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Abstract

An efficient numerical method is presented in this study to discuss the effects of variable heat flux,

viscous dissipation and the slip velocity on the viscous Casson flow and heat transfer due to an unsteady

stretching sheet taking into account the influence of heat generation or absorption. Industrially, this

type of fluid can describe the flow of blood in an industrial artery, which can be polished by a material

governing the blood flow. The spectral collocation method based on Chebyshev polynomials of the

third-kind is employed to solve the resulting system of ordinary differential equations which describe

the problem. Influence of the parameters governing the flow and heat transfer such as unsteadiness

parameter, slip velocity parameter, Casson parameter, local Eckert number, heat generation parameter

and the Prandtl number are discussed and presented through tables and graphs. Also, the local skin-

friction coefficient and the local Nusselt number at the stretching sheet are computed and discussed.

Finally, the results show that the given procedure is an easy and efficient tool to investigate the solution

of such fluid models.
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1. Introduction

Flow and heat transfer due to an unsteady stretching sheet has attracted an ever increasing

research interest because of it’s numerous practical applications in many branches of manufactur-

ing processes and technology since Crane [1] presented analytically the solution for the problem

of steady flow for a Newtonian fluid driven by a stretched flat sheet which moves in its own

plane with a velocity varying linearly with the distance from a fixed point. The problem posed

by Crane [1] was extended taking into account a porous sheet by Gupta and Gupta [2] and they

also, obtained closed-form solution for the problem, while Grubka and Bobba [3] investigated

the thermal field and they introduced the solution for the energy equation in terms of Kummers

functions. In the same field of study, many researches are also introduced [4]-[12].
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In nature, several fluids can be classified as Casson fluid. This type of fluids can be marked

as a purely viscous fluid with high viscosity. Some of studies related to this type of fluid may

be found in [13]-[15]. Most of previous studies have neglected the slip velocity condition at the

boundary over a stretching surface which is important in view point of desired properties of the

outcome. The fluids that exhibit boundary slip have important technological applications such

as in the polishing of artificial heart valves and internal cavities. Because of important various

applications for the flow and heat transfer characteristics in the presence of slip effects over a

stretching surface, a lot of papers were found [16]-[19].

After these former researches, a number of researchers have successfully applied various nu-

merical methods in this field. Among these numerical methods, the spectral collocation method

(SCM) that is a general approximate analytical method to get the approximate solution of the

differential equations. The SCM has some advantages for handling this class of problems in which

the Chebyshev coefficients for the solution can exist very easily after using any one of numerical

programs. For this reason, this method is much faster than the other methods. Chebyshev

polynomials are well-known family of orthogonal polynomials on the interval [−1, 1] that have

many applications. They are widely used because of their good properties in the approximation

of functions. Also, this method is a numerical technique with high accuracy, exponential rates

of convergence and easy to use in finite and infinite domains for different problems ([23]-[25]).

The ordinary and partial fractional differential equations have been the focus of many stud-

ies due to their frequent appearance in various applications in fluid mechanics, visco-elasticity,

biology, physics and engineering. Consequently, considerable attention has been given to the

solutions of ODEs of physical interest ([26]-[28]). The non-linear ODEs which governing the

physical problem were solved numerically using the SCM based on Chebyshev approximations

of the third kind.

Nevertheless, the motivation behind this present work is to study the numerical solution by

using the spectral collocation method based on Chebyshev polynomials of the third-kind for

the Casson fluid flow over an unsteady stretching sheet with internal heat generation, viscous

dissipation and variable heat flux involving boundary conditions of slip effect.

