s′′′11(kn)

3s′′11(kn)
, (3.13a)

Ãn =
2f̃n

s′′22(k
∗
n)
, B̃n =

f̃n

h̃n
− s′′′22(k

∗
n)

3s′′22(k
∗
n)
. (3.13b)
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The expression (3.12) implies

Ãn = −A∗n, B̃n = −B∗n. (3.14)

So far, we have completed the establishment of the residues in the two cases of single
zeros and double zeros. The next goal is to solve the Riemann-Hilbert problem (3.2) for
these two situations.

For Case(A), by using (3.5), we get

Res
k=kn

M−(k) =
(
Cn(kn)e2iθ(kn)u−,2(kn), 0

)
, (3.15)

Res
k=k∗n

M+(k) =
(

0, C̃n(k∗n)e−2iθ(k
∗
n)u−,1(k

∗
n)
)
. (3.16)

In order to solve RH problem (3.2), it is regularized it by subtracting the asymptotic
behavior and the contribution value of singularity, namely

M+ − I−
N∑
n=1

Res
k=k∗n

M+

k − k∗n
+

Res
k=kn

M−

k − kn

 = M− − I−
N∑
n=1

Res
k=k∗n

M+

k − k∗n
+

Res
k=kn

M−

k − kn

−M−G.
(3.17)

By using the projection operator defined in [27], we can obtain

M(x, t; k) = I +
N∑
n=1

Res
k=k∗n

M+

k − k∗n
+

Res
k=kn

M−

k − kn

+
1

2πi

∫
R

M−(ζ)G(ζ)

ζ − k
dζ. (3.18)

Taking M = M− and comparing the element of M (−)12 can yield that

u−,12(x, t; k) =

N∑
n=1

Res
k=k∗n

M+

k − k∗n
u−,11(x, t; k

∗
n) +

1

2πi

∫
R

(M−(ζ)G(ζ))12
ζ − k

dζ. (3.19)

The equation (2.15) means that the reconstruction formula of the solution to (1.1) can be
expressed as

q(x, t) = 2i
N∑
n=1

C̃n(k∗n)e−2iθ(k
∗
n)u−,11(x, t; k

∗
n)− 1

π

∫
R

(M−(ζ)G(ζ))12 dζ. (3.20)

Considering the second column of M− at k = kn in C−, one has

u−,2(kn) =

(
0
1

)
+

N∑
j=1

C̃n(k∗j )

kn − k∗j
e−2iθ(k

∗
j )u−,1(k

∗
j ) +

1

2πi

∫
R

(M−(ζ)G(ζ))2
ζ − k

dζ. (3.21)

Similarly, considering the first column of M+ at k = k∗n in C+, one has

u−,1(k
∗
n) =

(
1
0

)
+

N∑
j=1

Cn(kj)

k∗n − kj
e2iθ(kj)u−,2(kj) +

1

2πi

∫
R

(M−(ζ)G(ζ))2
ζ − k

dζ. (3.22)
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Considering the soliton solution without reflection, i.e., G = 0, we can obtain

u−,12(kn) =
N∑
j=1

C̃n(k∗j )

kn − k∗j
e−2iθ(k

∗
j )u−,11(k

∗
j ),

u−,1(k
∗
n) = 1 +

N∑
j=1

Cn(kj)

k∗n − kj
e2iθ(kj)u−,12(kj).

(3.23)

Introducing the notation

$j(k) =
Cj(kj)

k − kj
e2iθ(kj), j = 1, 2, · · · , N.

we can transform the expression (3.23) into

u−,12(kj) = −
N∑
l=1

$∗l (k
∗
j )u−,11(k

∗
l ), (3.24a)

u−,11(k
∗
n) = 1 +

N∑
j=1

$j(k
∗
n)u−,12(kj). (3.24b)

Substituting (3.24a) into (3.24b) yields

u−,11(k
∗
n) = 1−

N=1∑
j=1

N=1∑
l=1

$j(k
∗
n)$∗l (k

∗
j )u−,11(k

∗
l ). (3.25)

Defining X = (X1, X2, · · · , XN )T and IN×1 = (1, 1, · · · , 1)T , where Xn = u−,11(k
∗
n), and

introducing the N ×N matrix A = (An,l)

An,l = A =

N=1∑
j=1

$j(k
∗
n)$∗l (k

∗
j )u−,11(k

∗
l ), k, l = 1, 2, · · · , N,

then (3.25) can be written in the matrix from, i.e.,

(I +A)X = I , MX = I (3.26)

which can be solved by Cramer’s law, namely Xn = detM rep
n

detM for n = 1, 2, · · · , N, where

M rep
n = (M1, · · · ,Mn−1, I,Mn+1, · · · ,MN ).

