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Summary

In the ecological literature, many models for the predator-prey interactions consider
the monotonic functional responses to describe the action of the predators. How-
ever, there exist antipredator behaviors which are best represented by non-monotonic
functions.
The mathematical results on the predator-prey models provide very useful infor-
mation to understand the complex food webs; they also help to the insight of the
mechanisms that govern the evolution of ecological systems.
The aim of this paper is to show, the dynamics of a modified Leslie-Gower model,
assuming a rational non-monotonic functional response or Holling type IV. A prin-
cipal target is to compare the obtained properties with other cases, in which different
non-monotonic functional responses are incorporated.
The model is described by an autonomous bi-dimensional ordinary differential
equation system (ODEs), assuming that the prey and predator growth functions are
the logistic type.
The proposed model is not defined in (0, 0); considering a topological equivalent
system, it is possible that to prove the origin is a non-hyperbolic saddle point.
We also have established, there are subsets of the parameter space in which: i) there
exists a unique positive equilibrium point, ii) a heteroclinic curve exists. iii) two
concentric limit cycles exist, the innermost unstable and the outermost stable.
Numerical simulations are given to endorse the analytical results and to exhibit the
richness of the dynamics in the system.
KEYWORDS:
Predator-prey model, functional response, bifurcation, limit cycle, separatrix curve, stability

1 INTRODUCTION

The dynamical relationship between the predators and their prey has been and it will follow to be one of the dominant themes in
both Population Dynamics andMathematical Ecology1, due to its universal existence and importance in nature2, constituting an
important scope of study on AppliedMathematics. Many types of modelling have been formulated for this important interaction,
from the seminal Lotka-Volterra model3 in 1925, which obey a mass-action principle2.

†PCTR and LMGB were partially funded by a Internal Project of the Universidad del Quindío, Armenia, Colombia
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In this work a deterministic continuous-time predator-prey model of Leslie-Gower type4,5, is analyzed, which is described by
nonlinear bidimensional ordinary differential equation systems (ODEs), considering two important aspects for specifying the
interaction:

1. The functional response or predator consumption rate is a of Holling type IV, or non-monotonic.
2. The predators growth function is of logistic type.
The second aspect characterizes a Leslie-Gower type predator-prey model6,9 also known as logistic predator prey model1,3.

In this type of model, the conventional environmental carrying capacity OF predators Ky is proportional to prey abundance,
i.e., Ky = K(x) = nx, a function of the available prey quantity1,3, as in the May-Holling-Tanner model7,8. Moreover, the prey
growth equation is preserved as the Volterra model3.
Clearly, the model proposed by the English ecologist Patrick H. Leslie in 19484 does not fit to the Lotka-Volterra scheme3. It

has been strongly criticized by presenting anomalies in their predictions; it vaticinates that even at very low prey density, when
the consumption rate of an individual predator is essentially zero, predator population can increase, if predator prey ratio is very
small2,3; nevertheless, these models are employed to describe some predator-prey interactions in some field studies11.
It has been observed in the Nature that, in the case of critical scarcity, some predator species can switch over to other available

food. This ability of the predators can be modeled by adding a positive constant c in the carrying capacityKy(x), being described
now by K(x) = nx + c, a function of the available prey population12. This algebraic form permits to avoid the objections
formulated to the original model proposed by Leslie, assuming the predator is generalist 13,14. Then, it is said that the model is
represented by a Leslie-Gower scheme or a modified Leslie-Gower model6,12.
On the other hand, the predator functional response or consumption function refers to the change in the attacked prey den-

sity per unit of time per predator, when the prey density changes15; they are classified into several types, relying on the prey
population size or the both population sizes. Crawford. S. Holling in 196916 described three types of saturated functions, based
in experiments realized in the laboratory, and depending only in the prey population size (prey-dependent functional response).
They are named as Holling type, I , II or III 3; later, Robert J. Taylor17 in 1984 described the Holling type IV or non-monotonic
functional response17.
In a great majority of predator-prey models considered in the ecological literature, the predator response to the prey density

is assumed to be increasing monotonic1,3; this is an inherent assumption meaning that the more prey animals there are in the
environment, the better off the predator18,19
However, there is evidence that indicates that this need not always the case. For instance, when there exists an antipredator

behavior (APB), called defence group formation18,19,20,30,24. This term is used to describe the phenomenon whereby predators
decrease, or even prevented altogether, due to the increased ability of the prey to better defend or disguise themselves when their
number are large enough18,19,30,24. In this case a Holling type IV consumption function or non-monotonic functional response
is more adequate to describe that phenomenon17.
Another manifestation of an APB in which a non-monotonic functional response can be used, is the aggregation, a social

behavior of prey, in which they congregate on a finer scale relative to the predator; thus, the hunting of the predators is not
spatially homogeneous17, such as it happens with miles long schools of certain classes of fishes.
Here we will use a rational form for the non-monotonic functional response, which is described by the unimodal function

ℎ (x) = qx
x3+a

, similar to the function considered in20,21,22,23,24, a particular case of the so-called Monod-Haldane function25,
which is similar to the Monod (i.e., the Michaelis-Menten) function for low concentrations but includes the inhibitory effect at
high agglutinations25.
The function considered in this work can be a rational generalized by the functional response described by

ℎ(x) = qxm

xn+a
, with n and m ∈ N , where n > m ≥ 1

as in28. A question is if the exponents n and m have incidence in the dynamic of a predation model.
Nonetheless, other mathematical form has been formulated to describe a non-monotonic functional response as the following:
i) ℎ(x) = qx

x2+bx+a
, with q, a > 0 and b < 0, Rothe and Schafer31, Zhu et al.,32,33.

ii) ℎ(x) = qx2

x2−bx+a
, with q, a and b > 0, Lamontagne et al.27.

iii) ℎ(x) = qxe−bx, with q and b > 030.
iv) ℎ(x) = k(e−ax − e−bx), with b > a > 026.
Then, considering that distinct mathematical forms proposed to represent the group defense formation26,27,28,29,30,33, a com-

parison between the different formulated models is necessary. An interesting future work should be to verify the equivalence of
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the dynamical behaviors of the obtained systems; establishing the common and diverse properties of these models will permit
the election of the simplest form to represent that ecological phenomenon2.
Recently, another type of an antipredator behavior (APB) has received the attention of modelers which is called prey herd

behavior. A prey species exhibit herd behavior when the individuals demonstrate collective social conduct to avoid predation,
effecting an instinctive reaction equal to that realized by the majority of the other members34.
This behavior can take various forms, including schools of fish staying close together and swimming in the same direction,

flocks of migrating birds in formation, large herbivores populating the savannas gathering together in huge herds, and so on.
Generally, the strongest individuals are on the border, and the weakest are concentrated in the middle of the group. A group

of predators might be more effective at taking down a herd of prey than a single animal.
This phenomenon has been modeled by the monotonic function ℎ (x) = q

√

x
√

x+a
, a Holling type II functional response3, but

non-differentiable at x = 0. It is based on the so-called square root functional response, ℎ (x) = q√x, which was proposed by
the Russian biologist Georgii F. Gause in 193437; this collective behavior can be also described by the generalized monotonic
function ℎ (x) = qx�

x�+a
, with 0 < � < 1, named Rosenzweig type II functional response and also non-differentiable at x = 034.

