References

Adam G., Läuger P. & Stark G. (2009). Physikalische Chemie und Biophysik. Springer Berlin Heidelberg.
Ambrožič-Dolinšek J., Camloh M., Žel J., Kovač M., Ravnikar M., Carraro L. & Petrovič N.(2008). Phytoplasma infection may affect morphology, regeneration and pyrethrin content in pyrethrum shoot culture. Scientia Horticulturae, 116, 213–218.
Arn H. & Cleere J.S. (1971). A double-lable choice-test for the simultaneous determination of diet preference and ingestion by the aphidAmphorophora agathonica . Entomologia Experimentalis et Applicata, 14, 377–387.
Bates D., Mächler M., Bolker B. & Walker S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software,67, 1–48.
Bertamini M., Grando M.S., Muthuchelian K. & Nedunchezhian N. (2002). Effect of phytoplasmal infection on photosystem II efficiency and thylakoid membrane protein changes in field grown apple (Malus pumila ) leaves. Physiological and Molecular Plant Pathology, 61, 349–356.
Bertamini M., Grando M.S. & Nedunchezhian N. (2004). Effects of phytoplasma infections on pigments, chlorophyll-protein complex and photosynthetic activities in field grown apple leaves. Biologia Plantarum, 47, 237–242.
Bolker B. & R Development Core Team. (2017). bbmle: Tools for General Maximum Likelihood Estimation.
Carraro L., Ermacora P., Loi N. & Osler R. (2004). The recovery phenomenon in apple proliferation-infected apple trees. Journal of Plant Pathology, 86, 141–146.
Chen X.-Y. & Kim J.-Y. (2009). Callose synthesis in higher plants.Plant Signaling & Behavior, 4, 489–492.
Chisholm S.T., Coaker G., Day B. & Staskawicz B. (2006). Host-microbe interactions: shaping the evolution of the plant immune response.Cell, 124, 803–814.
Christensen N.M., Nicolaisen M., Hansen M. & Schulz A. (2004). Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Molecular Plant-Microbe Interactions ,17, 1175–1184.
Curković Perica M. (2008). Auxin-treatment induces recovery of phytoplasma-infected periwinkle. Journal of Applied Microbiology,105, 1826–1834.
Dempsey D.A. & Klessig D.F. (2012). SOS – too many signals for systemic acquired resistance? Trends in Plant Science, 17, 538- 545.
Dermastia M. (2019). Plant Hormones in Phytoplasma Infected Plants.Frontiers in Plant Science, 10, 1–15.
Doyle J.J. & Doyle J.L. (1990). Isolation of plant DNA from fresh tissue.Focus, 12, 13–15.
Eurostat Jahrbuch der Regionen. (2009). Amt für Veröffentlichungen der Europäischen Union . ISBN 978-92-79-11695-7.
Fiore N., Bertaccini A., Bianco P.A., Cieslinska M., Ferretti L., Hoat T.X. & Quaglino F. (2019). Fruit Crop Phytoplasmas. In: Phytoplasmas: Plant Pathogenic Bacteria - I. Characterisation and Epidemiology of Phytoplasma-Associated Diseases (eds A. Bertaccini, P.G. Weintraub, G.P. Ra, N. Mori), pp. 153–190. Singapore: Springer Singapore.
Flors V., Ton J., Jakab G. & Mauch-Mani B. (2005). Abscisic Acid and callose: Team players in defence against pathogens? Journal of Phytopathology, 153, 377–383.
Fox J. & Weisberg S. (2019). An R Companion to Applied Regression,third. Thousand Oaks, California: Sage.
Furch A.C.U., Zimmermann M.R., Kogel K.-H., Reichelt M. & Mithöfer A. (2014). Direct and individual analysis of stress-related phytohormone dispersion in the vascular system of Cucurbita maxima after flagellin 22 treatment. New Phytologist, 201, 1176-1182.
Gallinger J. & Gross J. (2018). Unraveling the host plant alternation of Cacopsylla pruni – adults but not nymphs can survive on conifers due to phloem/xylem composition. Frontiers in Plant Science, 9, 686.
Gallinger J., Dippel C. & Gross J. (2019). Interfering host location ofCacopsylla pruni with repellent plant volatiles. IOBC WPRS Bulletin, 146, 10-12.
Gallinger J. & Gross J. (2020). Phloem metabolites of Prunus sp. rather than infection with Candidatus Phytoplasma prunorum influence feeding behavior of Cacopsylla pruni nymphs.Journal of Chemical Ecology, 8, e64938.
