REFERENCES
Acedo, A., Hernández-Moro, C., Curiel-García, Á., Díez-Gómez, B., &
Velasco, E. A. (2015). Functional Classification of BRCA2 DNA Variants
by Splicing Assays in a Large Minigene with 9 Exons. Human
Mutation, 36 (2), 210-221. doi:10.1002/humu.22725
Acedo, A., Sanz, D. J., Durán, M., Infante, M., Pérez-Cabornero, L.,
Miner, C., & Velasco, E. A. (2012). Comprehensive splicing functional
analysis of DNA variants of the BRCA2 gene by hybrid minigenes.Breast Cancer Research, 14 (3), R87. doi:10.1186/bcr3202
Anczukow, O., Buisson, M., Leone, M., Coutanson, C., Lasset, C.,
Calender, A., . . . Mazoyer, S. (2012). BRCA2 deep intronic mutation
causing activation of a cryptic exon: opening toward a new preventive
therapeutic strategy. Clin Cancer Res, 18 (18), 4903-4909.
doi:10.1158/1078-0432.ccr-12-1100
Baralle, M., Skoko, N., Knezevich, A., De Conti, L., Motti, D.,
Bhuvanagiri, M., . . . Baralle, F. E. (2006). NF1 mRNA biogenesis:
Effect of the genomic milieu in splicing regulation of the NF1 exon 37
region. FEBS Letters, 580 (18), 4449-4456.
doi:10.1016/j.febslet.2006.07.018
Buratti, E., Muro, A. F., Giombi, M., Gherbassi, D., Iaconcig, A., &
Baralle, F. E. (2004). RNA Folding Affects the Recruitment of SR
Proteins by Mouse and Human Polypurinic Enhancer Elements in the
Fibronectin EDA Exon. Molecular and Cellular Biology, 24 (3),
1387. doi:10.1128/MCB.24.3.1387-1400.2004
Burge, C. B., Tuschi, T., & Sharp, P. A. (1999). Splicing of precursors
to mRNAs by the spliceosomes. In C. S. H. L. Press (Ed.), The RNA
World II (pp. pp. 525–560). NY: Oxford University Press.
Caminsky, N. G., Mucaki, E. J., Perri, A. M., Lu, R., Knoll, J. H. M.,
& Rogan, P. K. (2016). Prioritizing Variants in Complete Hereditary
Breast and Ovarian Cancer Genes in Patients Lacking Known BRCA
Mutations. Human Mutation, 37 (7), 640-652. doi:10.1002/humu.22972
Campos, B., Díez, O., Domènech, M., Baena, M., Balmaña, J., Sanz, J., .
. . Baiget, M. (2003). RNA analysis of eight BRCA1 and BRCA2
unclassified variants identified in breast/ovarian cancer families from
Spain. Human Mutation, 22 (4), 337-337. doi:10.1002/humu.9176
Cartegni, L., Chew, S. L., & Krainer, A. R. (2002). Listening to
silence and understanding nonsense: exonic mutations that affect
splicing. Nature Reviews Genetics, 3 , 285. doi:10.1038/nrg775
Cartegni, L., Hastings, M. L., Calarco, J. A., de Stanchina, E., &
Krainer, A. R. (2006). Determinants of Exon 7 Splicing in the Spinal
Muscular Atrophy Genes, SMN1 and SMN2. The American Journal of
Human Genetics, 78 (1), 63-77. doi:10.1086/498853
Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q., & Krainer, A. R. (2003).
ESEfinder: a web resource to identify exonic splicing enhancers.Nucleic Acids Research, 31 (13), 3568-3571.
Castellanos, E., Rosas, I., Solanes, A., Bielsa, I., Lázaro, C.,
Carrato, C., . . . on behalf of the, N. F. M. C. H.-I. C. O. I. (2013).
In vitro antisense therapeutics for a deep intronic mutation causing
Neurofibromatosis type 2. European Journal Of Human Genetics,
21 (7), 769-773. doi:10.1038/ejhg.2012.261
Cavalieri, S., Pozzi, E., Gatti, R. A., & Brusco, A. (2013).