2. Formulation of the problem

In this section, we consider the unsteady two-dimensional laminar flow and heat transfer of a

non-Newtonian Casson flow over an unsteady stretching sheet in the presence of heat generation,

viscous dissipation and variable heat flux. Also, we assume that the x− axis is chosen along the

plane of the sheet and the y− axis is taken normal to the plane. We suppose that the surface
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starts stretching from rest with the velocity U(x, t) which can be defined as:

U =
cx

1− αt
, (1)

where α and c are positive constants with dimension reciprocal time and t is the time. Here, c

is the initial stretching rate. Also, we must observe that the adopted formulation of the sheet

velocity in Eq. (1) is valid only for times t < α−1 unless α = 0. Likewise, the surface heat flux

qs(x, t) at the stretching sheet is assumed to vary with the power of distance x from the slit and

with the power of time factor as [12]:

qs(x, t) = −κ∂T
∂y

= T0
dxr

(1− αt)m+ 1
2

, (2)

where κ is the fluid thermal conductivity, T is the temperature of the fluid, T0 is the reference

temperature, d is constant, r and m are space and time indices, respectively. The rheological

equation of state for an isotropic and incompressible flow of a Casson fluid is [20]-[21]:

τij =

{
2(µB + Py/

√
2π)eij, π > πc

2(µB + Py/
√

2πc)eij, π < πc

Here, τij is the (i, j)− th component of the stress tensor, π = eijeij and eij is the (i, j)− th
component of the deformation rate, π is the product of the deformation rate with itself, πc is

a critical value of this product based on the non-Newtonian model, µB is the plastic dynamic

viscosity of the non-Newtonian fluid and Py is the yield stress of the fluid. So, for shear stress less

than the yield stress Py the fluid exhibits no motion i.e., it behaves like a solid, but when the shear

stress greater than Py it shows its flow characters. Likewise, the heat generation/absorbation

term Q can be assumed as follows [22]:

Q =

{
Q0(T − T∞), T ≥ T∞

0, T < T∞
, (3)

where Q0 is the heat generation/absorption coefficient.

The governing time-dependent velocity and temperature fields obey such type of flow are given

by :
∂u

∂x
+
∂v

∂y
= 0, (4)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν(1 +

1

β
)
∂2u

∂y2
− σB2

0

ρ
u, (5)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

κ

ρcp

∂2T

∂y2
+
ν

cp
(1 +

1

β
)

(
∂u

∂y

)2

+
Q0

ρcp
(T − T∞), (6)
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where u and v are the velocity components along the x and y directions, respectively. ρ is

the fluid density, β = µB
√

2πc/Py is the Casson parameter and cp is the specific heat at constant

pressure.

The appropriate boundary conditions for the present problem are :

u = U(x, t) +N1

(
1 +

1

β

)
∂u

∂y
, v = 0, −κ∂T

∂y
= qs(x, t) at y = 0, (7)

u→ 0, T → T∞, as y →∞. (8)

Here N1 = N(1− αt) 1
2 is the velocity slip factor which changes with time, N is the initial value

of velocity factor. The mathematical analysis of the problem is simplified by introducing the

following dimensionless coordinates:

η = (
c

ν
)
1
2 (1− αt)

−1
2 y, u =

cx

1− αt
f ′(η), v = −

√
cν

(1− αt) 1
2

f(η), (9)

T = T∞ + T0(
dxr

κ
√
c/ν

)(1− αt)−mθ(η). (10)

Eqs.(9)-(10) are valid only for αt� 1, where f(η) is the dimensionless stream function and θ(η)

is the dimensionless temperature.

Using Eqs. (9)-(10), the mathematical problem defined in Eqs. (5)-(8) are then transformed into

a set of ordinary differential equations and their associated boundary conditions :(
1 +

1

β

)
f ′′′ + ff ′′ − f ′2 − S(

η

2
f ′′ + f ′)−Mf ′ = 0, (11)

1

Pr
θ′′ + fθ′ − rf ′θ − S(

η

2
θ′ +mθ) + Ec

(
1 +

1

β

)
f ′′2 + γθ = 0, (12)

f = 0, f ′ = 1, θ′ = −1 at η = 0 (13)

f ′ → 0, θ → 0 as η →∞ (14)

where a prime denotes differentiation with respect to η, S = α
c

is the unsteadiness parameter,

Ec = U2

cp∆T
is the local Eckert number, ∆T = T0( dxr

κ
√
c/ν

)(1 − αt)−m , γ = xQ0

Uρcp
is the local heat

generation (> 0) or absorption (< 0) parameter and Pr = ρνcp
κ

is the Prandtl number.