Some articles have tried to homologate the way to model this phenomenon with the defense group formation35. We believe
these phenomena could differentiate due to the distinct dynamics originated on each system when both kinds of functions are
considered, i.e., the non-differentiable and the non-monotonic functional responses28,34.
The existence and number of limit cycles are important topics to a better understanding of many real world oscillatory phe-

nomena24. For predator-prey systems, the existence of limit cycles is related to the existence, stability, and bifurcation of a
positive equilibrium point24.
The problem of determining conditions, which guarantee the uniqueness of a limit cycle or the global stability of the unique

positive equilibrium in predator-prey systems, has been extensively studied over the last decades. This study starts with the work
by Kuo-Shung Cheng in 198139, who was the first to prove the uniqueness of a limit cycle for a specific predator-prey model,
using the symmetry of the prey isocline; he assumes the hyperbolic functional response, a Holling type II functional response1.
To establish the quantity of limit cycles which can be born throughout the bifurcation of a center-type focus42 is not an easy

task; this question is related with the Hilbert 16th Problem40,41, proposed by the German mathematician David Hilbert in 1900;
it is referred to the maximum number and relative position of the limit cycles in a polynomial ODEs40,41.
One of the main goals of this work is to describe the behaviour of the model, involving the description of the dynamical

systems. An important issue is to establish the quantity of limit cycles that systems can exhibit, using the Lyapunov method to
estimate that number42,44. The obtained results will be compared with those obtained in the analysis of similar models, such as
the May-Holling-Tanner8 and the Leslie-Gower model with a particular rational non-monotonic functional response22,23,36,
This work is organized as follows: The model is presented in the next section 2; in Section 3 the main properties of the model

are established; in Section 4 some simulations are shown, and in the last section we present a discussion of the obtained results,
given the respective ecological interpretations.

2 THE MODEL

The predator-prey model that will be analyzed is described by the autonomous bidimensional differential equations system of
Kolmogorov type15,38 given by

X� (x, y) ∶

⎧

⎪

⎨

⎪

⎩

dx
dt
=

(

r
(

1 − x
K

)

− q y
x3+a

)

x
dy
dt
= s

(

1 − y
n x

)

y
(1)

with x (0) ≥ 0 and y (0) ≥ 0, where x = x (t) and y = y (t) indicate the prey and predator population sizes respectively for
t ≥ 0, measured as density or biomass; all the parameters are positives, i.e., v = (r, q, a, s, K, n) ∈ ℝ6

+, having the following
biological meanings:

• r and s represent the intrinsic growth rate of the prey and the predators, respectively,
• K indicates the prey environmental carrying capacity,
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• q is the maximal per capita consumption rate,
• 3
√

a
2
is the amount of prey for which the predation effect is maximun, and

• n represents a measure of the quality the prey as food for the predators.
System (2.1) is defined in the first quadrant, except for x = 0, i.e., in the set:

Ψ =
{

(x, y) ∈ ℝ2∕x > 0, y ≥ 0
}

= ℝ+ ×ℝ+
0

The equilibrium points of system (2.1) or singularities of vector fieldXv (x, y) are: (K, 0) and
(

xe, ye
) satisfying the equations

of the isoclines y = nx and y = r
q

(

1 − x
k

)

(

x3 + a
)

.
We note that:
i) System (2.1) is not defined for x = 0, but the point (0, 0) has a strong influence in the behaviour of system as it will see in

this work.
ii) The point (xe, ye

) lies in the interior of the first quadrant, if and only if, xe < K .
iii) The point (xe, ye

) can lie in the fourth quadrant, if and only if, xe > K; then the unique equilibrium is the point (K, 0).
To simplify the calculations and to make an adequate description of behavior of system (2.1), following the methodology

used in6,7,8,28, which involved a change of variable and a time rescaling42 given by the following function:

Υ ∶ Ψ̄ ×ℝ → Ψ ×ℝ
such us,

Υ (u, v, �) =

⎛

⎜

⎜

⎜

⎝

ku, knv,
u
(

u3 + a
K3

)

�

r

⎞

⎟

⎟

⎟

⎠

= (x, y, t)

with,
Ψ̄ =

{

(u, v) ∈ ℝ2∕ u ≥ 0, v ≥ 0
}

= ℝ+
0 ×ℝ+

0 .

Clearly, detDΥ (u, v, �) = 1
Kr

(

nK3u4 + anu
)

> 0.
Then Υ is a diffeomorphism preserving the orientation of time42. The vector field Xv (x, y) in the new system of coordinates

is topologically equivalent to the vector field Y� (u, v) = Υ◦ Xv (x, y)43; it takes the form Y� (u, v) = P (u, v)
)
)u
+Q (u, v) )

)v
43;

the associated differential equations is given by a sixth order polynomial system:

Y� (u, v) ∶

{

du
d�
=

(

(1 − u)
(

u3 + A
)

−Qv
)

u2
dv
d�
= B (u − v)

(

u3 + A
)

v
(2)

with A = a
K3 , Q = qn

r
, B = s

r
; the system (2) is defined in

Ψ̄ =
{

(u, v) ∈ ℝ2∕u ≥ 0, v ≥ 0
}

.

The equilibrium point of system (2) or singularities of vector field Y� (u, v) are: (0, 0) , (1, 0) and
(

ue, ve
), which is determined

by the intersection of isoclines:

v = u and v = 1
Q
(1 − u)

(

u3 + A
) .

