References
Adam
G., Läuger P. & Stark G. (2009). Physikalische Chemie und Biophysik.
Springer Berlin Heidelberg.
Ambrožič-Dolinšek J., Camloh M., Žel
J.,
Kovač
M., Ravnikar M., Carraro
L. & Petrovič N.(2008). Phytoplasma infection may affect morphology, regeneration and
pyrethrin content in pyrethrum shoot culture. Scientia
Horticulturae, 116, 213–218.
Arn H.
& Cleere J.S. (1971). A double-lable choice-test for the simultaneous
determination of diet preference and ingestion by the aphidAmphorophora agathonica . Entomologia Experimentalis et
Applicata, 14, 377–387.
Bates
D., Mächler M., Bolker B. & Walker S. (2015). Fitting linear
mixed-effects models using lme4. Journal of Statistical Software,67, 1–48.
Bertamini
M., Grando M.S., Muthuchelian K. & Nedunchezhian N. (2002). Effect of
phytoplasmal infection on photosystem II efficiency and thylakoid
membrane protein changes in field grown apple (Malus pumila )
leaves. Physiological and Molecular Plant Pathology, 61,
349–356.
Bertamini
M., Grando M.S. & Nedunchezhian N. (2004). Effects of phytoplasma
infections on pigments, chlorophyll-protein complex and photosynthetic
activities in field grown apple leaves. Biologia Plantarum, 47,
237–242.
Bolker
B. & R Development Core Team. (2017). bbmle: Tools for General Maximum
Likelihood Estimation.
Carraro
L., Ermacora P., Loi N. & Osler R. (2004). The recovery phenomenon in
apple proliferation-infected apple trees. Journal of Plant
Pathology, 86, 141–146.
Chen X.-Y. & Kim J.-Y. (2009). Callose synthesis in higher plants.Plant Signaling & Behavior, 4, 489–492.
Chisholm
S.T., Coaker G., Day B. & Staskawicz B. (2006). Host-microbe
interactions: shaping the evolution of the plant immune response.Cell, 124, 803–814.
Christensen
N.M., Nicolaisen M., Hansen M. & Schulz A. (2004). Distribution of
phytoplasmas in infected plants as revealed by real-time PCR and
bioimaging. Molecular Plant-Microbe Interactions ,17, 1175–1184.
Curković
Perica M. (2008). Auxin-treatment induces recovery of
phytoplasma-infected periwinkle. Journal of Applied Microbiology,105, 1826–1834.
Dempsey D.A. & Klessig D.F. (2012). SOS – too many signals for
systemic acquired resistance? Trends in Plant Science, 17, 538-
545.
Dermastia
M. (2019). Plant Hormones in Phytoplasma Infected Plants.Frontiers in Plant Science, 10, 1–15.
Doyle
J.J. & Doyle J.L. (1990). Isolation of plant DNA from fresh tissue.Focus, 12, 13–15.
Eurostat Jahrbuch der Regionen. (2009). Amt für Veröffentlichungen
der Europäischen Union . ISBN 978-92-79-11695-7.
Fiore N., Bertaccini A., Bianco P.A., Cieslinska M., Ferretti L., Hoat
T.X. & Quaglino F. (2019). Fruit Crop Phytoplasmas. In: Phytoplasmas:
Plant Pathogenic Bacteria - I. Characterisation and Epidemiology of
Phytoplasma-Associated Diseases (eds A. Bertaccini, P.G. Weintraub, G.P.
Ra, N. Mori), pp. 153–190. Singapore: Springer Singapore.
Flors
V., Ton J., Jakab G. & Mauch-Mani B. (2005). Abscisic Acid and callose:
Team players in defence against pathogens? Journal of
Phytopathology, 153, 377–383.
Fox J.
& Weisberg S. (2019). An R Companion to Applied Regression,third. Thousand Oaks, California: Sage.
Furch A.C.U., Zimmermann M.R., Kogel K.-H., Reichelt M. & Mithöfer A.
(2014). Direct and individual analysis of stress-related phytohormone
dispersion in the vascular system of Cucurbita maxima after
flagellin 22 treatment. New Phytologist, 201, 1176-1182.
Gallinger J. & Gross J. (2018). Unraveling the host plant alternation
of Cacopsylla pruni – adults but not nymphs can survive on conifers due
to phloem/xylem composition. Frontiers in Plant Science, 9, 686.
Gallinger
J., Dippel C. & Gross J. (2019). Interfering host location ofCacopsylla pruni with repellent plant volatiles. IOBC WPRS
Bulletin, 146, 10-12.