In engineering and practical applications, our interest lies in the investigation of the important

physical quantities of the flow behavior and heat transfer characteristics by analyzing the non-

dimensional local skin-friction coefficient (Cfx) or the fractional drag coefficient and the local

Nusselt number (Nux). These non-dimensional parameters are defined as follows :

Cfx = −2Re
−1
2
x

(
1 +

1

β

)
f
′′
(0), Nux =

Re
1
2
x

θ(0)
, (15)

where Rex = Ux
ν

is the local Reynolds number.
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3. Procedure of solution

3.1. Approximate the solution

The third-type of Chebyshev polynomials of degree n can be defined as follows [29]:

Vn(y) =
cos((n+ 0.5)θ)

cos(0.5θ)
, y = cos(θ), 0 ≤ θ ≤ π.

These functions can be determined by using the following recurrence form [30]:

Vn+1(y) = 2yVn(y)− Vn−1(y), V0(y) = 1, V1(y) = 2y − 1, n = 1, 2, ... .

In this paper, we will use these functions on [0, ~], so we can construct the so-called shifted

Chebyshev polynomials by using the linear transform y = (2/~)η − 1. This type of functions

will be denoted and defined as
¯̄̄Cn(η) = Vn((2/~)η − 1), where

¯̄̄C0(η) = 1,
¯̄̄C1(η) = (4/~)η − 3.

The most common and useful formula of
¯̄̄Cn(η) takes the following analytic form [31]:

¯̄̄Cn(η) =
n∑
k=0

(−1)k22n−2k (2n+ 1)Γ(2n− k + 1)

~n−k Γ(k + 1) Γ(2n− 2k + 2)
ηn−k, n = 2, 3, . . . . (16)

It is easy to find that
¯̄̄Ck(0) = (−1)k(2k + 1),

¯̄̄Ck(1) = 1, k = 0, 1, 2... . The function ψ(η) ∈
L2[0, 1] may be defined as an infinite series sum as follows:

ψ(η) =
∞∑
`=0

σ`
¯̄̄C`(η), σ` =

2

π

∫ 1

0

√
η

1− η
ψ(η)

¯̄̄C`(η) dη, ` = 0, 1, ... . (17)

We take the first (m+ 1)-terms of (17) to obtain the following approximation form

ψm(η) =
m∑
`=0

σ`
¯̄̄C`(η). (18)

Remarks concerning the convergence:

1. In [31], Khader found and proved that the series (18) of the shifted Chebyshev expansion

is uniformly convergent if the function ψ(η) satisfies the conditions; ψ′′(η) ∈ L2[0, 1]; and

|ψ′′(η)| ≤ κ; for some constant κ, and in this case he derived that |σ`| < κ/`2, ` = 1, 2, ... .

2. He derived a formula for the upper bound of the error ‖Em‖ = ‖ψ−ψm‖ in approximating

the function ψ(η) by ψm(η) in the case that the function ψ(η) ∈ Cm[0, 1], i,e.

‖Em‖ ≤
Λ∆m+1

(m+ 1)!

√
π

2
,

where Λ = maxη∈[0,1] ψ
(m+1)(η), and ∆ = max[η0, η − η0].
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Also in this subsection, we can use the formula (16) and some properties of the differential

operator to give an approximate formula of D(n)ψm(η) directly through the following theorem.

Theorem 1. ([31], [32])

Suppose that we approximate the function ψ(η) in the form (18) then D(n)(ψm(η)) can be

defined as:

D(n)(ψm(η)) =
m∑
`=n

`−n∑
k=0

σ` Υ`, k, n η
`−k−n, Υ`, k, ν =

(−1)k22`−2k(2n+ 1) (2`− k)!(`− k)!

~n−k(k!) Γ(2`− 2k + 2) Γ(`− k + 1− n)
.