Substituting the X1, · · · , XN obtained by (3.26) into (3.25) yeilds

q(x, t) = −2i
det M aug

det M
, (3.27)

where the (N + 1)× (N + 1) matrix M aug defined by M aug =

(
0 Y
I M

)
, and

Y = (C̃1(k
∗
1)e−2iθ(k

∗
1), C̃2(k

∗
2)e−2iθ(k

∗
2), · · · , C̃N (k∗N )e−2iθ(k

∗
N ))

9



For the double zeros, i.e., Case(B), using the same technique as Case(A), we can
express the solution of RH problem (3.2) as

M(x, t; k) = I +
N∑
n=1

Res
k=k∗n

M+

k − k∗n
+

P−,2
k=k∗n

M+

(k − k∗n)2
+

P−,2
k=kn

M−

(k − kn)2
+

Res
k=kn

M−

k − kn

+
1

2πi

∫
R

M−(ζ)G(ζ)

ζ − k
dζ.

(3.28)

Taking M = M− and comparing the 12 element of (3.28) one can get the potential for
the double zeros without the refelection

q(x, t) = 2i

(
N∑
n=1

Ãne
−2iθ(k∗n)

[
u′−11(k

∗
n) + u−,11(k

∗
n)(B̃n − 2iθ′(k∗n))

])
, (3.29)

combining with the (2.15), where u′−11(k
∗
n) and u−,11(k

∗
n) defined by (3.33).

In the case of no reflection, i.e., G = 0, considering the second column of the M− at
k = kj in C−, we have

u−,2(kj) =

(
0
1

)
+

N∑
n=1

Ãne−2iθ(k∗n)
[
u′−1(k

∗
n) + u−,1(k

∗
n)(B̃n − 2iθ′(k∗n))

]
kj − k∗n

+
Ãne

−2iθ(k∗n)u−,1(k
∗
n)

(kj − k∗n)2

 ,

(3.30)

then considering the first column of M+ at k = k∗j in C+, one has

u−,1(k
∗
j ) =

(
1
0

)
+

N∑
n=1

(
Ane

2iθ(kn)
[
u′−2(kn) + u−,2(kn)(Bn + 2iθ′(kn))

]
k∗j − kn

+
Ane

2iθ(kn)u−,2(kn)

(k∗j − kn)2

)
.

(3.31)

Taking these notations

C̃n(kl) =
Ãne

−2iθ(k∗n)

kl − k∗n
, D̃n = B̃n − 2iθ′(k∗n),

Cn(k∗l ) =
Ane

2iθ(kn)

k∗l − kn
, Dn = Bn + 2iθ′(kn),

we can transform (3.30) and (3.31) into the following expressions

u−,2(kl) =

(
0
1

)
+

N∑
n=1

C̃n(kl)

[
u′−,1(k

∗
n) + u−,1(k

∗
n)

(
D̃n +

1

kl − k∗n

)]
,

u′−,2(kl) = −
N∑
n=1

C̃n(kl)

kl − k∗n

[
u′−,1(k

∗
n) + u−,1(k

∗
n)

(
D̃n +

2

kl − k∗n

)]
,

u−,1(k
∗
l ) =

(
1
0

)
+

N∑
n=1

Cn(k∗l )

[
u′−,2(kn) + u−,2(kn)

(
Dn +

1

k∗l − kn

)]
,

u′−,1(k
∗
l ) = −

N∑
n=1

Cn(k∗l )

k∗l − kn

[
u′−,2(kn) + u−,2(kn)