Gallinger J. & Gross J. (2020). Phloem metabolites of Prunus sp.
rather than infection with Candidatus Phytoplasma prunorum
influence feeding behavior of Cacopsylla pruni nymphs.Journal of Chemical Ecology, 8, e64938.
Gallinger
J., Jarausch B., Jarausch W. & Gross J. (2020). Host plant preferences
and detection of host plant volatiles of the migrating psyllid speciesCacopsylla pruni , the vector of European Stone Fruit Yellows.Journal of Pest Science, 93, 461.
Gross
J. (2016). Chemical communication between phytopathogens, their host
plants and vector insects and eavesdropping by natural enemies.Frontiers in Ecology and Evolution, 4, 271.
Gross
J. & Mekonen N. (2005). Plant odours influence the host finding
behaviour of apple psyllids (Cacopsylla picta ; C.
melanoneura ). IOBC WPRS Bulletin, 28, 351–355.
Hafke
J.B., van Amerongen J.-K., Kelling F., Furch A.C.U., Gaupels F. & van
Bel A.J.E. (2005). Thermodynamic battle for photosynthate acquisition
between sieve tubes and adjoining parenchyma in transport phloem.Plant Physiology, 138, 1527-1537.
Hao P., Liu C., Wang Y., Chen R., Tang M., Du B., Zhu L. & He G.
(2008). Herbivore-induced callose deposition on the sieve plates of
rice: an important mechanism for host resistance. Plant
Physiology, 146, 1810–1820.
Heil
M. & Ton J. (2008). Long-distance signalling in plant defence.Trends in Plant Science, 13, 264–272.
Heyer M., Reichelt M. & Mithöfer A. (2018). A holistic approach to
analyze systemic jasmonate accumulation in individual leaves of
Arabidopsis rosettes upon wounding. Frontiers in Plant Science,9, 1569.
Hijaz
F. & Killiny N. (2014). Collection and chemical composition of phloem
sap from Citrus sinensis L. Osbeck (sweet orange). PloS
one, 9, 1–11.
Janik
K., Mithöfer A., Raffeiner M., Stellmach H., Hause B. & Schlink K.
(2017). An effector of apple proliferation phytoplasma targets TCP
transcription factors-a generalized virulence strategy of phytoplasma?Molecular Plant Pathology, 18, 435–442.
Jarausch B., Tedeschi R., Sauvion N., Gross J. & Jarausch W. (2019a).
Psyllid Vectors. In Phytoplasmas: Plant Pathogenic Bacteria - II .Transmission and Management of Phytoplasma - Associated Diseases.(eds. A. Bertaccini, P. G. Weintraub, G. P. Rao, N. Mori), pp.
53–78.Singapore: Springer Singapore.
Jarausch W., Jarausch B., Fritz M., Runne M., Etropolska A. &
Pfeilstetter E. (2019b). Epidemiology of European stone fruit yellows in
Germany: the role of wild Prunus spinosa . European Journal
of Plant Pathology, 50, 185.
Jung H.W., Tschaplinski T.J., Wang L., Glazebrook J. & Greenberg J.T.
(2009). Priming in systemic plant immunity. Science, 324, 89-91.
Kube
M., Schneider B., Kuhl H., Dandekar T., Heitmann K., Migdoll A.M.,
Reinhardt R. & Seemüller E. (2008). The linear chromosome of the
plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’.BMC Genomics, 9, 306.
Kuznetsova
A., Brockhoff P.B. & Christensen R.H.B. (2017). lmerTest Package: Tests
in Linear Mixed Effects Models. Journal of Statistical Software,82,1-26.
Lenth
R. (2019). emmeans: Estimated Marginal Means, aka Least-Squares Means.
Ma
K.-W. & Ma W. (2016). Phytohormone pathways as targets of pathogens to
facilitate infection. Plant Molecular Biology, 91, 713–725.
Marcone C., Jarausch B. & Jarausch W. (2010). CandidatusPhytoplasma prunorum, the causal agent of European stone fruit yellows:
an overview. Journal of Plant Pathology, 92, 19-34.
Marcone C. & Rao G.P. (2019). Control of Phytoplasma Diseases Through
Resistant Plants. In Phytoplasmas: Plant Pathogenic Bacteria - II.
Transmission and Management of Phytoplasma - Associated Diseases. (eds
A. Bertaccini, P. G. Weintraub, G.P. Rao, N. Mori), pp. 165–184.
Singapore: Springer Singapore.
