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Summary

In this paper, we consider a nonlinear plate (or beam) Petrovsky equation with strong
damping and source terms with variable exponents. The exponents of nonlinearity
p(⋅) and q(⋅) are given functions. By using the Banach contraction mapping principle
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the variable exponents p and q. We also show a finite time blow up result for the
solutions with negative initial energy.
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1 INTRODUCTION

Let beΩ a bounded domain inℝn(n ≥ 1) with a sooth boundary )Ω. We consider the following initial boundary value problem:

⎧

⎪

⎨

⎪

⎩

utt + Δ2u − Δut + |

|

ut||
p(x)−2 ut = |u|q(x)−2u, (x, t) ∈ Ω × (0, T )

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω
u(x, t) = )vu(x, t) = 0, x ∈ )Ω

(1)

where v is the unit outer normal to )Ω and the expoents p(⋅) and q(⋅) are given measurable functions on Ω satisfyning.
{

2 ≤ p− ≤ p(x) ≤ p+ ≤ p∗

2 ≤ q− ≤ q(x) ≤ q+ ≤ q∗
(2)

where

p− = ess inf
x∈Ω

p(x), p+ = ess sup
x∈Ω

p(x)

q− = ess inf
x∈Ω

q(x), q+ = ess sup
x∈Ω

q(x)

and

p∗, q∗ =

{

∞, if n ≤ 4
2n
n−4
, if n > 4 .

When p (x) and q (x) are constants and without strong damping −Δut, become the following the Petrovsky equation (3).
Messaoudi, in9, studied the following problem
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⎧

⎪

⎨

⎪

⎩

utt + Δ2u + |

|

ut||
m−2 ut = |u|p−2u in QT = Ω × (0, T )

u = )u∕)v = 0 on ΓT = )Ω × [0, T )
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω

established an existence result and showed that the solution continution continues to exist globally if m ≥ p, and blows up in
finite time if m < p and the initial energy is negative. This result was later improved by Chen and Zhou in2. For more results
related to the plate equations, we refer the reader to Lagnese35, Horn and Lasiecka36. Lasiecka37.
In recent years, some authors like [8] investigated (3) also the problem (1) with strong damping and p and q constants, thus,

utt +△2u −△ut + |

|

ut||
p−2 ut = |u|q−2u. (3)

Li et al.8 showed the existence, decay and blow up of the solutions of the problem (4) and proved global existence and blow
up. In 2013,16 Pişkin and Polat showed the global existence and the decay of the solutions for (3).
A considerable effort has been devoted to the study of problem (1) in case of constant and variable-exponent nonlinearities.
In recent years, plate equations with lower order perturbation of p-Laplacian type in the form

utt +△2
xu − div(�(▽xu)) = F (u, ut)

where �(z) ≈ |s|(p−2) s, p ≥ 2, and F (u, ut) representing additional damping and forcing terms. This attracted attention of
several authors. It is a prototype for some important models in real-world applications.

In the absence of the viscoelastic term (g = 0) and replacing the p⃗(x, t)-Laplacian by Δpu = div(
(

|

|

▽u|
|

p−2▽u
)

) (p =
const ≥ 2), the equation

utt +△2u − div(
(

|

|

▽u|
|

p−2▽u
)

) −△ut = ℎ(x, u, ut) (4)
has been extensively studied and results concerning existence, nonexistence and long-time behaviour have been established.
See in this regard in21,22.

In one-dimension, Eq. (4) without damping or forcing terms is related to the model

�utt + �uxxxx + a(u2x)x = 0, a > 0 and � = const > 0

which describes elastoplastic-microstructure flows as discussed in23,24.

In two dimensions, with p = 4 and weak damping, Eq.(4) corresponds to the so called model for nonlinear plates

utt +△2u − div
[(

|

|

▽u|
|

2▽u
)]

+ kut = �Δ(u2) − f (u)

This is indeed a limit of the Mindlin–Timoshenko plates as the shear modulus tends to infinity, as shows in25. Remarkable
results were obtained in25,26, where the existence of finite-dimensional global attractors under a weak damping kut, instead
of −Δut, was proved. Recently,13 proved the blow up of solutions for a nonlinear viscoelastic wave equations with variable
exponents the following equation.

utt − Δu + ∫ t
0 g(t − �)Δu(�)d� + |

|

ut||
p(x)−2 ut = |u|q(x)−2u, (x, t) ∈ Ω × (0, T )