(19)

3.2. Procedure solution using SCM

We will implement the SCM to solve the system (??)-(??) numerically. We approximate

f(η), and θ(η) by fN(η), and θN(η), respectively as follows:

fN(η) =
N∑
`=0

a`
¯̄̄C`(η), θN(η) =

N∑
`=0

b`
¯̄̄C`(η). (20)

By using Eqs.(??)-(??), (20) and the formula (19), we can obtain:(
1 +

1

β

) N∑
`=3

`−3∑
k=0

a` Υ`, k, 3 η
`−k−3 +

(
N∑
`=0

a`
¯̄̄C`(η)

)(
N∑
`=2

`−2∑
k=0

a` Υ`, k, 2 η
`−k−2

)

−

(
N∑
`=1

`−1∑
k=0

a` Υ`, k, 1 η
`−k−1

)2

− η

2
S

(
N∑
`=2

`−2∑
k=0

a` Υ`, k, 2 η
`−k−2

)

− (S +M)

(
N∑
`=1

`−1∑
k=0

a` Υ`, k, 1 η
`−k−1

)
= 0,

(21)

(
1

Pr

)( N∑
`=2

`−2∑
k=0

b` Υ`, k, 2 η
`−k−2

)
+

(
N∑
`=0

a`
¯̄̄C`(η)

)(
N∑
`=1

`−1∑
k=0

b` Υ`, k, 1 η
`−k−1

)
− r

(
N∑
`=0

b`
¯̄̄C`(η)

)
.(

N∑
`=1

`−1∑
k=0

a` Υ`, k, 1 η
`−k−1

)
− S

(
0.5η

N∑
`=1

`−1∑
k=0

b` Υ`, k, 1 η
`−k−1 +m

N∑
`=0

b`
¯̄̄C`(η)

)

+ Ec

(
1 +

1

β

)( N∑
`=2

`−2∑
k=0

a` Υ`, k, 2 η
`−k−2

)2

+ γ

(
N∑
`=0

b`
¯̄̄C`(η)

)
= 0.

(22)
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The previous equations (21)-(22) will be collocated at N of nodes ηp as follows:(
1 +

1

β

) N∑
`=3

`−3∑
k=0

a` Υ`, k, 3 η
`−k−3
p +

(
N∑
`=0

a`
¯̄̄C`(ηp)

)(
N∑
`=2

`−2∑
k=0

a` Υ`, k, 2 η
`−k−2
p

)

−

(
N∑
`=1

`−1∑
k=0

a` Υ`, k, 1 η
`−k−1
p

)2

− ηp
2
S

(
N∑
`=2

`−2∑
k=0

a` Υ`, k, 2 η
`−k−2
p

)

− (S +M)

(
N∑
`=1

`−1∑
k=0

a` Υ`, k, 1 η
`−k−1
p

)
= 0,

(23)

(
1

Pr

)( N∑
`=2

`−2∑
k=0

b` Υ`, k, 2 η
`−k−2
p

)
+

(
N∑
`=0

a`
¯̄̄C`(ηp)

)(
N∑
`=1

`−1∑
k=0

b` Υ`, k, 1 η
`−k−1
p

)

− r

(
N∑
`=0

b`
¯̄̄C`(ηp)

)(
N∑
`=1

`−1∑
k=0

a` Υ`, k, 1 η
`−k−1
p

)
− S

(
0.5ηp

N∑
`=1

`−1∑
k=0

b` Υ`, k, 1 η
`−k−1
p +m

N∑
`=0

b`
¯̄̄C`(ηp)

)

+ Ec

(
1 +

1

β

)( N∑
`=2

`−2∑
k=0

a` Υ`, k, 2 η
`−k−2
p

)2

+ γ

(
N∑
`=0

b`
¯̄̄C`(ηp)

)
= 0.

(24)

In addition, the boundary conditions (??)-(??) can be expressed by substituting from Eq.(20)

in (??)-(??) to find the following equations:

N∑
`=0

(−1)`(2`+ 1) a` = 0,
N∑
`=0

a`
¯̄̄C
′
`(0) = 1,

N∑
`=0

a`
¯̄̄C
′
`(~) = 0, (25)

N∑
`=0

b`
¯̄̄C
′
`(0) = −1,

N∑
`=0

b` = 0. (26)

Eqs.(23)-(24), together with equations (25)-(26), give a system of 2(N + 1) algebraic equations.

This system will solve for the unknowns a`, b`, ` = 0, 1, ..., N, by using the Newton iteration

method (NIM).