Martini
X., Coy M., Kuhns E. & Stelinski L.L. (2018). Temporal decline in
pathogen-mediated release of methyl salicylate associated with
decreasing vector preference for infected Over Uninfected Plants.Frontiers in Ecology and Evolution, 6, 78.
Maust
B.E., Espadas F., Talavera C., Aguilar M., Santamaría J.M. & Oropeza C.
(2003). Changes in carbohydrate metabolism in coconut palms infected
with the lethal yellowing phytoplasma. Phytopathology, 93,
976–981.
Mayer
C.J., Vilcinskas A. & Gross J. (2008a). Pathogen-induced release of
plant allomone manipulates vector insect behavior. Journal of
Chemical Ecology, 34, 1518–1522.
Mayer
C.J., Vilcinskas A. & Gross J. (2008b). Phytopathogen lures its insect
vector by altering host plant odor. Journal of Chemical Ecology,34, 1045–1049.
Mayer C.J., Jarausch B., Jarausch W., Jelkmann W., Vilcinskas A. &
Gross J. (2009). Cacopsylla melanoneura has no relevance as
vector of apple proliferation in Germany. Phytopathology, 99,
729–738.
Mayer
C.J., Vilcinskas A. & Gross J. (2011). Chemically mediated multitrophic
interactions in a plant-insect vector-phytoplasma system compared with a
partially nonvector species. Agricultural and Forest Entomology,13, 25–35.
Menzel T.R., Weldegergis B.T., David A., Boland W., Gols R., van Loon
J.J.A. & Dicke M. (2014). Synergism in the effect of prior jasmonic
acid application on herbivore-induced volatile emission. Journal
of Experimental Botany, 65, 4821-4831.
Mittler
T.E. & Dadd R.H. (1963). Studies on the artificial feeding of the aphidMyzus persicae (Sulzer): I. relative uptake of water and sucrose
solutions. Journal of Insect Physiology, 9, 623–645.
Musetti R., Farhan K., De Marco F., Polittotto R., Paolacci A., Ciaffi
M., Ermacora P., Grisan S., Santi S. & Osler R. (2013).
Differentially-regulated defence genes in Malus domestica during
phytoplasma infection and recovery. European Journal of Plant
Pathology, 136, 13-19.
Nehela
Y., Hijaz F., Elzaawely A.A., El-Zahaby H.M. & Killiny N. (2018).
Citrus phytohormonal response to Candidatus Liberibacter
asiaticus and its vector Diaphorina citri . Physiological
and Molecular Plant Pathology, 102, 24–35.
Oshima
K., Maejima K. & Namba S. (2013). Genomic and evolutionary aspects of
phytoplasmas. Frontiers in Microbiology, 4, 230.
Park
S.-W., Kaiyomo E., Kumar D., Mosher S.L. & Klessig D.F. (2007). Methyl
salicylate is a critical mobile signal for plant systemic acquired
resistance. Science, 318, 113-116.
Pinheiro J., Bates D., DebRoy S., Deepayan S. & R Core Team. (2019).
nlme: Linear and Nonlinear Mixed Effects Models.
Potter, Eriksson T., Evans R.C., Oh S., Smedmark J.E.E., Morgan D.R.,
Kerr M., Robertson K.R., Arsenault M., Dickinson T.A. & Campbell C.S.
(2007). Phylogeny and classification of Rosaceae. Plant
Systematics and Evolution, 266, 5–43.
R Core
Team. (2019). R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing.
Robert-Seilaniantz
A., Grant M. & Jones J.D.G. (2011). Hormone crosstalk in plant disease
and defense: more than just jasmonate-salicylate antagonism.Annual Review of Phytopathology, 49, 317–343.
Seemüller E., Kunze L. & Schaper U. (1984). Colonization behavior of
MLO, and symptom expression of proliferation-diseased apple trees and
decline-diseased pear trees over a period of several years.Journal of Plant Diseases and Protection, 91, 525-532.
Seemüller
E., Garnier M. & Schneider B. (2002). Mycoplasmas of plants and
insects. In Molecular biology and pathogenicity of mycoplasmas (pp.
91-115). Springer, Boston, MA.
Seemüller E. & Schneider B. (2004). ‘Candidatus Phytoplasma
mali’, ‘Candidatus Phytoplasma pyri’ and ‘CandidatusPhytoplasma prunorum’, the causal agents of apple proliferation, pear
decline and European stone fruit yellows, respectively.International Journal of Systematic and Evolutionary
Microbiology, 54, 1217–1226.
Seemüller
E., Kiss E., Sule S. & Schneider B. (2010). Multiple infection of apple
trees by distinct strains of ‘Candidatus Phytoplasma mali’ and
its pathological relevance. Phytopathology, 100, 863–870.