In the presence of the viscoelastic term (g ≠ 0) , the problem (1) with memory was first studied in28.
The general decay of weak solutions u = u(x, t) for a class of plate equations with memory term and lower order perturbation

of p⃗(x, t) -Laplacian type. Precisely, we consider the following problem (for exemplo, see29).

utt = div
(

|

|

▽u|
|

p▽u
)

(5)
with the constant exponent of nonlinearity p ∈ (1,∞). During the last decades Eq.(5) was intensively studied and was casted
for the role of a touchstone in the nonlinear PDEs. There is an extensive literature devoted to Eq.(5). The existence of global
solution without an additional dissipation term is an still open problem.
We also mention the very important contribution by30, where the author proved the existence and blow up for the weak

solution of a wave equation with p(x, t)-Laplacian and damping terms given by
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utt = div
(

a(x, t) |
|

▽u|
|

p(x,t)−2▽u + "▽ut
)

+ b(x, t) |u|�(x,t)−2 u + f (x, t),
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
u|ΓT = 0 ΓT = )Ω × (0, T )

where the coefficients a, b, f and the exponents p, � are given measurable functions and " = const > 0. Such equations (with
variable exponents of nonlinearities) are usually referred as equations with nonstandard growth conditions.
Equations with nonstandard growth conditions occur in the mathematical modelling of various physical phenomena, e.g.,

the flows of electro-rheological fluids or fluids with temperature-dependent viscosity, nonlinear viscoelasticity, processes of
filtration through a porous media and the image processing see31 and references therein.
It is to be noted here that in all papers (referring to the case p ≠ 0) the viscous term "Δut plays a key role in the proof of local

and global existence (even if p = const ≠ 2). The principal difficulty remains in proving an existence theorem by considering
the term −Δp⃗(x,t)u. The viscous term "Δut(" > 0) facilitates the proof of existence theorem.
In32, the authors improved the results from28 by establishing local and global existence, as well as the uniqueness of the weak

solution u(x, t) to problem (1).
Recently in40, the author established the decay of solutions of a damped quasilinear wave equation with variable-exponent

nonlinearities.
Rivera et al.33 considered the following equation

utt − 
Δutt + Δ2u − ∫ t
0 g(t − s)Δ

2u(s)ds = 0 in QT = Ω × (0, T ),

together with initial and dynamical boundary conditions and proved that the sum of the first and second energies decays expo-
nentially (respectively polynomially) if the kernel g decays exponentially (respectively polynomially). Alabau-Boussouira et
al.34 looked into the following problem

⎧

⎪

⎨

⎪

⎩

utt + Δ2u − ∫ t
0 g(t − s)Δ

2u(s)ds = f (u) in QT = Ω × (0, T )
u = )u∕)v = 0 on ΓT = )Ω × [0, T )
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω

and established exponential and polynomial decay results for sufficiently small initial data. Lin and Li in27, discussed

utt − 
Δutt + Δ2u − ∫ t
0 g(t − s)Δ

2u(s)ds = div(C(f (∇u)∇u)) in QT = Ω × (0, T )

together with initial and dynamical boundary conditions similar to those imposed by Rivera et al.33, and established similar
decay results. Yang in21, considered the problem

⎧

⎪

⎨

⎪

⎩

utt + Δ2u + �ut =
∑n
i=1

)
)xi
�i
(

)u
)xi

)

in Q� = Ω × (0, T )
u = )u∕)v = 0 on ΓT = )Ω × [0, T )
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω

for � ≥ 0 and �i nonlinear functions. He proved, under some conditions on nonlinear terms and initial data, that the problem
admits a global weak solution and the solution decays exponentially to zero as t→∞ .
Motivated by [8,11,16], we considered the local existence and blow up of solutions for nonlinear Petrovsky equation with

variable exponents and strong damping.
To the best of our knowledge, this is the first work dealing with (1) subject to the with variable exponents and strong damping.
This paper is organized as follows. Before the main results, In Section 2, we recall the definitions of the variable-exponent

Lebesgue spaces Lp(⋅)(Ω), the Sobolev spacesW 1,p(⋅)(Ω), and some of their properties. In Section 3, the statement and the proof
of local existence and blow-up result for solutions with negative initial energy are given.