4. Results and discussion

The previous analysis discussed the effect of variable heat flux on MHD non-Newtonian slip

casson fluid flow and heat transfer over an unsteady stretching sheet in the presence of viscous

dissipation and internal heat generation or absorption. Now in this section, we will discuss the

behavior of the physical parameters governing the proposed model, namely, magnetic parameter

M , the Casson parameter β, unsteady parameter S, time indices parameter m, space indices

parameter r, the local heat generation or absorption parameter γ, the velocity slip parameter λ,

the Prandtl number Pr and the local Eckert number Ec. Figures 1 (a) and 1 (b) examine the
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influence of magnetic number M on the velocity and temperature profiles respectively. Figure 1

(a) exhibits that the velocity is a decreasing function of M , whereas Figure 1 (b) is an increasing

function of the same parameter M .
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0 2 4 6 8
0.0

0.1

0.2
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0.4

0.5
Pr 1.3, r 2

Ec 0.2, m 2, 0.2

M 0.0, 0.5, 1.0

Figure 1. (a) Velocity distribution for M (b) Temperature distribution for M

Fig. 2 (a). is plotted to discuss the dimensionless velocity distribution inside the boundary layer

for different values of unsteadiness parameter S. From this figure it can be noted that an increase

in the unsteadiness parameter leads to a fall in the flow velocity distribution inside the boundary

layer. On the other hand, due to the presence of heat flux along the sheet, it is found that the

temperature distribution along the boundary layer and the wall temperature θ(0) decreases with

an increase in the same parameter as we can see from Fig. 2 (b). This shows the important fact

that the rate of cooling is much faster for higher values of the unsteadiness parameter whereas

it may take a longer cooling time for smaller values of the unsteadiness parameter.
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Figure 2. (a) Velocity distribution for S (b) Temperature distribution for S

We next show in Fig. 3 (a), the velocity distribution against the similarity variable η for various

values of Casson parameter β. From this figure it can be seen that increasing the Casson

parameter leads to increases in velocity distribution along the sheet but the reverse is true

away from the sheet. In addition, the thickness of the boundary layer is found to decreases

with increasing the Casson parameter. The temperature profiles for different values of the same
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parameter is presented in Fig. 3 (b). This figure reveals that both the temperature in the thermal

boundary layer and the wall temperature θ(0) increases for increasing the Casson parameter but

in weakly differences between values of the Casson parameter.
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Figure 3. (a) Velocity distribution for β (b) Temperature distribution for β

Figs. 4 (a) and 4 (b) have been drawn, to elucidate the influence of the velocity slip parameter λ

on the velocity and temperature profiles. From figure 4 (a), it is observed that both the velocity

distribution inside the boundary layer and the boundary layer thickness are decreased as the

slip velocity parameter increases. Physically, with slip condition, the slipping fluid decrease the

surface skin-friction values between the fluid and the stretching sheet. So, increasing the value

of the slip velocity parameter will decrease the flow velocity in the region of the boundary layer.

The dimensionless temperature distribution within the boundary layer region for the slip velocity

parameter is illustrated in Fig. 4 (b). From this figure we can noted that an increase in the

velocity slip parameter may result in an augmentation for both the temperature of the wall θ(0)

and the fluid temperature distribution in the thermal boundary layer.
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Figure 4. (a) Velocity distribution for λ (b) Temperature distribution for λ

Figure 5 (a), shows the effect of the Prandtl number Pr on the temperature profiles above the

sheet. From this figure, it is noticed that, a decrease in the Prandtl number may result in an

enhancement on thermal boundary layer thickness, temperature distribution and the temperature
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of the wall θ(0). This phenomenon is observed because the higher values of Prandtl number

correspond to the weaker thermal diffusivity. The effect of Eckert number on the temperature

profile, is shown in Fig. 5 (b). It is evident that the effect of increasing Eckert number is to

increase both the temperature distribution along the boundary layer and the temperature of the

surface θ(0). This is of course a consequence of the fact that for higher values of the Eckert

number, there is significant generation of heat due to viscous dissipation near the sheet. So,

viscous dissipation in a flow due to stretching sheet is beneficial for gaining temperature.
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Figure 5. (a) Temperature distribution for Pr (b) Temperature distribution for Ec