Deep-intronic ATM mutation detected by genomic resequencing and
corrected in vitro by antisense morpholino oligonucleotide (AMO).European Journal Of Human Genetics, 21 (7), 774-778.
doi:10.1038/ejhg.2012.266
Clendenning, M., Buchanan, D. D., Walsh, M. D., Nagler, B., Rosty, C.,
Thompson, B., . . . Young, J. P. (2011). Mutation deep within an intron
of MSH2 causes Lynch syndrome. Familial Cancer, 10 (2), 297-301.
doi:10.1007/s10689-011-9427-0
Cooper, T. A. (2005). Use of minigene systems to dissect alternative
splicing elements. Methods, 37 (4), 331-340.
doi:10.1016/j.ymeth.2005.07.015
Corvelo, A., Hallegger, M., Smith, C. W. J., & Eyras, E. (2010).
Genome-Wide Association between Branch Point Properties and Alternative
Splicing. PLOS Computational Biology, 6 (11), e1001016.
doi:10.1371/journal.pcbi.1001016
Coutinho, G., Xie, J., Du, L., Brusco, A., Krainer, A. R., & Gatti, R.
A. (2005). Functional significance of a deep intronic mutation in the
ATM gene and evidence for an alternative exon 28a. Human Mutation,
25 (2), 118-124. doi:10.1002/humu.20170
Crotti, L., Lewandowska, M. A., Schwartz, P. J., Insolia, R.,
Pedrazzini, M., Bussani, E., . . . Pagani, F. (2009). A KCNH2 branch
point mutation causing aberrant splicing contributes to an explanation
of genotype-negative long QT syndrome. Heart Rhythm, 6 (2),
212-218. doi:10.1016/j.hrthm.2008.10.044
Dehainault, C., Michaux, D., Pagès-Berhouet, S., Caux-Moncoutier, V.,
Doz, F., Desjardins, L., . . . Houdayer, C. (2007). A deep intronic
mutation in the RB1 gene leads to intronic sequence exonisation.European Journal Of Human Genetics, 15 (4), 473-477.
doi:10.1038/sj.ejhg.5201787
Desmet, F.-O., Hamroun, D., Lalande, M., Collod-Béroud, G., Claustres,
M., & Béroud, C. (2009). Human Splicing Finder: an online
bioinformatics tool to predict splicing signals. Nucleic Acids
Research, 37 (9), e67-e67. doi:10.1093/nar/gkp215
Di Giacomo, D., Gaildrat, P., Abuli, A., Abdat, J., Frébourg, T., Tosi,
M., & Martins, A. (2013). Functional Analysis of a Large set of BRCA2
exon 7 Variants Highlights the Predictive Value of Hexamer Scores in
Detecting Alterations of Exonic Splicing Regulatory Elements.Human Mutation, 34 (11), 1547-1557. doi:10.1002/humu.22428
Erkelenz, S., Theiss, S., Otte, M., Widera, M., Peter, J. O., & Schaal,
H. (2014). Genomic HEXploring allows landscaping of novel potential
splicing regulatory elements. Nucleic Acids Research, 42 (16),
10681-10697. doi:10.1093/nar/gku736
Fairbrother, W. G., Holste, D., Burge, C. B., & Sharp, P. A. (2004).
Single Nucleotide Polymorphism–Based Validation of Exonic Splicing
Enhancers. PLOS Biology, 2 (9), e268.
doi:10.1371/journal.pbio.0020268
Fairbrother, W. G., Yeh, R.-F., Sharp, P. A., & Burge, C. B. (2002).
Predictive Identification of Exonic Splicing Enhancers in Human Genes.Science, 297 (5583), 1007-1013.
Findlay, G. M., Daza, R. M., Martin, B., Zhang, M. D., Leith, A. P.,
Gasperini, M., . . . Shendure, J. (2018). Accurate classification of
BRCA1 variants with saturation genome editing. Nature, 562 (7726),
217-222. doi:10.1038/s41586-018-0461-z
Fraile-Bethencourt, E., Díez-Gómez, B., Velásquez-Zapata, V., Acedo, A.,
Sanz, D. J., & Velasco, E. A. (2017). Functional classification of DNA
variants by hybrid minigenes: Identification of 30 spliceogenic variants
of BRCA2 exons 17 and 18. PLOS Genetics, 13 (3), e1006691.