Gallinger J., Jarausch B., Jarausch W. & Gross J. (2020). Host plant preferences and detection of host plant volatiles of the migrating psyllid speciesCacopsylla pruni , the vector of European Stone Fruit Yellows.Journal of Pest Science, 93, 461.
Gross J. (2016). Chemical communication between phytopathogens, their host plants and vector insects and eavesdropping by natural enemies.Frontiers in Ecology and Evolution, 4, 271.
Gross J. & Mekonen N. (2005). Plant odours influence the host finding behaviour of apple psyllids (Cacopsylla picta ; C. melanoneura ). IOBC WPRS Bulletin, 28, 351–355.
Hafke J.B., van Amerongen J.-K., Kelling F., Furch A.C.U., Gaupels F. & van Bel A.J.E. (2005). Thermodynamic battle for photosynthate acquisition between sieve tubes and adjoining parenchyma in transport phloem.Plant Physiology, 138, 1527-1537.
Hao P., Liu C., Wang Y., Chen R., Tang M., Du B., Zhu L. & He G. (2008). Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance. Plant Physiology, 146, 1810–1820.
Heil M. & Ton J. (2008). Long-distance signalling in plant defence.Trends in Plant Science, 13, 264–272.
Heyer M., Reichelt M. & Mithöfer A. (2018). A holistic approach to analyze systemic jasmonate accumulation in individual leaves of Arabidopsis rosettes upon wounding. Frontiers in Plant Science,9, 1569.
Hijaz F. & Killiny N. (2014). Collection and chemical composition of phloem sap from Citrus sinensis L. Osbeck (sweet orange). PloS one, 9, 1–11.
Janik K., Mithöfer A., Raffeiner M., Stellmach H., Hause B. & Schlink K. (2017). An effector of apple proliferation phytoplasma targets TCP transcription factors-a generalized virulence strategy of phytoplasma?Molecular Plant Pathology, 18, 435–442.
Jarausch B., Tedeschi R., Sauvion N., Gross J. & Jarausch W. (2019a). Psyllid Vectors. In Phytoplasmas: Plant Pathogenic Bacteria - II .Transmission and Management of Phytoplasma - Associated Diseases.(eds. A. Bertaccini, P. G. Weintraub, G. P. Rao, N. Mori), pp. 53–78.Singapore: Springer Singapore.
Jarausch W., Jarausch B., Fritz M., Runne M., Etropolska A. & Pfeilstetter E. (2019b). Epidemiology of European stone fruit yellows in Germany: the role of wild Prunus spinosa . European Journal of Plant Pathology, 50, 185.
Jung H.W., Tschaplinski T.J., Wang L., Glazebrook J. & Greenberg J.T. (2009). Priming in systemic plant immunity. Science, 324, 89-91.
Kison H. & Seemüller E. (2001). Differences in strain virulence of the European stone fruit yellows phytoplasma and susceptibility of stone fruit trees on various rootstocks to this pathogen. Journal of Phytopathology , 149, 533–541.
Koncz L., Petróczy M., Ladányi M., Maitz M. & Nagy G. (2017). Severity of symptoms of European stone fruit yellows on different apricot varieties. Review on Agriculture and Rural Development , 6, 63–70.
Kube M., Schneider B., Kuhl H., Dandekar T., Heitmann K., Migdoll A.M., Reinhardt R. & Seemüller E. (2008). The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’.BMC Genomics, 9, 306.
Kuznetsova A., Brockhoff P.B. & Christensen R.H.B. (2017). lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software,82,1-26.
Lenth R. (2019). emmeans: Estimated Marginal Means, aka Least-Squares Means.
Ma K.-W. & Ma W. (2016). Phytohormone pathways as targets of pathogens to facilitate infection. Plant Molecular Biology, 91, 713–725.Marcone C., Jarausch B. & Jarausch W. (2010).Candidatus Phytoplasma prunorum, the causal agent of European stone fruit yellows: an overview. Journal of Plant Pathology, 92, 19-34.
Marcone C. & Rao G.P. (2019). Control of ­Phytoplasma Diseases Through Resistant Plants. In Phytoplasmas: Plant Pathogenic Bacteria - II. Transmission and Management of Phytoplasma - Associated Diseases. (eds A. Bertaccini, P. G. Weintraub, G.P. Rao, N. Mori), pp. 165–184. Singapore: Springer Singapore.