Then, the abscissa u of this point at Ψ̄, is solution of the fourth degree equation:

P (u) = u4 − u3 + (A +Q) u − A = 0. (3)
According to the Descartes’rule of sign, the polynomial P (u) may have one or three different real positive roots, or two

different being one of them with multiplicity two, since the sign of the coefficient (A +Q) is always positive
Let ue = H be, the real positive root that always exists for equation (2.3) and (H,H) the equilibrium point that always exist

at Ψ̄ for system (2.2).
Dividing the polynomial P (u) by (u −H) is obtained the polynomial

P1(u) = u3 − (1 −H) u2 −H (1 −H) u + A +Q −H2 (1 −H)
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being a factor of P (u); the rest of the division is
R (H) = H4 −H3 + (A +Q)H − A.

If R (H) = 0; then

Q = 1
H
(1 −H)

(

A +H3) . (4)
Replacing Q in P1(u), we have that

P1(u) = u3 − (1 −H) u2 −H (1 −H) u + A
H

. (5)
Assuming H < 1, then H (1 −H) > 0 and so P1(u) has two change of sign; therefore, equation (5) would have up two

different real positive roots, and as consequences, equation (3) would have up three different real positive roots as is shown in
the following picture.
HERE figure 1
As

P1(−u) = −u3 − (1 −H) u2 +H (1 −H) u + A
Hthen equation (5) has a unique negative real root, and equation (3) has one negative real root.

Let u = −L, with L > 0, such root.
Dividing P1(−u) by u + L, i.e., u

3−(1−H)u2−H(1−H)u+ A
H

u+L
.

Thus, it is obtained,
P2(u) = u2 − (1 −H + L) u +

(

L2 + (1 −H)L −H (1 −H)
)

. (6)
and the rest is

R (H) = L3 + (1 −H)L2 −H (1 −H)L − A
H
= 0.

Let Δ = (1 −H + L)2 − 4
(

L2 + (1 −H)L −H (1 −H)
).

Lemma 1. A. Supposing a0 = L2 + (1 −H)L −H (1 −H) > 0.
Thus, a0 > 0, if and only if, L > L1, being

L1 =
1
2

(

− (1 −H) +
√

(3H + 1) (1 −H)
)

> 0.
For the equation (6) it has
A1) two real positive roots, if and only if,
Δ = −3L2 − 2 (1 −H)L + (3H + 1) (1 −H) > 0,
which are given by

u1 =
1
2

(

(1 −H + L) −
√

Δ
)

and u2 = 1
2

(

(1 −H + L) +
√

Δ
)

.
Moreover, Δ > 0, if and only if, L < L3, o L4 < L, being

L3 =
1
3

(

− (1 −H) − 2
√

−2H2 +H + 1
)

and L4 = 1
3

(

− (1 −H) + 2
√

−2H2 +H + 1
)

A2) a unique positive real root, if and only if, Δ = 0, which is u∗ = 1
2
(1 −H + L).

A3) has not positive real roots, if and only if, Δ < 0.
B. Supposing a0 = 0, there exists a unique positive real root given by u = (1 −H + L). Moreover, u = 0 is a root of

multiplicity two.
C. Supposing a0 < 0, there exists a unique positive real root given by u2 = 1

2

(

(1 −H + L) +
√

Δ
)

; moreover, u1 < 0.
Proof. It is immediate

For determine the nature of the hyperbolic equilibrium points, the Jacobian matrix is required, being:

DY� (u, v) =
(

DY� (u, v)11 −Qu2

Bv
(

4u3 − 3vu2 + A
)

B (u − 2v)
(

u3 + A
)

)

,

with DY� (u, v)11 = 2u
(

(1 − u)
(

u3 + A
)

−Qv
)

+ u2
(

−4u3 + 3u2 − A
).

Remark 1. In the following, we consider the case when there exists a unique positive equilibrium point (H,H). The dynamics
of the system considering two or three positive equilibrium point will be analyzed in a future paper. However, some simulations
will be shown in order to make evident the dynamical richness of the system. (2)
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3 MAIN RESULTS

For system (2) or vector field Y� (u, v), it has the following results:
Lemma 2. The set Γ = {

(u, v) ∈ ℝ2∕0 ≤ u ≤ 1, v ≥ 0
} is a region positively invariant .

Proof. As system (2) is of Kolmogorov type15,38, the coordinates axis are invariant sets42.
Let u = 1 be; we have that du

d�
= −Qv < 0, and any let be the sign of dv

d�
the trajectories enter to the region Γ̄.

We note that in the system (1) the set
Γ =

{

(x, y) ∈ ℝ2∕0 < x ≤ K, y ≥ 0
}

is a positively invariant region.
Lemma 3. The solutions are bounded.
Proof. Using Poincaré compactification45
Let be X = u

v
and Y = 1

v
, then,

dX
d�

= 1
v2

(

vdu
d�

− udv
d�

)

, dY
d�

= − 1
v2
dv
d�
;

then, the system takes the form:

Ŷ� ∶

⎧

⎪

⎨

⎪

⎩

dX
d�

= − 1
Y 5

(

−X5Y +X6 − ABXY 4 − AX2Y 4 − BX4Y + BX5Y +QX2Y 3 + AX3Y 3 + ABX2Y 4
)

dY
d�

= −B (X − 1) AY
2+X2

Y 2

.

To simplify the calculus, we make a time rescaling given by T = 1
Y 5
� then,

Ỹ� ∶

⎧

⎪

⎨

⎪

⎩

dX
d�

= −
(

−X5Y +X6 − ABXY 4 − AX2Y 4 − BX4Y + BX5Y +QX2Y 3 + AX3Y 3 + ABX2Y 4
)

dY
d�

= −Y 3B (X − 1)
(

AY 2 +X2)

then,
DỸ� (0, 0) =

(

0 0
0 0

)

.