2 PRELIMINARIES

In this part, we state some results about the variable exponent Lebesgue and Sobolev spacesLp(x) (Ω) andW 1,p(x) (Ω) (see3,4,7,12).
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Let p ∶ Ω→ [1,∞] be a measurable function, whereΩ is a domain ofRn.We define the variable exponent Lebesgue space by

Lp(x) (Ω) =

⎧

⎪

⎨

⎪

⎩

u ∶ Ω→ R, u is measurable and ∫
Ω

|u|p(x) dx <∞

⎫

⎪

⎬

⎪

⎭

,

endowed with the Luxemburg norm

‖u‖p(x) = inf

⎧

⎪

⎨

⎪

⎩

� > 0 ∶ ∫
Ω

|

|

|

|

u
�
|

|

|

|

p(x)
dx ≤ 1

⎫

⎪

⎬

⎪

⎭

,

Lp(x) (Ω) is a Banach space.
The variable exponent Sobolev spaceW 1,p(x) (Ω) is defined by

W 1,p(x) (Ω) =
{

u ∈ Lp(x) (Ω) ∶ ∇u exists and |∇u| ∈ Lp(x) (Ω)
}

.

Variable exponent Sobolev space is a Banach space with respect to the norm

‖u‖1,p(x) = ‖u‖p(x) + ‖∇u‖p(x) .

The spaceW 1,p(x)
0 (Ω) is defined as the closure of C∞0 (Ω) inW

1,p(x) (Ω) with respect to the norm ‖u‖1,p(x) . For u ∈ W
1,p(x)
0 (Ω) ,

we can define an equivalent norm
‖u‖1,p(x) = ‖∇u‖p(x) .

Let the variable exponent p (.) satisfy the log-Hölder continuity condition:

|p (x) − p (y)| ≤ A
log 1

|x−y|

, for all x, y ∈ Ω with |x − y| < �, (6)

where A > 0 and 0 < � < 1.

Lemma 1. (Poincare inequality) Let Ω be a bounded domain of Rn and p (.) satisfies log-Hölder condition, then

‖u‖p(x) ≤ c ‖∇u‖p(x) , for all u ∈ W
1,p(x)
0 (Ω) ,

where c = c
(

p−, p+, |Ω|
)

> 0.

Lemma 2. Let p (.) ∈ C
(

Ω
)

and q ∶ Ω→ [1,∞) be a measurable function and satisfy

essinf
x∈Ω

(p∗ (x) − q (x)) > 0.

Then the Sobolev embeddingW 1,p(x)
0 (Ω) → Lq(x) (Ω) is continuous and compact. Where

p∗ (x) =

{

np−

n−p−
, if p− < n

∞, if p− ≥ n.

Remark 1. We denote by c various positive constants which may be different at different occurrences. Also, throughout this
paper, we use the embedding

H2
0 (Ω) → H1

0 (Ω) → Lp (Ω)
which implies

‖u‖p ≤ c ‖
‖

▽u‖
‖

≤ c ‖
‖

△u‖
‖

,

where 2 ≤ p <∞ (n = 1, 2) , 2 ≤ p ≤ 2n
n−2

(n ≥ 3) .

3 LOCAL EXISTENCE

In this part, the aim is to prove the local existence result for (1). Firstly, we state the following lemma which can be obtained by
exploiting the Feado-Galerkin method and using the similar arguments as in10,11.
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Lemma 3. Suppose that the exponent p (.) satisfies (2), (6) and initial data u0 ∈ H2
0 (Ω), u1 ∈ L

2 (Ω) , then there exists a unique
local solution u of

⎧

⎪

⎨

⎪

⎩

utt +△2u −△ut + |

|

ut||
p(x)−2 ut = f (t, x) , (x, t) ∈ Ω × (0, T ) ,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
u (x, t) = )�u (x, t) = 0, x ∈ )Ω,

(7)

satisfying
u ∈ L∞

(

(0, T ) ,H2
0 (Ω)

)

, ut ∈ L∞
(

(0, T ) , L2 (Ω)
)

∩ Lp(.) (Ω × (0, T )) ,
where f ∈ L2 (Ω × (0, T )) .

Theorem 1. Suppose that p (.) satisfies (2), (6) and q (.) satisfies (??) and

2 ≤ p− ≤ p (x) ≤ p+ ≤ 2 (n − 2)
n − 4

(n > 4).

Assume further that u0 ∈ H2
0 (Ω), u1 ∈ L

2 (Ω) . Then the problem (2) has a unique local solution

u ∈ L∞
(

(0, T ) ,H2
0 (Ω)

)

, ut ∈ L∞
(

(0, T ) , L2 (Ω)
)

∩ Lp(.) (Ω × (0, T )) .

Proof. Existence: Let v ∈ L∞
(

(0, T ) ,H1
0 (Ω)

)

and f (v) = |v|q(x)−2 v.We have

‖f (v)‖2 = ∫
Ω

|v|2(q(x)−1) dx

≤ ∫
Ω

|v|2(q
−−1) dx + ∫

Ω

|v|2(q
+−1) dx <∞,

since
2 (q− − 1) ≤ 2

(

q+ − 1
)

≤ 2n
n − 2

.