doi:10.1371/journal.pgen.1006691
Fraile-Bethencourt, E., Valenzuela-Palomo, A., Díez-Gómez, B., Acedo,
A., & Velasco, E. A. (2018). Identification of Eight Spliceogenic
Variants in BRCA2 Exon 16 by Minigene Assays. Frontiers in
Genetics, 9 (188). doi:10.3389/fgene.2018.00188
Fraile-Bethencourt, E., Valenzuela-Palomo, A., Díez-Gómez, B., Caloca,
M. J., Gómez-Barrero, S., & Velasco, E. A. (2019). Minigene Splicing
Assays Identify 12 Spliceogenic Variants of BRCA2 Exons 14 and 15.Frontiers in Genetics, 10 (503). doi:10.3389/fgene.2019.00503
Fraile-Bethencourt, E., Valenzuela-Palomo, A., Díez-Gómez, B., Goina,
E., Acedo, A., Buratti, E., & Velasco, E. A. (2019). Mis-splicing in
breast cancer: identification of pathogenic BRCA2 variants by systematic
minigene assays. The Journal of Pathology, 248 (4), 409-420.
doi:10.1002/path.5268
Fu, X.-D., & Ares Jr, M. (2014). Context-dependent control of
alternative splicing by RNA-binding proteins. Nature Reviews
Genetics, 15 , 689. doi:10.1038/nrg3778
Gaildrat, P., Krieger, S., Théry, J.-C., Killian, A., Rousselin, A.,
Berthet, P., . . . Tosi, M. (2010). The BRCA1 c.5434C→G
(p.Pro1812Ala) variant induces a deleterious exon 23 skipping by
affecting exonic splicing regulatory elements. Journal of Medical
Genetics, 47 (6), 398. doi:10.1136/jmg.2009.074047
Goina, E., Skoko, N., & Pagani, F. (2008). Binding of DAZAP1 and
hnRNPA1/A2 to an Exonic Splicing Silencer in a Natural BRCA1 Exon 18
Mutant. Molecular and Cellular Biology, 28 (11), 3850-3860.
doi:10.1128/mcb.02253-07
Goren, A., Ram, O., Amit, M., Keren, H., Lev-Maor, G., Vig, I., . . .
Ast, G. (2006). Comparative Analysis Identifies Exonic Splicing
Regulatory Sequences—The Complex Definition of Enhancers and
Silencers. Molecular Cell, 22 (6), 769-781.
doi:10.1016/j.molcel.2006.05.008
Grodecká, L., Buratti, E., & Freiberger, T. (2017). Mutations of
Pre-mRNA Splicing Regulatory Elements: Are Predictions Moving Forward to
Clinical Diagnostics? International Journal of Molecular Sciences,
18 (8). doi:10.3390/ijms18081668
Hnilicová, J., & Staněk, D. (2011). Where splicing joins chromatin.Nucleus, 2 (3), 182-188. doi:10.4161/nucl.2.3.15876
Houdayer, C., Caux-Moncoutier, V., Krieger, S., Barrois, M., Bonnet, F.,
Bourdon, V., . . . Stoppa-Lyonnet, D. (2012). Guidelines for splicing
analysis in molecular diagnosis derived from a set of 327 combined in
silico/in vitro studies on BRCA1 and BRCA2 variants. Human
Mutation, 33 (8), 1228-1238. doi:10.1002/humu.22101
Houdayer, C., Dehainault, C., Mattler, C., Michaux, D., Caux-Moncoutier,
V., Pagès-Berhouet, S., . . . Stoppa-Lyonnet, D. (2008). Evaluation of
in silico splice tools for decision-making in molecular diagnosis.Human Mutation, 29 (7), 975-982. doi:10.1002/humu.20765
Ke, S., Shang, S., Kalachikov, S. M., Morozova, I., Yu, L., Russo, J.
J., . . . Chasin, L. A. (2011). Quantitative evaluation of all hexamers
as exonic splicing elements. Genome Research, 21 (8), 1360-1374.
Khan, S. G., Metin, A., Gozukara, E., Inui, H., Shahlavi, T.,
Muniz-Medina, V., . . . Kraemer, K. H. (2004). Two essential splice
lariat branchpoint sequences in one intron in a xeroderma pigmentosum
DNA repair gene: mutations result in reduced XPC mRNA levels that
correlate with cancer risk. Human Molecular Genetics, 13 (3),
343-352. doi:10.1093/hmg/ddh026
Khan, S. G., Yamanegi, K., Zheng, Z.-M., Boyle, J., Imoto, K., Oh,
K.-S., . . . Kraemer, K. H. (2010). XPC branch-point sequence mutations
disrupt U2 snRNP binding, resulting in abnormal pre-mRNA splicing in
xeroderma pigmentosum patients. Human Mutation, 31 (2), 167-175.
doi:10.1002/humu.21166
Lee, M., Roos, P., Sharma, N., Atalar, M., Evans, T. A., Pellicore, M.