For desingularizing the origen, we consider the blowing-up directional method43, making X = r and Y = r2s, then, we have:

V� ∶

⎧

⎪

⎨

⎪

⎩

dr
dT

= dr
dT

ds
dT

= 1
r2

(dY
dT

− 2rs dr
dT

)

so,

V� ∶

⎧

⎪

⎨

⎪

⎩

dr
dT

= r6
(

Bs + rs − Ar3s3 + Ar4s4 −Qr2s3 − Brs + ABr3s4 − ABr4s4 − 1
)

ds
dT

= r5s
(

−2Bs − 2rs + Brs2 + 2Ar3s3 − Br2s2 − 2Ar4s4 + 2Qr2s3 + 2Brs − ABr3s4 + ABr4s4 + 2
)

Once again, making a time rescaling given by � = r5T , the following new rescaled vector field is obtained:

V̄� ∶

⎧

⎪

⎨

⎪

⎩

dr
d�

= r
(

Bs + rs − Ar3s3 + Ar4s4 −Qr2s3 − Brs + ABr3s4 − ABr4s4 − 1
)

ds
d�

= s
(

−2Bs − 2rs + Brs2 + 2Ar3s3 − Br2s2 − 2Ar4s4 + 2Qr2s3 + 2Brs − ABr3s4 + ABr4s4 + 2
)

so, evaluating the Jacobian matrix of V̄� in (0, 0) , we obtain:

DV̄� (0, 0) =
(

−1 0
0 2

)

.

Thus, (0, 0) is a hyperbolic saddle point of vector field V̄� since detDV̄� (0, 0) = −2; so, (0, 0) is a non-hyperbolic saddle point
of vector field Ŷ� and Ỹ� , which is repelling over the positive s-axis; hence, (0,∞) is a nonhyperbolic saddle point of vector field
Y� , repelling negatively over the v - axis, Therefore, the solutions of the system (2) are bounded.



E. González-Olivares ET AL 7

Lemma 4. The singularity (1, 0) is a hyperbolic saddle point, for all parameter values.
Proof. Evaluating the Jacobian matrix at equilibrium point (1, 0),

DY� (1, 0) =
(

−(A + 1) −Q
0 B(A + 1)

)

.

Clearly, detDY� (1, 0) = −B (A + 1)2 < 0, thus the point (1, 0) is a hyperbolic saddle point.
Lemma 5. The point (0, 0) is a non-hyperbolic saddle point.
Proof. Evaluating the Jacobian matrix at the point (0, 0), we have that

DY� (0, 0) =
(

0 0
0 0

)

.

Thus, the origin is a non-hyperbolic singularity. To desingularize the origin, we consider the vertical blowing-up method, that
is, we consider the function given by Θ (p, q) = (p, pq) = (u, v).
We have that dp

d�
= du

d�
and dq

d�
= 1

p

(

dv
d�
− q dp

d�

)

, rescaling the time by T = p�, it becomes,

Z̄� ∶

{

dp
d�
= pA − Ap2 + p4 − p5 −Qp2q

dq
d�
= p4q − p3q + Apq + Bp3q − Bp3q2 +Qpq2 − Aq − ABq2 + ABq

If p = 0, then dp
d�
= 0, and dq

d�
= Aq (B − Bq − 1);

Then, we have q = 0 and q = 1
B
(B − 1)

The singularities of the vector field Z̄� are (0, 0) and
(

0, B−1
B

)

.
A) The Jacobian matrix in the point (0, 0) is

DZ̄� (0, 0) =
(

A 0
0 A (B − 1)

)

.
Then, the point (0, 0) is
i) a hyperbolic repeller, if and only if, B > 1.
ii) a hyperbolic saddle, if and only if, B < 1.
iii) a non-hyperbolic saddle, if and only if, B = 1.

B) The Jacobian matrix in the point
(

0, B−1
B

)

is
DZ̄�

(

0, B−1
B

)

=
(

A 0
0 −A (B − 1)

)

.
Then, the point

(

0, B−1
B

)

is
i) a hyperbolic repeller, if and only if, B < 1.
ii) a hyperbolic saddle, if and only if, B > 1.
iii) a non-hyperbolic saddle, if and only if, B = 1.
Then, by the blowing down, the point (0, 0) is a non-hyperbolic saddle point in the system (2).

Remark 2. In the system (2) the point (0, 0) has a similar behavior as the Gause type model with the same functional
response21,25. Then, there no exists the possibility of extinction of both populations simultaneously. Nevertheless, the predator
population has high possibilities of be depleted (Lemma 5).
Theorem 1. LetW s (0, 0) the stable manifold of the non-hyperbolic saddle point (0, 0) andW u (1, 0) the unstable manifold of
the hyperboli saddle point (1, 0), respectively; then, there exists a subset of parameters for which the intersection of W s (0, 0)
andW u (1, 0) is not empty, giving rise to the heteroclinic curve  joining the points (0, 0) and (1, 0).
Proof. By Lemma 5, the point (0, 0) is a non-hyperbolic saddle point and by Lemma 4 the point (1, 0) is saddle.
It is clear that the � − limit ofW s (0, 0) and the ! − limit ofW u (1, 0) are not at infinity on the direction of v − axis. Then,

there are points (u⋆, vs) ∈ W s (0, 0) and (

u⋆, vu
)

∈ W u (1, 0) where vs and vu are functions of the parameters A,B,Q, i.e,
vs = f1 (A,B,Q) and vu = f2 (A,B,Q).
Assuming 0 < u << 1 then, vs < vu; if 0 << u < 1 then, vs > vu.
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Since the vector field is continuous and suffers smooth changes with respect to the parameter values, the stable manifold
W s (0, 0) intersects the unstable manifoldW u (1, 0); therefore, there exist (u⋆s , v⋆s

)

∈ Γ̄ (invariant region), such that v⋆ = vs =
vu. This equation defines a surface in the parameter space for which a heteroclinic curve  exists.
Remark 3. The stable manifoldW s (0, 0), the straight line u = 1 and the u−axis determine a subregion Λ̄, which is closed and
bounded, that is,

Λ̄ =
{

(u, v) ∈ (ℝ+
0 )
2∕0 ≤ u ≤ 1,0 ≤ v ≤ vS with (u, vS) ∈ W s (0, 0)

}

is a compact region, where it is possible to apply the Poincaré-Bendixson Theorem there.
Analogously, in system (1) it has a compact region Λ.

3.1 System with a unique positive equilibrium
The nature of the equilibrium point (H,H)withH < 1will be established, considering the obtained relation forQ = f (H,A).
The vector field Y� (u, v) or system (2) takes the form:

Y� (u, v) ∶

⎧

⎪

⎨

⎪

⎩

du
d�

=
(

(1 − u)
(

u3 + A
)

− 1
H
(1 −H)

(

H3 + A
)

v
)

u2

dv
d�

= B(u − v)
(

u3 + A
)

v
(7)

with � = (A,H,B) ∈ (]0, 1[)2 ×ℝ. The Jacobian matrix is:

DY� (H,H) =
(

H2 (−A + 3H2 − 4H3) (1 −H)
(

A +H3)H
BH

(

A +H3) −BH
(

A +H3)

)

,

then,

detDY� (H,H) = BH2 (A +H3) (A − 2H3 + 3H4)

and the trace is given by:

trDY�(H,H) = H2 (−A + 3H2 − 4H3) − BH
(

A +H3) .