Figs. 6 (a) and 6 (b) illustrate that how profiles of temperature distribution are affected by the

variations in the space index parameter r or (the time index parameter m) when other parameters

remain fixed. These figures indicate that the dimensionless temperature profile turns depressed

for increasing value of two parameters. Likewise, it is observed that the effect of increasing these

two parameters will cause a drop in the temperature of the wall θ(0).
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Figure 6. (a) Temperature distribution for r (b) Temperature distribution for m

Last, but not least, Fig. 7 illustrate that how profiles of temperature distribution are affected

by the variations in the heat generation/absorption parameter γ when other parameters remain

fixed. This figure indicate that the thermal boundary-layer thicknesses increase when the inter-

nal heat generation parameters γ > 0 becomes stronger whereas the internal heat absorption
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parameters γ < 0 have the opposite effect. Also, it is noticed that the highest temperature

distribution for the fluid in the boundary layer was obtained with the greatest heat generation

parameters γ > 0. Likewise, it is shown that the effect of heat absorption parameters γ < 0

causes a drop in the temperature distribution as the heat following from the sheet is absorbed.
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Figure 7. Temperature distribution for γ

Table 1 reveal the effect of different values of physical governing parameters of the magnetic

parmaeter M , the Casson parameter β, unsteady parameter S, time indices parameter m, space

indices parameter r, the heat generation parameter, the Prandtl number Pr, the velocity slip

parameter λ and the Eckert number Ec as these are required for the evaluation of the local skin-

friction coefficient 1
2
CfxRe

1
2
x and the local Nusselt number NuxRe

−1
2
x . It is seen that the increase

in unsteady parameter causes increase in both the skin-friction coefficient and local Nusselt

number. Also, the local skin-friction coefficient decreases by increasing the Casson parameter,

whereas the local Nusselt number increases with the increasing values of it. With the increase in

the slip velocity parameter λ both the local skin-friction coefficient and the local Nusselt number

are decreases. Moreover, it is noticed that increases in the values of the Eckert number and

the heat generation parameter leads to a decrease in the local Nusselt number. On the other

hand, an increase in the Prandtl number causes an increase in the local Nusselt number. This

is because fluid with a higher value of Prandtl number posses a large heat capacity, and hence

intensifies the heat transfer. Finally, the local Nusselt number increases as the space indices

parameter, the heat absorption parameter and time indices parameter increases.
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Table 1. Variation of −(1 + 1
β
)f
′′
(0) and 1

θ(0)
for various values of

M,S, β, λ, γ, Ec, r,m and Pr.

M S β λ Pr Ec r m γ −(1 + 1
β
)f
′′
(0) 1

θ(0)