Seemüller, E & Harries H. 2010. Plant resistance. Phytoplasmas:
genomes, plant hosts and vectors. CAB International, Oxfordshire, UK,
147-169.
Seemüller E., Kampmann M., Kiss E. & Schneider B. (2011). HflB
gene-based phytopathogenic classification of ‘Candidatusphytoplasma mali’ strains and evidence that strain composition
determines virulence in multiply infected apple trees. Molecular
Plant-Microbe Interactions, 24, 1258–1266.
Seemüller
E., Sule S., Kube M., Jelkmann W. & Schneider B. (2013). The AAA+
ATPases and HflB/FtsH proteases of ‘Candidatus Phytoplasma mali’:
phylogenetic diversity, membrane topology, and relationship to strain
virulence. Molecular Plant-Microbe Interactions, 26, 367–376.
Seemüller E., Zikeli K., Furch A.C.U., Wensing A. & Jelkmann W. (2018).
Virulence of ‘Candidatus Phytoplasma mali’ strains is closely
linked to conserved substitutions in AAA+ ATPase AP460 and their
supposed effect on enzyme function. European Journal of Plant
Pathology, 150, 701-711.
Siewert
C., Luge T., Duduk B., Seemüller E., Büttner C., Sauer S. & Kube M.
(2014). Analysis of expressed genes of the bacterium ‘Candidatusphytoplasma mali’ highlights key features of virulence and metabolism.PloS one, 9, e94391.
Soroker
V., Blumberg D., Haberman A., Hamburger-Rishard M., Reneh S., Talebaev
S., Anshelevich L. & Harari A.R. (2005). Current status of red palm
weevil infestation in date palm plantations in Israel.Phytoparasitica; Israel Journal of Plant Protection Sciences, 33,
97–106.
Strauss E. (2009). Phytoplasma research begins to bloom. Science,325, 388-390.
Sugio
A., MacLean A.M., Kingdom H.N., Grieve V.M., Manimekalai R. & Hogenhout
S.A. (2011a). Diverse targets of phytoplasma effectors: from plant
development to defense against insects. Annual Review of
Phytopathology, 49, 175–195.
Sugio A., Kingdom H.N., MacLean A.M., Grieve V.M. & Hogenhout S.A.
(2011b). Phytoplasma protein effector SAP11 enhances insect vector
reproduction by manipulating plant development and defense hormone
biosynthesis. Proceedings of the National Academy of Sciences of
the United States of America, 108, E1254-63.
van
Bel A.J.E. (1996). Interaction between sieve element and companion cell
and the consequences for photoassimilate distribution. Two structural
hardware frames with associated physiological software packages in
dicotyledons? Journal of Experimental Botany, 47, 1129-1140.
Walling
L.L. (2000). The Myriad Plant Responses to Herbivores. Journal of
Plant Growth Regulation, 19, 195–216.
Weintraub
P. & Gross J. (2013). Capturing insect vectors of phytoplasmas. In
Phytoplasma. Methods in Molecular Biology (Methods and Protocols). (ed
Dickinson M. H. J.), pp. 61–72. Totowa, NJ: Humana Press.
Weintraub
P.G. & Beanland L. (2006). Insect vectors of phytoplasmas. Annual
Review of Entomology, 51, 91–111.
Wickham
H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York:
Springer-Verlag.
Will
T., Kornemann S.R., Furch A.C.U., Tjallingii W.F. & van Bel A.J.E.
(2009). Aphid watery saliva counteracts sieve-tube occlusion: a
universal phenomenon? The Journal of Experimental Biology, 212,
3305–3312.
Will T., Furch A.C.U. & Zimmermann M.R. (2013). How phloem-feeding
insects face the challenge of phloem-located defenses. Frontiers
in Plant Science, 4.
Zafari
S., Niknam V., Musetti R. & Noorbakhsh S.N. (2012). Effect of
phytoplasma infection on metabolite content and antioxidant enzyme
activity in lime (Citrus aurantifolia ). Acta Physiologiae
Plantarum, 34, 561–568.
Zimmermann
M.R., Schneider B., Mithöfer A., Reichelt M., Seemüller E. & Furch
A.C.U. (2015). Implications of Candidatus Phytoplasma mali
infection on phloem function of apple trees. Journal of
Endocytobiosis and Cell Research, 26, 67–75.
Zuur
A.F., Ieno E.N., Walker N., Saveliev A.A. & Smith G.M. (2009). Mixed
effects models and extensions in ecology with R.