It has that trDY�(H,H) = 0 then B = H(−A+3H2−4H3)
H3+A

.
Let P = (

trDY�(H,H)
)2 − 4 detDY� (H,H). The sign of P determines if the equilibrium (H,H) is a focus or a node.

System (7) has the following properties:
Theorem 2. Let (H,H) be the unique positive equilibrium point at the first quadrant; then, (H,H) is

1. an attractor, if and only if, trDY�(H,H) < 0; then B > H(−A+3H2−4H3)
H3+A

.Moreover, it is

(a) an attractor node, if and only if, P > 0 and B > H(−A+3H2−4H3)
H3+A

.

(b) an attractor focus, if and only if, P < 0 and B > H(−A+3H2−4H3)
H3+A

.

2. a repeller, if and only if, trDY�(H,H) > 0; thus B < H(−A+3H2−4H3)
H3+A

.Moreover, it is
(a) a repeller focus, surrounded by a limit cycle, if and only if, P < 0.

(b) a repeller node, if and only if, P > 0.

3. a weak focus, if and only if, B = H(−A+3H2−4H3)
H3+A

.

Proof. 1. B > H(−A+3H2−4H3)
H3+A

, if and only if, trDY�(H,H) > 0. Then, the equilibrium (H,H) is an attractor; moreover,
(a) If P > 0 then, the point is an attractor node.



E. González-Olivares ET AL 9

(b) If P < 0 then, the point is an attractor focus.
2. B < H(−A+3H2−4H3)

H3+A
, if and only if, trDY�(H,H) > 0. Thus, (H,H) is a repeller; moreover,

(a) If P < 0 then, it is a repeller focus. By Hopf bifurcation the point (H,H) is surrounded by at least one infinitesimal
limit cycle.

(b) If P > 0 and B < H(−A+3H2−4H3)
H3+A

; therefore, (H,H) becomes a repeller node.
In this case, by the Poincaré-Bendixson Theorem42,43,45, in the subregion Λ̄ a non-infinitesimal limit cycle appears.

When the parameters change, both limit cycle can increase their amplitude until to coincide with the heteroclinic curve  .
Lemma 6. A Hopf bifurcation at equilibrium point (H,H) occurs in the system (7) for the bifurcation value B =
H(−A+3H2−4H3)

H3+A
.

Proof. The proof follows from the above theorem since the determinant is always positive and the trace changes sign. In addition,
the transversality condition44 is verified, since we have that

)
(

trDY�(H,H)
)

)B
= −H

(

A +H3) < 0.

Theorem 3. The singularity (H,H) of vector field Y� (u, v) is at least a two order weak focus, if and only if,B = H(−A+3H2−4H3)
H3+A

.

Proof. Setting u = U +H and v = V +H then the new system translated to origin of coordinates system is

Z� (U, V ) ∶

{

dU
d�

=
(

(1 − U −H)
(

(U +H)3 + A
)

− 1
H
(1 −H)

(

H3 + A
)

(V +H)
)

(U +H)2
dV
d�

= B (V +H) (U − V )((U +H)3 + A)

and the Jacobian matrix of system Z� (U, V ) at the point (0, 0) is

DZ� (0, 0) =
(

H2 (−A + 3H2 − 4H3) −H (1 −H)
(

A +H3)

BH
(

A +H3) −BH
(

A +H3)

)

.

Therefore,
detDZ� (0, 0) = BH2 (A +H3) (A − 2H3 + 3H4)

and
trDZ� (0, 0) = H2 (−A + 3H2 − 4H3) − BH

(

A +H3).
It has, detDZ� (0, 0) > 0, if and only if, A − 2H3 + 3H4 > 0, i.e., A > H3 (2 − 3H).
The first Lyapunov quantity42,44 is �1 =trDZ� (0, 0) = 0.
Hence,H2 (−A + 3H2 − 4H3) − BH

(

A +H3) = 0, or
B = H(−A+3H2−4H3)

(A+H3)with,
−A + 3H2 − 4H3 > 0, i.e., A < H2 (3 − 4H).
Thus,H3 (2 − 3H) < H2 (3 − 4H)

(3 − 4H) −H (2 − 3H) = 3 (1 −H)2.
LetW 2 = BH2 (A +H3) (A − 2H3 + 3H4) and BH (

A +H3) = H2 (−A + 3H2 − 4H3).
The matrix change of basis46 is

M =
(

Z�11 − trDZ� −detDZ�
Z�21 0

)

=
(

BH
(

A +H3) −W
BH

(

A +H3) 0

)

,
and

M−1 =

(

0 1
BH(A+H3)

− 1
W

1
W

)

.
Considering the change of variables given by

(

U
V

)

=M
(

x
y

)

it has,
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U = BH
(

A +H3) x −W y
V = BH

(

A +H3) x
or

x = 1
BH(A+H3)V

y = −1
W
(U + V )

Then, the new system is

Z̄� (x, y) ∶

⎧

⎪

⎨

⎪

⎩

dx
d�
= 1

BH(A+H3)
dV
d�

dy
d�
= 1

W

(

− dU
d�
+ dV

d�

)

After a large algebraic calculations we obtain the intermediate system Z̄� (x, y)
To obtain the normal form42 we make the time rescaling given by T = W �, obtaining