0.0 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.42101 1.78389

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.48953 1.76116

0.5 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.58118 1.73096

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.48975 1.76104

0.2 1.0 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.53819 1.86843

0.2 1.0 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.58376 1.97008

0.2 1.4 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.62672 2.06688

0.2 0.8 0.2 0.2 1.3 0.2 2.0 2.0 0.2 1.84905 1.74277

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.48953 1.76116

0.2 0.8 1.0 0.2 1.3 0.2 2.0 2.0 0.2 1.29823 1.76601

0.2 0.8 1.5 0.2 1.3 0.2 2.0 2.0 0.2 1.21724 1.76669

0.2 0.8 0.5 0.0 1.3 0.2 2.0 2.0 0.2 2.31847 1.83242

0.2 0.8 0.5 0.5 1.3 0.2 2.0 2.0 0.2 0.99485 1.66516

0.2 0.8 0.5 1.0 1.3 0.2 2.0 2.0 0.2 0.650784 1.56523

0.2 0.8 0.5 0.2 0.8 0.2 2.0 2.0 0.2 1.48953 1.38704

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.48953 1.76116

0.2 0.8 0.5 0.2 2.0 0.2 2.0 2.0 0.2 1.48953 2.16256

0.2 0.8 0.5 0.2 1.3 0.0 2.0 2.0 0.2 1.48953 1.86381

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.48953 1.76116

0.2 0.8 0.5 0.2 1.3 0.5 2.0 2.0 0.2 1.48953 1.62677

0.2 0.8 0.5 0.2 1.3 0.2 1.0 2.0 0.2 1.48953 1.54332

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.48953 1.76116

0.2 0.8 0.5 0.2 1.3 0.2 3.0 2.0 0.2 1.48953 1.96055

0.2 0.8 0.5 0.2 1.3 0.2 2.0 1.0 0.2 1.48953 1.44167

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.2 1.48953 1.76116

0.2 0.8 0.5 0.2 1.3 0.2 2.0 1.0 0.2 1.48953 2.02621

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 -1.0 1.48953 2.14588

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 -0.5 1.48953 1.99512

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.0 1.48953 1.83129

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 0.5 1.48953 1.64976

0.2 0.8 0.5 0.2 1.3 0.2 2.0 2.0 1.0 1.48953 1.44167
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5. Conclusions

The boundary layer flow and heat transfer of a Casson fluid over an unsteady stretching sheet

with slip effects, viscous dissipation, variable heat flux and internal heat generation/absorption

is analyzed here. The governing partial differential equations were converted into ordinary differ-

ential equations by using a suitable dimensionless transformation, which are solved numerically

by employing the spectral collocation method based on Chebyshev polynomials of the third-kind.

It was found that the effect of increasing values of the unsteadiness parameter, heat absorption

parameter or the Prandtl number is to enhance the local Nusselt number. Also, it was obtained

the local skin-friction coefficient and the local Nusselt number are decreases as the slip velocity

parameter increases. On the other hand, it was obtained that the local Nusselt number decreases

as both the heat generation parameter or the Eckert number increases but the reverse is true for

the Casson parameter. Moreover, it is interesting to find that as the time indices parameter or

the space indices parameter increases in magnitude, causes the local Nusselt number to increase.

Acknowledgements

The author thanks the Deanship of Academic Research, Imam Mohammad Ibn Saud Islamic

University (IMSIU), Riyadh, KSA, for the financial support of the project number (41xxxx).

References

[1] Crane, L. J. Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik, 21,

(1970) 645-647.

[2] Gupta, P. S. and Gupta, A. S., Heat and mass transfer on a stretching sheet with suction or

blowing. Can. J. Chem. Eng, 55 (1977) 744-746.

[3] Grubka, L. J. and Bobba, K. M. Heat transfer characteristics of a continuous stretching surface

with variable temperature. ASME J. Heat Transfer 107 (1985) 248-250.

[4] Chen, C. K., Char, M., Heat transfer on a continuous, stretching surface with suction or blowing.

J. Math. Anal. Appl. 35 (1988)568-580.

[5] Ali, M. E., Heat transfer characteristics of a continuous stretching surface. Warme Stoffubertrag

29 (1994) 227-234.

[6] Pop, I. and Na, T., Unsteady flow past a stretching sheet. Mechanics Research Communications.

23 (1996) 413-422.

[7] Elbashbeshy E. M. A., Bazid M. A. A., Heat transfer over an unsteady stretching surface. Heat

and Mass Transfer 41 (2004) 1-4.

13



[8] Mukhopadyay, S., Effect of thermal radiation on unsteady mixed convection flow and heat transfer

over a porous stretching surface in porous medium. International Journal of Heat and Mass Transfer

52 (2009) 3261-3265.

[9] Ishak,A., Nazar, R. and Pop, I., Heat Transfer over an Unsteady Stretching Permeable Surface with

Prescribed Wall Temperature. Non-linear Analysis: Real World Applications 10 (2009) 2909-2913.

[10] Elbashbeshy, E. M.A. and Aldawody, D.A., Effects of thermal radiation and magnetic field on

unsteady mixed convection flow and heat transfer over a porous stretching surface. International

Journal of Nonlinear Science 9 (2010) 448-454.

[11] Ching-Yang Cheng, Soret and Dufour effects on natural convection boundary layer flow over a

vertical cone in a porous medium with constant wall heat and mass fluxes. International Commu-

nications in Heat and Mass Transfer 38 (2011) 44-48.

[12] Megahed, A. M., Variable heat flux effect on MHD flow and heat transfer over an unsteady

stretching sheet in the presence of thermal radiation. Canadian Journal of Physics 92 (2014) 86-

91.