Martini X., Coy M., Kuhns E. & Stelinski L.L. (2018). Temporal decline in pathogen-mediated release of methyl salicylate associated with decreasing vector preference for infected Over Uninfected Plants.Frontiers in Ecology and Evolution, 6, 78.
Maust B.E., Espadas F., Talavera C., Aguilar M., Santamaría J.M. & Oropeza C. (2003). Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma. Phytopathology, 93, 976–981.
Mayer C.J., Vilcinskas A. & Gross J. (2008a). Pathogen-induced release of plant allomone manipulates vector insect behavior. Journal of Chemical Ecology, 34, 1518–1522.
Mayer C.J., Vilcinskas A. & Gross J. (2008b). Phytopathogen lures its insect vector by altering host plant odor. Journal of Chemical Ecology,34, 1045–1049.
Mayer C.J., Jarausch B., Jarausch W., Jelkmann W., Vilcinskas A. & Gross J. (2009). Cacopsylla melanoneura has no relevance as vector of apple proliferation in Germany. Phytopathology, 99, 729–738.
Mayer C.J., Vilcinskas A. & Gross J. (2011). Chemically mediated multitrophic interactions in a plant-insect vector-phytoplasma system compared with a partially nonvector species. Agricultural and Forest Entomology,13, 25–35.
Menzel T.R., Weldegergis B.T., David A., Boland W., Gols R., van Loon J.J.A. & Dicke M. (2014). Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission. Journal of Experimental Botany, 65, 4821-4831.
Mittler T.E. & Dadd R.H. (1963). Studies on the artificial feeding of the aphidMyzus persicae (Sulzer): I. relative uptake of water and sucrose solutions. Journal of Insect Physiology, 9, 623–645.
Musetti R., Farhan K., De Marco F., Polittotto R., Paolacci A., Ciaffi M., Ermacora P., Grisan S., Santi S. & Osler R. (2013). Differentially-regulated defence genes in Malus domestica during phytoplasma infection and recovery. European Journal of Plant Pathology, 136, 13-19.
Nehela Y., Hijaz F., Elzaawely A.A., El-Zahaby H.M. & Killiny N. (2018). Citrus phytohormonal response to Candidatus Liberibacter asiaticus and its vector Diaphorina citri . Physiological and Molecular Plant Pathology, 102, 24–35.
Oshima K., Maejima K. & Namba S. (2013). Genomic and evolutionary aspects of phytoplasmas. Frontiers in Microbiology, 4, 230.
Park S.-W., Kaiyomo E., Kumar D., Mosher S.L. & Klessig D.F. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318, 113-116.
Pinheiro J., Bates D., DebRoy S., Deepayan S. & R Core Team. (2019). nlme: Linear and Nonlinear Mixed Effects Models.
Potter, Eriksson T., Evans R.C., Oh S., Smedmark J.E.E., Morgan D.R., Kerr M., Robertson K.R., Arsenault M., Dickinson T.A. & Campbell C.S. (2007). Phylogeny and classification of Rosaceae. Plant Systematics and Evolution, 266, 5–43.
R Core Team. (2019). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Richter S. (2002). Susceptibility of Austrian apricot and peach cultivars to ESFY. Plant Protection Science , 38, 281–284
Robert-Seilaniantz A., Grant M. & Jones J.D.G. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism.Annual Review of Phytopathology, 49, 317–343.
Seemüller E., Kunze L. & Schaper U. (1984). Colonization behavior of MLO, and symptom expression of proliferation-diseased apple trees and decline-diseased pear trees over a period of several years.Journal of Plant Diseases and Protection, 91, 525-532.
Seemüller E., Schaper U. & Kunze L. (1986). Effect of pear decline on pear trees on ’Quince A’ and Pyrus communis seedling rootstocks/Auswirkung des Birnenverfalls auf Birnbäume mit ’Quitte A’ und Birnensämling als Unterlage. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection , 44-50.
Seemüller E., Garnier M. & Schneider B. (2002). Mycoplasmas of plants and insects. In Molecular biology and pathogenicity of mycoplasmas (pp. 91-115). Springer, Boston, MA.
Seemüller E. & Schneider B. (2004). ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘CandidatusPhytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively.International Journal of Systematic and Evolutionary Microbiology, 54, 1217–1226.
Seemüller E. & Schneider B. (2007). Differences in virulence and genomic features of strains of ’Candidatus Phytoplasma mali’, the apple proliferation agent. Phytopathology , 97, 964–970.