Z̃� (x, y) ∶

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dx
dT

=

−y − B
(

A + 4H3) xy + 3H2W
A+H3 y2 − 6B2H3 (A +H3) x2y + 9BH2W xy2

− 3HW 2

A+H3 y3 − 4B3H3 (A +H3)2 x3y + 9B2H2W
(

A +H3) x2y2

−6BHW 2xy3 + W 3

A+H3 y4 − B4H3 (A +H3)3 x4y + 3B3H2W
(

A +H3)2 x3y2

−3B2HW 2 (A +H3) x2y3 + BW 3xy4

dy
dT

=

x + BH
(

A +H3) (−2A − 4BH3 − AB − 2AH + 16H3 − 26H4) xy

+B2H2(2A−7H3+12H4)(A+H3)2
W

x2 −HW
(

2A + 3BH2 − 9H2 + 14H3) y2

+B3H2(A−9H3+19H4)(A+H3)3
W

x3 + B2H
(

A +H3)2 (−2A − 6BH3 − AH + 28H3 − 58H4) x2y
+BW

(

A +H3) (A + 9BH3 + 2AH − 29H3 + 59H4) xy2

+W 2 (A + 3BH2 − 10H2 + 20H3) y3 + 5B4H5(3H−1)(A+H3)4
W

x4

−4B3H4 (A +H3)3 (B + 15H − 5) x3y + 3B2H3W
(

A +H3)2 (3B + 30H − 10) x2y2

−2BH2W 2 (3B + 30H − 10)
(

A +H3) xy3 +HW 3 (B + 15H − 5) y4

+B5H5(6H−1)(A+H3)5
W

x5 − B4H4 (A +H3)4 (B + 30H − 5) x4y
+B3H3W

(

A +H3)3 (3B + 60H − 10) x3y2 − B2H2W 2 (A +H3)2 (3B + 60H − 10) x2y3

+BHW 3 (B + 30H − 5)
(

A +H3) xy4 +W 4 (6H − 1) y5 + B6H6(A+H3)6
W

x6

−6B5H5 (A +H3)5 x5y + 15B4H4W
(

A +H3)4 x4y2 − 20B3H3W 2 (A +H3)3 x3y3

+15B2H2W 3 (A +H3)2 x2y4 − 6BHW 4 (A +H3) xy5 −W 5y6
Using the Mathematica package47 we obtain that the second Lyapunov quantity42,44 is

�2 =
AHf (A,B,H)

B
(

A +H3
)2

where
f (A,B,H) = f3 (A,B,H)B3 + f2 (A,B,H)B2 + f1 (A,B,H)B + f0 (A,B,H)

with
f3 (A,B,H) =

(

(−39H)A8 +
(

72H7 + 31H6 − 63H4)A4 +
(

96H8 − 214H7)A3 +
(

45H8 − 31H6)A2 + 37H9),
f2 (A,B,H) =

( (

102H − 45H3 − 15
)

A8 +
(

151H5 + 71H4 + 171H3)A6 +
(

138H7)A4 +
(

42H6)A3

+
(

41H9 − 121H6)A2 +
(

18H9 − 156H10)

)

f1 (A,B,H) =
((

−74H5)A5 − 56A8 +
(

−453H5 −H4)A4 +
(

979H2 − 641H6)A2 +
(

35H10)A +
(

97H11 + 46H9))

f0 (A,B,H) =
( (

197 − 38H − 19H2)A8 +
(

−456H3 − 97H2)A7 +
(

657H5 − 413H4)A6 +
(

196H7 + 95H4)A5

+
(

32H9)A4 +
(

385H8 + 147H7 + 18H6)A3

)

Remebering that B = g (A,H), replacing and collecting respect to A, we obtaiṅ
f (A, g (A,H) ,H) = A14f14 (H)+A13f13 (H)++A12f12 (H)+A11f11 (H)+A10f10 (H)+A9f9 (H)+A8f8 (H)+A7f7 (H)

+A6f6 (H) + A5f5 (H) + A4f4 (H) + A3f3 (H) + A2f2 (H) + A1f1 (H) + f0 (H),
where,
f14 (H) = 39H4

f13 (H) = −3H2 (−34H + 15H3 + 5
)

f12 (H) = −H
(

15H4 + 249H5 − 468H6 + 45H7 − 56
)
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f11 (H) = −
(

360H8 − 421H7 − 887H6 + 561H5 − 202H4 + 19H2 + 38H − 197
)

f10 (H) = −H2 (33H − 110H2 + 57H3 − 209H5 − 492H6 + 1952H7 − 2221H8 + 360H9 + 97
)

f9 (H) = H4 (366H − 1174H2 + 586H3 − 1803H4 + 1027H5 + 2502H6 − 816H7 − 413
)

f8 (H) = H4
(

+95 +H + 453H2 − 1043H3 + 1722H4 − 1862H5 + 141H6 + 2681H7

−4313H8 + 3920H9 − 720H10

)

f7 (H) = −H7 (341H − 2773H2 + 4116H3 − 3520H4 + 3692H5 − 5848H6 + 1152H7 − 285
)

f6 (H) = H3
(

18H3 + 785H4 − 970H5 + 1812H6 + 33H7 + 1194H8 − 1521H9 − 698H10

+2009H11 + 2312H12 − 1040H13 − 979

)

f5 (H) = H6
(

54H3 + 2443H4 − 2540H5 + 3468H6 + 839H7 + 2908H8 − 15 400H9

+17 380H10 − 4608H11 − 1958

)

f4 (H) = −H5
(

3916H + 2902H4 − 2518H5 − 335H7 + 67H8 − 4357H9 + 6750H10

−6864H11 + 8456H12 − 10 624H13 + 4608H14 − 2937

)

f3 (H) = −H8
(

7832H + 4935H4 − 7937H5 + 996H6 + 677H7 + 7623H8 − 27 382H9

+41 184H10 − 27 520H11 + 6144H12 − 5874

)

f2 (H) = −H11
(

3778H + 184H2 − 291H3 + 4237H4 − 7873H5 + 1721H6 + 5628H7

−5496H8 + 2224H9 − 2937

)

f1 (H) = −H15 (4H − 3)
(

−540H + 818H2 + 35H4 + 146
)

f0 (H) = −H18 (4H − 3)
(

−1428H + 1313H2 + 433
).

Asigning some values to the parameter A, we can prove that f (A, g (A,H) ,H) and f (A,B,H) change of sign; then, the
equilibrium (0, 0) of vector field Z̄� is a weak focus of order two, i.e., it is surrounded by at least two limit cycles..
So, in the system (2) the equilibrium (H,H) is surrounded by at least two limit cycles.

3.2 System with positive equilibria
Case 2a Remebering that

a0 = L2 + (1 −H)L −H (1 −H) > 0 and Δ = (1 −H + L)2 − 4
(

L2 + (1 −H)L −H (1 −H)
)

= 0,
then there exists a unique solution u∗ = 1

2
(1 −H + L) of the equation (6), due to u1 and u2 conicide.

Then, the system (2) has two positive equilibria, (H,H) and (u∗, u∗
).