(
Dn +

2

k∗l − kn

)]
,

(3.32)
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further one has

u−,12(kl) =
N∑
n=1

C̃n(kl)

[
u′−,11(k

∗
n) + u−,11(k

∗
n)

(
D̃n +

1

kl − k∗n

)]
,

u′−,12(kl) = −
N∑
n=1

C̃n(k1l)

kl − k∗n

[
u′−,1(k

∗
n) + u−,11(k

∗
n)

(
D̃n +

2

kl − k∗n

)]
,

u−,11(k
∗
l ) = 1 +

N∑
n=1

Cn(k∗l )

[
u′−,12(kn) + u−,12(kn)

(
Dn +

1

k∗l − kn

)]
,

u′−,11(k
∗
l ) = −

N∑
n=1

Cn(k∗l )

k∗l − kn

[
u′−,12(kn) + u−,12(kn)

(
Dn +

2

k∗l − kn

)]
.

(3.33)

4 The solution for the foNLS equation

In this section, we will select the appropriate parameters to observe the propagation be-
havior of the solutions (3.27) and (3.29) according to the potential function reconstruction
formula obtained under the two zero points in the previous section.

For Case(A) : For the case of simple zeros, we mainly discuss three cases, that is,
assuming that there are one, two and three simple zeros respectively.

Case (a): Suppose that N = 1, then the solution (3.27) can be written as

q(x, t) = −2i
−C̃1(k

∗
1)e−2iθ(k

∗
1)

1− C1(k1)e2iθ(k1)

k∗1−k1
C̃1(k∗1)
k1−k∗1

e−2iθ(k
∗
1)
, (4.1)

in addition, selecting k1 = −1.5i ,ε = 0.01 and C1(k1) = 1 we show the propagation
behavior of the corresponding solution of the equation in figure. 1.

(a) (b) (c)

Figure 1. (a) The bright soliton solution to the solution (3.27). (b) is the density map of the

bright soliton solution. (c) The propagation view of corresponding solution at different times.

From Figure 1, we observe that the solution maintains its shape and velocity during
propagation, and the wave appears in the upper half plane, so we know that this is a
bright soliton solution.
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Case (b): Suppose that N = 2, then the solution (3.27) can be written as

q(x, t) = −2i

det

 0 C̃1(k
∗
1) C̃2(k

∗
2)

1 1 +A11 A12

1 A21 1 +A22


det

(
1 +A11 A12

A21 1 +A22

)
,

(4.2)

where

A11 = $1(k
∗
1)$∗1(k∗1) +$2(k

∗
1)$∗1(k∗2), A12 = $1(k

∗
1)$∗2(k∗1) +$2(k

∗
1)$∗2(k∗2)

A21 = $1(k
∗
2)$∗1(k∗1) +$2(k

∗
2)$∗1(k∗2), A22 = $1(k

∗
2)$∗2(k∗1) +$2(k

∗
2)$∗2(k∗2)

$1(k
∗
1) =

C1(k1)

k∗1 − k1
e2iθ(k1), $1(k

∗
2) =

C1(k1)

k∗2 − k1
e2iθ(k1),

$2(k
∗
1) =

C2(k2)

k∗1 − k2
e2iθ(k2), $2(k

∗
2) =

C2(k2)

k∗2 − k2
e2iθ(k2),

$∗1(k∗1) = − C̃1(k
∗
1)

k1 − k∗1
e−2iθ(k

∗
1), $∗1(k∗2) = − C̃1(k

∗
1)

k2 − k∗1
e−2iθ(k

∗
1),

$∗2(k∗1) = − C̃2(k
∗
2)

k1 − k∗2
e−2iθ(k

∗
2), $∗2(k∗2) = − C̃2(k

∗
2)

k2 − k∗2
e−2iθ(k

∗
2).

When taking the following parameters k1 = 1− i, k2 = −1− i, ε = 0.01, C1(k1) = 1 and
C2(k2) = i, the solution (4.2) can be expressed by

q(x, t) = 16i

(
ie73it−75ix−g + 8ie91it−25ix+g − e−0.08(127it+75ix−g) + 8e−0.08(109it+25ix+g)

)
e2.88t+8x + 16e17.44t+4x − 8e0.16g(1−i) − 8e0.16g(1+i) + 16e−14.56t+4x + 64

,

(4.3)

where g = g(x, t) = 9t+ 25x, and the propagation behavior is shown in figure 2.