Seemüller E., Kiss E., Sule S. & Schneider B. (2010). Multiple infection of apple trees by distinct strains of ‘Candidatus Phytoplasma mali’ and its pathological relevance. Phytopathology, 100, 863–870.
Seemüller, E & Harries H. (2010). Plant resistance. Phytoplasmas: genomes, plant hosts and vectors. CAB International, Oxfordshire, UK, 147-169.
Seemüller E., Kampmann M., Kiss E. & Schneider B. (2011). HflB gene-based phytopathogenic classification of ‘Candidatusphytoplasma mali’ strains and evidence that strain composition determines virulence in multiply infected apple trees. Molecular Plant-Microbe Interactions, 24, 1258–1266.
Seemüller E., Sule S., Kube M., Jelkmann W. & Schneider B. (2013). The AAA+ ATPases and HflB/FtsH proteases of ‘Candidatus Phytoplasma mali’: phylogenetic diversity, membrane topology, and relationship to strain virulence. Molecular Plant-Microbe Interactions, 26, 367–376.
Seemüller E., Zikeli K., Furch A.C.U., Wensing A. & Jelkmann W. (2018). Virulence of ‘Candidatus Phytoplasma mali’ strains is closely linked to conserved substitutions in AAA+ ATPase AP460 and their supposed effect on enzyme function. European Journal of Plant Pathology, 150, 701-711.
Siewert C., Luge T., Duduk B., Seemüller E., Büttner C., Sauer S. & Kube M. (2014). Analysis of expressed genes of the bacterium ‘Candidatusphytoplasma mali’ highlights key features of virulence and metabolism.PloS one, 9, e94391.
Soroker V., Blumberg D., Haberman A., Hamburger-Rishard M., Reneh S., Talebaev S., Anshelevich L. & Harari A.R. (2005). Current status of red palm weevil infestation in date palm plantations in Israel.Phytoparasitica; Israel Journal of Plant Protection Sciences, 33, 97–106.
Strauss E. (2009). Phytoplasma research begins to bloom. Science,325, 388-390.
Sugio A., MacLean A.M., Kingdom H.N., Grieve V.M., Manimekalai R. & Hogenhout S.A. (2011a). Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annual Review of Phytopathology, 49, 175–195.
Sugio A., Kingdom H.N., MacLean A.M., Grieve V.M. & Hogenhout S.A. (2011b). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 108, E1254-63.
Tauzin A.S. & Giardina T. (2014). Sucrose and invertases, a part of the plant defense response to the biotic stresses. Frontiers in Plant Science , 5, 293
van Bel A.J.E. (1996). Interaction between sieve element and companion cell and the consequences for photoassimilate distribution. Two structural hardware frames with associated physiological software packages in dicotyledons? Journal of Experimental Botany, 47, 1129-1140.
Walling L.L. (2000). The Myriad Plant Responses to Herbivores. Journal of Plant Growth Regulation, 19, 195–216.
Weintraub P.G. & Gross J. (2013). Capturing insect vectors of phytoplasmas. In Phytoplasma. Methods in Molecular Biology (Methods and Protocols). (ed Dickinson M. H. J.), pp. 61–72. Totowa, NJ: Humana Press.
Weintraub P.G. & Beanland L. (2006). Insect vectors of phytoplasmas. Annual Review of Entomology, 51, 91–111.
Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.
Will T., Kornemann S.R., Furch A.C.U., Tjallingii W.F. & van Bel A.J.E. (2009). Aphid watery saliva counteracts sieve-tube occlusion: a universal phenomenon? The Journal of Experimental Biology, 212, 3305–3312.
Will T., Furch A.C.U. & Zimmermann M.R. (2013). How phloem-feeding insects face the challenge of phloem-located defenses. Frontiers in Plant Science, 4.
Zafari S., Niknam V., Musetti R. & Noorbakhsh S.N. (2012). Effect of phytoplasma infection on metabolite content and antioxidant enzyme activity in lime (Citrus aurantifolia ). Acta Physiologiae Plantarum, 34, 561–568.
Zimmermann M.R., Schneider B., Mithöfer A., Reichelt M., Seemüller E. & Furch A.C.U. (2015). Implications of Candidatus Phytoplasma mali infection on phloem function of apple trees. Journal of Endocytobiosis and Cell Research, 26, 67–75.
Zuur A.F., Ieno E.N., Walker N., Saveliev A.A. & Smith G.M. (2009). Mixed effects models and extensions in ecology with R.