J., . . . Cutting, G. R. (2017). Systematic Computational Identification
of Variants That Activate Exonic and Intronic Cryptic Splice Sites.The American Journal of Human Genetics, 100 (5), 751-765.
doi:10.1016/j.ajhg.2017.04.001
Leman, R., Gaildrat, P., Gac, G. L., Ka, C., Fichou, Y., Audrezet,
M.-P., . . . Houdayer, C. (2018). Novel diagnostic tool for prediction
of variant spliceogenicity derived from a set of 395 combined in
silico/in vitro studies: an international collaborative effort.Nucleic Acids Research, 46 (15), 7913-7923. doi:10.1093/nar/gky372
Leman, R., Tubeuf, H., Raad, S., Tournier, I., Derambure, C., Lanos, R.,
. . . Krieger, S. (2020). Assessment of branch point prediction tools to
predict physiological branch points and their alteration by variants.BMC Genomics, 21 (1), 86. doi:10.1186/s12864-020-6484-5
Li, J. L., Wang, L. F., Wang, H. Y., Bai, L. Y., & Yuan, Z. M. (2012).
High-accuracy splice site prediction based on sequence component and
position features. Genet Mol Res, 11 (3), 3432-3451.
doi:10.4238/2012.September.25.12
Li, M., & Pritchard, P. H. (2000). Characterization of the Effects of
Mutations in the Putative Branchpoint Sequence of Intron 4 on the
Splicing within the Human Lecithin:cholesterol Acyltransferase Gene.Journal of Biological Chemistry, 275 (24), 18079-18084.
Mazoyer, S., Puget, N., Perrin-Vidoz, L., Lynch, H. T.,
Serova-Sinilnikova, O. M., & Lenoir, G. M. (1998). A BRCA1 Nonsense
Mutation Causes Exon Skipping. The American Journal of Human
Genetics, 62 (3), 713-715. doi:10.1086/301768
McConville, C. M., Stankovic, T., Byrd, P. J., McGuire, G. M., Yao, Q.
Y., Lennox, G. G., & Taylor, M. R. (1996). Mutations associated with
variant phenotypes in ataxia-telangiectasia. American journal of
human genetics, 59 (2), 320-330.
Mercer, T. R., Clark, M. B., Andersen, S. B., Brunck, M. E., Haerty, W.,
Crawford, J., . . . Mattick, J. S. (2015). Genome-wide discovery of
human splicing branchpoints. Genome Research, 25 (2), 290-303.
doi:10.1101/gr.182899.114
Messiaen, L., Callens, T., De Paepe, A., Craen, M., & Mortier, G.
(1997). Characterisation of two different nonsense mutations, C6792A and
C6792G, causing skipping of exon 37 in the NF1 gene. Human
Genetics, 101 (1), 75-80. doi:10.1007/s004390050590
Millevoi, S., Bernat, S., Telly, D., Fouque, F., Gladieff, L., Favre,
G., . . . Toulas, C. (2010). The c.5242C>A BRCA1 missense
variant induces exon skipping by increasing splicing repressors binding.Breast Cancer Research and Treatment, 120 (2), 391-399.
doi:10.1007/s10549-009-0392-3
Montalban, G., Bonache, S., Moles-Fernández, A., Gisbert-Beamud, A.,
Tenés, A., Bach, V., . . . Gutiérrez-Enríquez, S. (2019). Screening of
<em>BRCA1/2</em> deep intronic regions by targeted gene
sequencing identifies the first germline <em>BRCA1</em>
variant causing pseudoexon activation in a patient with breast/ovarian
cancer. Journal of Medical Genetics, 56 (2), 63.
doi:10.1136/jmedgenet-2018-105606
Montera, M., Piaggio, F., Marchese, C., Gismondi, V., Stella, A., Resta,
N., . . . Mareni, C. (2001). A silent mutation in exon 14 of the APC
gene is associated with exon skipping in a FAP family. Journal of
Medical Genetics, 38 (12), 863. doi:10.1136/jmg.38.12.863
Nazari, I., Tayara, H., & Chong, K. T. (2019). Branch Point Selection
in RNA Splicing Using Deep Learning. IEEE Access, 7 , 1800-1807.
