References and Notes
Abrams, P. (1983). The theory of limiting similarity. Ann. Rev.
Ecol. Syst. , 14, 359–376.
Allouchea, O., Kalyuzhnya, M., Moreno-Ruedab, G., Pizarrob, M. &
Kadmona, R. (2012). Area–heterogeneity tradeoff and the diversity of
ecological communities. Proc. Natl. Acad. Sci. U.S.A. , 109,
17495–17500.
Annette, K. (2005). Reduced reproductive success and offspring survival
in fragmented populations of the forest herb Phyteuma spicatum .J. Ecol. , 93, 1226–1237.
Bar-Massada, A.
(2015).
Immigration rates and species niche characteristics affect the
relationship between species richness and habitat heterogeneity in
modeled meta-communities. Peer J , 3, e832 [Peer J-the Journal
of Life and Environmental Sciences]
Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity.Annu. Rev. Ecol. Evol. Syst. , 34, 487–515.
Gravel, D., Canham, C.D., Beaudet, M. & Messier, C. (2006). Reconciling
niche and neutrality: the continuum hypothesis. Ecol. Lett. , 9,
399–409.
Hart, S.P., Usinowicz, J. & Levine, J.M. (2017). The spatial scales of
species coexistence. Nat. Ecol. Evol. , 1, 1066–1073.
He, F.L. (2012). Area-based assessment of extinction risk.Ecology , 93, 974–980.
Hubbell, S.P. (2005). Neutral theory in community ecology and the
hypothesis of functional equivalence. Funct. Ecol. , 19, 166–172.
Kadmon, R. & Allouche, O. (2007). Integrating the effects of area,
isolation, and habitat heterogeneity on species diversity: a unification
of island biogeography and niche theory. Am. Nat. , 170, 443–454.
Levine, J.M. & HilleRisLambers, J. (2009). The importance of niches for
the maintenance of species diversity. Nature , 461, 254–257.
Mandal, S., Shurin, J.B., Efroymson, R.A. & Mathews, T.J. (2018).
Heterogeneity in nitrogen sources enhances productivity and nutrient use
efficiency in algal polycultures. Environ. Sci. Technol. , 52,
3769–3776.
Mellard, J.P., Yoshiyama, K., Klausmeier, C.A. & Litchman, E. (2012).
Experimental test of phytoplankton competition for nutrients and light
in poorly mixed water columns. Ecol. Monogr. , 82, 239–256.
Mitchell, E.G., Harris, S., Kenchington, C.G., Vixseboxse, P., Roberts,
L., Clark, C., Dennis, A., Liu, A.G. & Wilby, P.R. (2019). The
importance of neutral over niche processes in structuring Ediacaran
early animal communities. Ecol . Lett ., 22: 2028-2038.
Nogues-Bravo, D., Araujo, M.B., Romdal, T. & Rahbek, C. (2008). Scale
effects and human impact on the elevational species richness gradients.Nature , 453, 216–219.
Peng, C., Jun, T.W., Hang, W.H., Yuan, M Z., Yuan, G., Ju, P.S. & Ji,
Z.H. (2016). Environmental filtering process has more important roles
than dispersal limitation in shaping large-scale prokaryotic beta
diversity patterns of grassland soils. Microb. Ecol ., 72,
221–230.
Rahbek, C. (1995). The elevational gradient of species richness–a
uniform pattern. Ecography , 18, 200–205.
Rohde, K. (1992). Latitudinal gradients in species diversity: the search
for the primary cause. Oikos , 65, 514–527.
Schuler, M.S., Chase, J.M. & Knight, T.M. (2017). Habitat size
modulates the influence of heterogeneity on species richness patterns in
a model zooplankton community. Ecology , 98, 1651–1659.
Schwilk, D.W. & Ackerly, D.D. (2005). Limiting similarity and
functional diversity along environmental gradients. Ecol. Lett. ,
8, 272–281.
Tilman, D. (2005). Niche tradeoffs, neutrality, and community structure:
A stochastic theory of resource competition, invasion, and community
assembly. Proc. Natl. Acad. Sci. USA , 101, 10854–10861.
Table 1. Modeled richness corresponding to environmental stress levels
and EGUSs