(a) (b) (c)

Figure 2. (a) The bright soliton solution to the solution (3.27). (b) is the density map of the

bright soliton solution. (c) The propagation view of corresponding solution at different times.

When taking the following parameters k1 = −i, k2 = −1 − 2i, ε = 0.01, C1(k1) = 1
and C2(k2) = i, the solution (4.2) shown in the figure 3.
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(a) (b) (c)

Figure 3. (a) The bright soliton solution to the solution (3.27). (b) is the density map of the

bright soliton solution. (c) The propagation view of corresponding solution at different times.

Both Fig. 2 and Fig. 3 are two soliton solutions. The difference is that the two
spectrum parameters in Fig. 2 both contain real parts, while only one spectrum parameter
in Fig. 3 has real parts. The difference in solution behavior is that for the first case it is
the solution interaction of two bright solitons. At time t = 0, the two solitons collide, and
the two solitons keep the energy unchanged before and after the collision. For the second
case, the Fig. 3 shows the interaction of a soliton solution and a breather-type solution,
and the energy before and after the collision also remains unchanged.

Case (c): Suppose that N = 3, then the solution (3.27) can be written as

q(x, t) = −2i

det


0 C̃1(k

∗
1) C̃2(k

∗
2) C̃3(k

∗
3)

1 1 +A11 A12 A13

1 A21 1 +A22 A23

1 A31 A32 1 +A33


det

 1 +A11 A12 A13

A21 1 +A22 A23

A31 A32 1 +A33

 , (4.4)

where

A = An,l =

3∑
j=1

$j(k
∗
n)$∗l (k

∗
j ), n, l = 1, 2, 3,

$j(k
∗
n) =

Cj(kj)

k∗n − kj
e2iθ(kj), $∗j (k

∗
n) = −

C̃j(k
∗
j )

kn − k∗j
e−2iθ(k

∗
j ) n, j = 1, 2, 3.

These parameters k1 = −1− i, k2 = 1− i, k1 = −2− i, ε = 0.01, C1(k1) = C3(k3) = 1 and
C2(k2) = i can be selected to give the propagation behavior of the solution (4.4) shown in
figure 4.

(a) (b) (c)
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Figure 4. (a) The bright soliton solution to the solution (3.27). (b) is the density map of the

bright soliton solution. (c) The propagation view of corresponding solution at different times.

Figure 4 shows the propagation behavior of the three-soliton. When t = 0, from the
interaction of the three soliton, we observe the energy changes irregularly, and the energy
is constant at other times.

For Case(B) : For the case of double zeros, we mainly discuss two cases, that is,
assuming that there are one and two double zeros respectively.

Case (a): At first, when N = 1, we give the concrete expression of the solution of the
equation (1.1) combining with (3.29) and (3.33). Note that

u−,12(k1) = C̃1(k1)

[
u′−,11(k

∗
1) + u−,11(k

∗
1)

(
D̃1 +

1

k1 − k∗1

)]
,

u′−,12(k1) = − C̃1(k1)

k1 − k∗1

[
u′−,1(k

∗
1) + u−,11(k

∗
1)

(
D̃1 +

2

k1 − k∗1

)]
,

u−,11(k
∗
1) = 1 + C1(k

∗
1)

[
u′−,12(k1) + u−,12(k1)

(
D1 +

1

k∗1 − k1

)]
,

u′−,11(k
∗
1) = − C1(k

∗
1)

k∗1 − k1

[
u′−,12(k1) + u−,12(k1)

(
D1 +

2

k∗1 − k1

)]
.

with D̃1 = B̃1− 2iθ′(k∗1), C̃1(k1) = Ã1e
−2iθ(k∗1)

k1−k∗1
, D1 = B1 + 2iθ′(k1), C1(k

∗
1) = A1e2iθ(k1)

k∗1−k1
.