doi:10.1109/ACCESS.2018.2886569
Pagani, F., Buratti, E., Stuani, C., Bendix, R., Dörk, T., & Baralle,
F. E. (2002). A new type of mutation causes a splicing defect in ATM.Nature Genetics, 30 (4), 426-429. doi:10.1038/ng858
Paggi, J. M., & Bejerano, G. (2018). A sequence-based, deep learning
model accurately predicts RNA splicing branchpoints. RNA, 24 (12),
1647-1658. doi:10.1261/rna.066290.118
Raponi, M., Kralovicova, J., Copson, E., Divina, P., Eccles, D.,
Johnson, P., . . . Vorechovsky, I. (2011). Prediction of
single-nucleotide substitutions that result in exon skipping:
identification of a splicing silencer in BRCA1 exon 6. Human
Mutation, 32 (4), 436-444. doi:10.1002/humu.21458
Rouleau, E., Lefol, C., Moncoutier, V., Castera, L., Houdayer, C.,
Caputo, S., . . . Lidereau, R. (2010). A missense variant within BRCA1
exon 23 causing exon skipping. Cancer Genetics and Cytogenetics,
202 (2), 144-146. doi:10.1016/j.cancergencyto.2010.07.122
Sanz, D. J., Acedo, A., Infante, M., Durán, M., Pérez-Cabornero, L.,
Esteban-Cardeñosa, E., . . . Velasco, E. A. (2010). A High Proportion of
DNA Variants of BRCA1 and BRCA2 Is Associated with Aberrant Splicing in
Breast/Ovarian Cancer Patients. Clinical Cancer Research, 16 (6),
1957-1967. doi:10.1158/1078-0432.ccr-09-2564
Sauna, Z. E., & Kimchi-Sarfaty, C. (2011). Understanding the
contribution of synonymous mutations to human disease. Nature
Reviews Genetics, 12 , 683. doi:10.1038/nrg3051
Shamsani, J., Kazakoff, S. H., Armean, I. M., McLaren, W., Parsons, M.
T., Thompson, B. A., . . . Spurdle, A. B. (2018). A plugin for the
Ensembl Variant Effect Predictor that uses MaxEntScan to predict variant
spliceogenicity. Bioinformatics, 35 (13), 2315-2317.
doi:10.1093/bioinformatics/bty960
Shapiro, M. B., & Senapathy, P. (1987). RNA splice junctions of
different classes of eukaryotes: sequence statistics and functional
implications in gene expression. Nucleic Acids Research, 15 (17),
7155-7174.
Signal, B., Gloss, B. S., Dinger, M. E., & Mercer, T. R. (2018).
Machine learning annotation of human branchpoints. Bioinformatics,
34 (6), 920-927. doi:10.1093/bioinformatics/btx688
Sironi, M., Menozzi, G., Riva, L., Cagliani, R., Comi, G. P., Bresolin,
N., . . . Pozzoli, U. (2004). Silencer elements as possible inhibitors
of pseudoexon splicing. Nucleic Acids Research, 32 (5), 1783-1791.
doi:10.1093/nar/gkh341
Soukarieh, O., Gaildrat, P., Hamieh, M., Drouet, A., Baert-Desurmont,
S., Frébourg, T., . . . Martins, A. (2016). Exonic Splicing Mutations
Are More Prevalent than Currently Estimated and Can Be Predicted by
Using In Silico Tools. PLOS Genetics, 12 (1), e1005756.
doi:10.1371/journal.pgen.1005756
Spier, I., Horpaopan, S., Vogt, S., Uhlhaas, S., Morak, M., Stienen, D.,
. . . Aretz, S. (2012). Deep intronic APC mutations explain a
substantial proportion of patients with familial or early-onset
adenomatous polyposis. Human Mutation, 33 (7), 1045-1050.
doi:10.1002/humu.22082
Sutton, I. J., Last, J. I. K., Ritchie, S. J., Harrington, H. J., Byrd,
P. J., & Taylor, A. M. R. (2004). Adult-onset ataxia telangiectasia due
to ATM 5762ins137 mutation homozygosity. Annals of Neurology,
55 (6), 891-895. doi:10.1002/ana.20139
Svaasand, E., Engebretsen, L., Ludvigsen, T., Brechan, W., & Sjursen,
W. (2015). A Novel Deep Intronic Mutation Introducing a Cryptic Exon
Causing Neurofibromatosis Type 1 in a Family with Highly Variable
Phenotypes: A Case Study. Hereditary Genet, 4 (3).
doi:10.4172/2161-1041.1000152
Théry, J. C., Krieger, S., Gaildrat, P., Révillion, F., Buisine, M.-P.,
Killian, A., . . . Tosi, M. (2011). Contribution of bioinformatics
predictions and functional splicing assays to the interpretation of
unclassified variants of the BRCA genes. European Journal Of Human
Genetics, 19 (10), 1052-1058. doi:10.1038/ejhg.2011.100
Vallée, M. P., Di Sera, T. L., Nix, D. A., Paquette, A. M., Parsons, M.