[13] Bhattacharyya, K., Hayat, T. and Alsaedi, A., Exact solution for boundary layer flow of Casson

fluid over a permeable stretching/shrinking sheet. ZAMM Z. Angew. Math. Mech. 94 (2014) 522-

528.

[14] Mukhopadhyay, S., Ranjan De, P., Bhattacharyya, k. and Layek, G.C., Casson fluid flow over an

unsteady stretching surface. Ain Shams Engineering Journal 4 (2013) 933-938.

[15] Boyd, J., Buick, J. M. and Green S., Analysis of the Casson and Carreau-Yasuda non-Newtonian

blood models in steady and oscillatory flow using the lattice Boltzmann method. Phys Fluids 19

(2007) 93-103.

[16] Thompson, P. A. and Troian, S. M., A general boundary condition for liquid flow at solid surfaces.

Nature, 389 (1997)360-362.

[17] Megahed, A. M., HPM for slip velocity effect on a liquid film over an unsteady stretching surface

with variable heat flux. The European Physical Journal Plus 126 (2011) 1-8.

[18] Turkyilmazoglu, M. Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelas-

tic fluid over a stretching sheet. International Journal of Thermal Sciences 50 (2011) 2264-2276.

[19] Megahed, A. M. Variable viscosity and slip velocity effects on the flow and heat transfer of a power-

law fluid over a non-linearly stretching surface with heat flux and thermal radiation. Rheologica

Acta 51 (2012) 841-847.

14



[20] Shahmohamadi, H. Analytic study on non-Newtonian natural convection boundary layer flow with

variable wall temperature on a horizontal plate. Meccanica, 47 (2012) 1313-1323.

[21] Mustafa, M., Hayat, T., Pop, I. and Hendi A. Stagnation-point flow and heat transfer of a Casson

fluid towards a stretching sheet. Zeitschrift für Naturforschung A 67 (2012) 70-76.

[22] Mostafa A. A. Mahmoud, The effects of variable fluid properties on MHD Maxwell fluids over a

stretching surface in the presence of heat generation/absorption. Chemical Engineering Commu-

nications 198 (2011) 131-146.

[23] Boyd J. P., Chebyshev and Fourier Spectral Methods, (2nd Ed. Dover), New York, USA, 2000.

[24] Khader M. M., On the numerical solutions for the fractional diffusion equation. Communications

in Nonlinear Science and Numerical Simulations 16, 2535-2542 (2011).

[25] Khader M. M., Mohammed M. Babatin, Numerical treatment for solving fractional SIRC model

and influenza A. Computational and Applied Mathematics 33(3), 543-556 (2014).

[26] Khader M. M., Saad K. M., A numerical study using Chebyshev collocation method for a problem

of biological invasion: fractional Fisher equation. Int. J. Biomathematics, 11(8), 1-15 (2018).

[27] Khader M. M., Saad K. M., On the numerical evaluation for studying the fractional KdV, KdV-

Burger’s, and Burger’s equations. European Physical Journal Plus 133, 1-13 (2018).

[28] Saad K. M., Khader M. M., Gomez-Aguilar J. F., and Dumitru Baleanu, Numerical solutions of the

fractional Fisher’s type equations with Atangana-Baleanu fractional derivative by using spectral

collocation methods. Chaos 29, 1-5 (2019).

[29] Snyder M. A., Chebyshev Methods in Numerical Approximation, Prentice-Hall, Inc. Englewood

Cliffs, N. J. 1966.

[30] Mason J. C., Handscomb D. C., Chebyshev Polynomials, Chapman and Hall, CRC, New York,

NY, Boca Raton, 2003.

[31] Khader M. M., Saad K. M., A numerical approach for solving the problem of biological inva-

sion (fractional Fisher equation) using Chebyshev spectral collocation method. Chaos, Solitons &

Fractals, 110, 169-177 (2018).

[32] Handan C. Y., Numerical solution of fractional Riccati differential equation via shifted Chebyshev

polynomials of the third kind, J. of Eng. Technology and Applied Sciences 28, 1-11 (2017).

15