The evaluation of the Jacobian matrix is the same for both points, i.e.,
DY� (u, u) =

(

u2
(

−4u3 + 3u2 − A
)

−Qu2

Bu
(

u3 + A
)

−Bu
(

u3 + A
)

)

,

obtaining that
detDY� (u, u) = Bu3

(

A + u3
) (

A +Q − 3u2 + 4u3
)

which sign depends of the factor
T = A +Q − 3u2 + 4u3.

Furthermore,
trDY� (u, u) = u2

(

−4u3 + 3u2 − A
)

− Bu
(

u3 + A
).

When the three equilibrium points of system (3.1) coincide it has
u∗ =

1
2
(1 −H + L) = H .

Then,H = 1+L
3
; replacing u∗ in Q it obtains

Q = (27A+(1+L)3)(2−L)
27(L+1)

> 0, with L < 2.
Lemma 7. WhenH = 1+L

3
, the equilibrium point

(

1+L
3
, 1+L

3

)

is the unique positive equilibrium point, which is
i) an atractor node, if and only if, B > ((5−4L)(L+1)2−27A)(L+1)

3(27A+(L+1)3) ,
ii) a repeller node, if and only if, B < ((5−4L)(L+1)2−27A)(L+1)

3(27A+(L+1)3) ,
iii) a cusp point, if and only if, B = ((5−4L)(L+1)2−27A)(L+1)

3(27A+(L+1)3) .
In the case ii) and iii) a non-infinitesimal limit cycles exists.

Proof. Evaluating the factor T it becomes
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T = A + 1
27

(

27A + (1 + L)3
) 2−L
L+1

+ 4
(

1+L
3

)3
− 3

(

1+L
3

)2

= (L−1)(L+1)3+27A
9(L+1)

.
Thus, when the factor T = 0, it has that the numerator of T ,

N = (L − 1) (L + 1)3 + 27A = 0, and
A = 1

27
(1 − L) (L + 1)2 > 0; so, L < 1.

Then, the point
(

1+L
3
, 1+L

3

)

is a non-hyperbolic equilibrium.
Assuming trDY�

(

1+L
3
, 1+L

3

)

= 0, and replacingH = 1
3
(1 + L) in the expression of B, it has that,

B = ((5−4L)(L+1)2−27A)(L+1)
3(27A+(L+1)3) ,

with,
A < 1

27
(5 − 4L) (L + 1)2; so, L < 5

4
.

Considering
i) trDY�

(

1+L
3
, 1+L

3

)

< 0, it obtains B > ((5−4L)(L+1)2−27A)(L+1)
3(27A+(L+1)3) ,

ii) trDY�
(

1+L
3
, 1+L

3

)

> 0, it obtains B < ((5−4L)(L+1)2−27A)(L+1)
3(27A+(L+1)3) .

iii) For trDY�
(

1+L
3
, 1+L

3

)

= 0, the point
(

1+L
3
, 1+L

3

)

is a cusp point for L < 1.
In the case ii and iii), since the point

(

1+L
3
, 1+L

3

)

is the unique on the invariant region Γ̄, the trajectories must have an!−limit;
so, by the Poincaré-Bendixson Theorem a non-infinitesimal limit cycle exists.
Remark 4. 1. Replacing

(

1+L
3

)

in P (u) and P1(u), it has
P (u) =

(

1+L
3

)4
−
(

1+L
3

)3
+
(

A + 1
27

(

27A + (1 + L)3
) 2−L
L+1

)(

1+L
3

)

− A = 0,
and

P1(u) =
(

1+L
3

)3
−
(

1 −
(

1+L
3

))(

1+L
3

)2
−
(

1+L
3

)(

1 −
(

1+L
3

))(

1+L
3

)

+ A
(

1+L
3

)

= 1
9
L4+2L3−2L+(27A−1)

L+1
= T

9(L+1)
= 0.

2. The dynamics of the system 2 when u∗ ≠ H will be presented in a future work.
3. The existence of the non-infinitesimal limit cycle, which is not obtained by Hopf bifurcation, it persists below small pertur-

bations on the parameter values. This has a great importance in the model, because in the systems (7) and (2), when there exist
two or three positive equilibria, any be their nature, they can be enclosed by a non-infinitesimal limit cycle (See Figures 5-7).
4. For a wide subset of parameter values, the populations can coexist oscillating their population sizes, although the phe-

nomenon of tri-stability can also exists (Figure 7). In this situation, the system (2) has two attractor focus coexisting with the
stable non-infinitesimal stable limit cycle.

Case 2b. Assuming that a0 = L2 + (1 −H)L−H (1 −H) = 0, the equation (2.6) has a unique solution u∗∗ = 1 −H +L. .
Moreover, u = 0 is a root of multiplicity two.
Then, the system (2) has two positive equilibria, (H,H) and (u∗∗, u∗∗

).
The evaluation of the Jacobian matrix is the same for both points, as the above case.
The sign of detDY� (u, u) depends of the factor T .
Without loss generality we assume that u∗∗ ≤ H ; then,H ≥ 1+L

2
.

In particular, when u∗∗ = H , it obtainsH = 1+L
2
.

Lemma 8. WhenH = 1+L
3
, the equilibrium point

(

1+L
2
, 1+L

2

)

is the unique positive equilibrium point, which is
i) an atractor node, if and only if, B > ((1−2L)(L+1)2−4A)(L+1)

8A+(L+1)3
,

ii) a repeller node, if and only if, B < ((1−2L)(L+1)2−4A)(L+1)
8A+(L+1)3

,
iii) a cusp point, if and only if, B = ((1−2L)(L+1)2−4A)(L+1)

8A+(L+1)3
.

In the case ii) and iii) a non-infinitesimal limit cycles exists.
Proof. Replacing u∗ in Q and factoring it obtains
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Q = (8A+(L+1)3)(1−L)
8(L+1)

> 0.
Then, L < 1.
Replacing in the factor T and factoring it becomes

T = 2
L+1

A − 1
8
(1 − 3L) (L + 1)2.

T = 0 implies, A = 1
16
(1 − 3L) (L + 1)3; so, L < 1

3
.

Then, the point
(

1+L
2
, 1+L

2

)

is a non-hyperbolic equilibrium.
Assuming trDY�

(

1+L
2
, 1+L

2

)

= 0, and replacingH = 1+L
2

in the expression of B, it has that,
B = ((1−2L)(L+1)2−4A)(L+1)

8A+(L+1)3
,

with
A < 1

4
(1 − 2L) (L + 1)2; so, L < 1

2
.