T., Bell, R., . . . Tavtigian, S. V. (2016). Adding In Silico Assessment
of Potential Splice Aberration to the Integrated Evaluation of BRCA Gene
Unclassified Variants. Human Mutation, 37 (7), 627-639.
doi:10.1002/humu.22973
van der Klift, H. M., Jansen, A. M. L., Steenstraten, N., Bik, E. C.,
Tops, C. M. J., Devilee, P., & Wijnen, J. T. (2015). Splicing analysis
for exonic and intronic mismatch repair gene variants associated with
Lynch syndrome confirms high concordance between minigene assays and
patient RNA analyses. Molecular Genetics & Genomic Medicine,
3 (4), 327-345. doi:10.1002/mgg3.145
Vaz-Drago, R., Custódio, N., & Carmo-Fonseca, M. (2017). Deep intronic
mutations and human disease. Human Genetics, 136 (9), 1093-1111.
doi:10.1007/s00439-017-1809-4
Wang, G.-S., & Cooper, T. A. (2007). Splicing in disease: disruption of
the splicing code and the decoding machinery. Nature Reviews
Genetics, 8 , 749. doi:10.1038/nrg2164
Wang, Z., & Burge, C. B. (2008). Splicing regulation: From a parts list
of regulatory elements to an integrated splicing code. RNA,
14 (5), 802-813. doi:10.1261/rna.876308
Wang, Z., Rolish, M. E., Yeo, G., Tung, V., Mawson, M., & Burge, C. B.
(2004). Systematic Identification and Analysis of Exonic Splicing
Silencers. Cell, 119 (6), 831-845. doi:10.1016/j.cell.2004.11.010
Wappenschmidt, B., Becker, A. A., Hauke, J., Weber, U., Engert, S.,
Köhler, J., . . . Schmutzler, R. K. (2012). Analysis of 30 Putative
BRCA1 Splicing Mutations in Hereditary Breast and Ovarian Cancer
Families Identifies Exonic Splice Site Mutations That Escape In Silico
Prediction. PLoS ONE, 7 (12), e50800.
doi:10.1371/journal.pone.0050800
Xiong, H. Y., Alipanahi, B., Lee, L. J., Bretschneider, H., Merico, D.,
Yuen, R. K. C., . . . Frey, B. J. (2015). The human splicing code
reveals new insights into the genetic determinants of disease.Science, 347 (6218), 1254806. doi:10.1126/science.1254806
Yeo, G., & Burge, C. B. (2004). Maximum Entropy Modeling of Short
Sequence Motifs with Applications to RNA Splicing Signals. Journal
of Computational Biology, 11 (2-3), 377-394.
doi:10.1089/1066527041410418
Zhang, C., Li, W.-H., Krainer, A. R., & Zhang, M. Q. (2008). RNA
landscape of evolution for optimal exon and intron discrimination.Proceedings of the National Academy of Sciences, 105 (15), 5797.
doi:10.1073/pnas.0801692105
Zhang, K., Nowak, I., Rushlow, D., Gallie, B. L., & Lohmann, D. R.
(2008). Patterns of missplicing caused by RB1 gene mutations in patients
with retinoblastoma and association with phenotypic expression.Human Mutation, 29 (4), 475-484. doi:10.1002/humu.20664
Zhang, Q., Fan, X., Wang, Y., Sun, M.-a., Shao, J., & Guo, D. (2017).
BPP: a sequence-based algorithm for branch point prediction.Bioinformatics, 33 (20), 3166-3172.
doi:10.1093/bioinformatics/btx401
Zhang, X. H.-F., & Chasin, L. A. (2004). Computational definition of
sequence motifs governing constitutive exon splicing. Genes &
Development, 18 (11), 1241-1250. doi:10.1101/gad.1195304