The elements u′−11(k
∗
n) and u−11(k

∗
n) of the solution (3.29) can be derived by the

following equation
1 0 −C1(k

∗
1)
(
D1 + 1

k∗1−k1

)
−C1(k

∗
1)

0 1
C1(k∗1)
k∗1−k1

(
D1 + 2

k∗1−k1

)
C1(k∗1)
k∗1−k1

−C̃1(k
∗
1)
(
D̃1 + 1

k∗1−k1

)
−C̃1(k

∗
1) 1 0

C̃1(k∗1)
k∗1−k1

(
D̃1 + 2

k∗1−k1

)
C̃1(k∗1)
k∗1−k1

0 1




u−,11(k
∗
1)

u′−,11(k
∗
1)

u−,12(k
∗
1)

u′−,12(k
∗
1)

 =


1
0
0
0

 .

(4.5)

Based on the solution (3.27) combining with the expression about u′−11(k
∗
n) and u−11(k

∗
n),

we can show the propagation behavior in figure 5.

(a) (b) (c)

Figure 5. The parameters k1 = − 1
10 − i, ε = 0.01, A1 = −1, and B1 = 2. (a) The bright soliton

solution to the solution (3.27). (b) is the density map of the bright soliton solution. (c) The

propagation view of corresponding solution at different times.
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It can be observed from figure 5 that the 1-soliton solution under the condition of
double zeros is the interaction of two bright soliton solutions. Except for the energy
superposition of the two bright soliton solutions near time t = −0.3, the two soliton
solutions present a symmetrical structure, and the shape and size remain unchanged before
and after the collision.

Case (b): When N = 2, the expressions of u−,11(k
∗
1), u′−,11(k

∗
1), u−,11(k

∗
2) and u′−,11(k

∗
2)

are so complex that it is also very complicated to bring the obtained results into the solu-
tion (3.29) of the equation (1.1). Therefore, for the sake of simplicity, we omit the specific
expression of the solution of the equation. But the figure 6 shows the propagation behav-
ior of the solution at this time with the parameters k1 = −1 − i, k2 = 1 − i, ε = 0.01,
A1 = B1 = 1, and A2 = B2 = i.

(a) (b) (c)

Figure 6. (a) The bright soliton solution to the solution (3.27). (b) is the density map of the

bright soliton solution. (c) The propagation view of corresponding solution at different times.

Comparing with Fig. 5 and Fig. 6, we observe that the phenomenon in Fig. 6 is a
superposition of the solutions in Fig. 5, that is, two solutions in Fig. 5 interact with each
other. However, it is noted that the energy of the solutions in Fig. 5 hardly shifts after
the collision, while the phenomena in Fig. 6 show that the solutions transfer after the
collision, and the energy lost in the collision is transferred to the other soliton solutions.

5 Conclusions

In this work, we use the RH problem to analyze the foNLS equation with the potential
function decays rapidly at infinity. Our motivation is mainly derived from the idea of
Biondini and his collaborators who have established a suitable RH problem in the Res.[23].
When discussing the irregular RH problem of scattering data with zero points, they usually
discuss the residues generated at simple zeros (including the residues generated by double
zeros and the coefficients corresponding to the −2 power of Laurent series in the Ref.[24]).

However, many authors often use a transformation when dealing with integrable e-
quations under zero boundary conditions to transform the irregular RH problem into a
regular RH problem [11, 12, 15, 19, 20, 21, 28], so as to avoid discussing the properties
of the singularity, and our goal in this work is to combine these two woks, the idea of
Biondini’s work is used to deal with the integrable equation with zero boundary condi-
tions at infinity, which means that the problem of zero points is not circumvented, and
the situation where the scattered data has double zero points is further discussed and the
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expected results are given.

Of course, this idea can be further promoted to discuss the existence of three zeros
or even N zeros in scattering data. Only by calculating the coefficients of each order
corresponding to Laurent series, and then subtracting the contribution value of zero points
and the asymptotic behavior from the original RH problem, the original RH problem can
be regularized. Finally, the connection between the corresponding zero point potential
function and the RH problem can be established, which means that the reconstruction of
the potential function is completed.
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