Considering
i) trDY�

(

1+L
2
, 1+L

2

)

< 0, it obtains B > ((1−2L)(L+1)2−4A)(L+1)
8A+(L+1)3

,
ii) trDY�

(

1+L
2
, 1+L

2

)

> 0, it obtains B < ((1−2L)(L+1)2−4A)(L+1)
8A+(L+1)3

.
iii) For trDY�

(

1+L
3
, 1+L

3

)

= 0, the point
(

1+L
2
, 1+L

2

)

is a cusp point of codimension two, for L < 1
3
.

Since the point
(

1+L
2
, 1+L

2

)

is the unique on the invariant region Γ̄, in the case ii and iii), the trajectories must have an!−limit;
so, newly by the Poincaré-Bendixson Theorem applies and a non-infinitesimal limit cycle exists.
Remark 5. 1. The properties of the system when u∗∗ < H and when exist three equilibrium points will be exposed in a future
work. Here, we shown some simulations for this last case.
2. The non-infinitesimal stable limit cycle, which existence is proved in the above lemma can maintain under small pertur-

bations of the parameters, when three positive equilibria exist; but after it disappears for a subset of the parameter values. This
implies that both species can coexist for different population sizes, without oscillations on these sizes (Figure 8).
Although we do not analyze the case in which there are 3 positive equilibrium points, we will show some examples with the

dynamics of the model in that situation.

4 SOME NUMERICAL SIMULATIONS

In order to reinforce the obtained results, some computer simulations are also given, presenting different behaviors of system
(2.2). The diverse natures of the positive equilibrium point (H,H + C) are shown for different parameters values.

Case 1. There exists a unique positive equilibrium point
HERE figures 2, 3 and 4
Case 2. There exists three positive equilibrium points
HERE figures 5, 6, 7 and 8

5 CONCLUSIONS

In this work, a bidimensional continuous-time differential equations system was analyzed, which is derived from a Leslie-Gower
type predator-prey model by considering a Holling type IV or non-monotonic functional response.
The Leslie-Gower type predation models not are based in a transference mass principle as it happens with the Gause type

models. However, the analyzed model illustrates the dynamical complexities that can produce in relatively simple predator-prey
interactions. when are described by an ordinary differential equation system.
In order to simplify the calculationsby, a topologically equivalent polynomial system was obtained, by mean a reparameteri-

zation and a time rescaling.
Using the method of blowing up43, we have shown that the point (0, 0) is non-heperbolic saddle point, although the modified

Leslie-Gower model proposed originally is not defined there. Moreover, it was proved that the equilibrium (1, 0) is a hyperbolic
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saddle for all parameter values. Moreover, it is proved that there exists a heteroclinic curve joining the saddle point (1, 0) and
the non-hyperbolic singularity (0, 0).
From an ecological point of view, we can to say that this model is persistent, the populations cannot go to extinction

simultaneously, although the predator population can extinct and the prey population can attain its maximun size in the
environment.
Also, we proved the boundedness of solutions of the dimensionless system (2), using the extended real line to apply the

compactification of Poincaré45, showing that the modified Leslie-Gower model with a non-monotonic functional response is
well posed2.
Assuming the existence a unique equilibrium point (H,H), we have established the existence of the parameter constraints for

which the positive equilibrium point is an attractor or a repeller surrounded by at least one limit cycle, existing a Hopf bifurcation.
Using themethod of Lyapunov numbers was proved that there are conditions on the parameter values for which the equilibrium

at the interior of the first quadrant is a weak focus of order two, i.e., there exist two concentric limit cycles surrounding that
equilibrium, the innermost unstable and the outermost stable.
Taylor in17 hypothesizes that a non-monotonic functional response should tend to destabilize a system; the results obtained

would seem to support this conjecture, because for a wide range of parameter the bistability phenomenon is prevalent.
Considering the exposed simulations, it is further shown that by choosing different values of parameters the model more

interesting dynamics are possibles, such as the existence of heteroclinic and homoclinic curves, and a non-infinitesimal limit
cycle enclosing the three equilibrium points. Besides, there exists a subset of the parameter space in which three limit cycles
coexist: a non-infinitesimal stable limit cycle surrounding three positive equilibria and two infiitesimal unstable limit cycles.
We show that the qualitatively behavior of the model studied in this work is not similar to May-Holling-Tanner8 because in

the model here studied can have up to three equilibrium point at the interior of the first quadrant; but both systems can have two
concentric limit cycles; nonetheless, the precise number of such solutions must be proven as in48.
However, the behavior of the model studied is similar to the model analyzed in22,23 in which rhe non-monotonic functional

response is described by ℎ (x) = qx
x2+a

; both systems have the same number of equilibrium points and parameter constraints
assuring the existence of two limit cycles. This should imply that the exponents on the non-monotonic functional response could
have not importance.
Nevertheless, this question could be resolved by considering the study of models assuming the general form ℎ (x) = qxm

xn+a
,

with n > m ≥ 1, n and m ∈ ℕ49.
Although the system has mathematical complexities, we consider that the Holling type IV represents adequately the

antipredator behavior named group defense.
Furthermore, the system studied here has clear differences with the system modelling the phenomenon of "herd behavior"

studied in34. In that model, among other properties, there are solutions that arrive to the vertical axis (y-axis) in a finite time,
implying the extinction of the prey population in a short lapse, which can happen locally. This phenomenon cannot be described
by the system (2) since (0, 0) is a saddle point, repelling by the direction of the x − axis.

In short, our main results can be highlighted as follows:
1. Group defense is an antipredator behavior that produces a rich dynamic for the predator-prey interaction, if a non-monotonic

functional response is considered.
2. When exists a unique positive equlibrium point, there are parameter constraints for which the phenomenon of bi-stabilty

appears, since coexist a stable limit cycle with an attractor focus.
3. The model is persistent because the point (0, 0) is a non-hyperbolic saddle point.
4. It can possibly the existence up three positive equilibria, all the which can be surrounded by a non-infinitesimal limit cycle,

not obtained by Hopf bifurcation.
5. The phenomenon of the multi-stability exists since can have two attractor focus (and a saddle point) enclosed by a stable

non-infinitesimal limit cycle.
6. By simulations is shown there is a subset of the parameter values, for which three limit cycles coexist. Two of them are

unstable and the third is a non-infinitesimal stable limit cycle.
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