Thus, for each v ∈ L∞
(

(0, T ) ,H1
0 (Ω)

)

, there exists a unique

u ∈ L∞
(

(0, T ) ,H2
0 (Ω)

)

, ut ∈ L∞
(

(0, T ) , L2 (Ω)
)

∩ Lp(.) (Ω × (0, T )) ,

satisfying the following problem
⎧

⎪

⎨

⎪

⎩

utt +△2u −△ut + |

|

ut||
p(x)−2 ut = f (v) , (x, t) ∈ Ω × (0, T ) ,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
u (x, t) = )�u (x, t) = 0, x ∈ )Ω.

(8)

Define the following space

XT ∶=
{

w ∶ w ∈ L∞
(

(0, T ) ;H2
0 (Ω)

)

, w ∈ L∞
(

(0, T ) ;L2 (Ω)
)}

.

XT is Banach space with respect to the norm

‖w‖XT
= ‖w‖L∞((0,T );H2

0 (Ω)) + ‖w‖L∞((0,T );L2(Ω)) .

We define the nonlinear mapping S in the following way. For v ∈ XT , u = Sv is the unique solution (8).
We shall show that there exist T > 0, such that
(i) S ∶ XT → XT
(ii) S is a contraction mapping in XT .
To show (i), multiplying (8) by ut and integrating over Ω × (0, t) , we obtain

1
2
‖

‖

ut‖‖
2 + 1

2
‖

‖

△u‖
‖

2 +

t

∫
0

‖

‖

▽u�‖‖
2 d� +

t

∫
0

∫
Ω

|

|

u� ||
p(x) dxd�

= 1
2
‖

‖

u1‖‖
2 + 1

2
‖

‖

△u0‖‖
2 +

t

∫
0

∫
Ω

|v|q(x)−2 vu�dxd�. (9)
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By the Young’s and Sobolev-Poincare’s inequalities, we get

∫
Ω

|v|q(x)−2 vu�dx ≤ �
4 ∫
Ω

u2t dx +
1
� ∫
Ω

|v|2q(x)−2 dx

≤ �
4
‖

‖

ut‖‖
2 + 1

�

⎡

⎢

⎢

⎣

∫
Ω

|v|2(q
−−1) dx + ∫

Ω

|v|2(q
+−1) dx

⎤

⎥

⎥

⎦

≤ �
4
‖

‖

ut‖‖
2 + c

�

(

‖

‖

△v‖
‖

2(q−−1) + ‖

‖

△v‖
‖

2(q+−1) ) . (10)

Thus, by (9) and (10), we have

1
2
‖

‖

ut‖‖
2 + 1

2
‖

‖

△u‖
‖

2 +

t

∫
0

‖

‖

▽u�‖‖
2 d� +

t

∫
0

∫
Ω

|

|

u� ||
p(x) dxd�

≤ 1
2
‖

‖

u1‖‖
2 + 1

2
‖

‖

△u0‖‖
2 + �

4

t

∫
0

‖

‖

ut‖‖
2 d�

+ c
�

t

∫
0

(

‖

‖

△v‖
‖

2(q−−1) + ‖

‖

△v‖
‖

2(q+−1) ) d�,

which implies that

sup
t∈(0,T )

[

‖

‖

ut‖‖
2 + ‖

‖

△u‖
‖

2
]

≤ ‖

‖

u1‖‖
2 + ‖

‖

△u0‖‖
2 + �T

2
sup
t∈(0,T )

‖

‖

ut‖‖
2

+cT
�

[

‖v‖2(q
−−1)

XT
+ ‖v‖2(q

+−1)
XT

]

.

By taking �T
2
≤ 1, we have

‖u‖2XT
≤ � + cT

�

[

‖v‖2(q
−−1)

XT
+ ‖v‖2(q

+−1)
XT

]

,

where � = ‖

‖

u1‖‖
2 + ‖

‖

△u0‖‖
2 . At this point we chooseM large enough, such that ‖v‖XT

≤M. Then

‖u‖2XT
≤ � + cT

�
M2(q+−1) ≤M2

if � < M2 and T ≤ T0 <
�(M2−�)
cM2(q+−1) . Thus we have S ∶ XT → XT .

Next, we show S is a contraction mapping in XT . For this purpose, we let u1 = Sv1 and u2 = Sv2, then u = u1 − u2 satisfies

⎧

⎪

⎨

⎪

⎩

utt +△2u −△ut +
[

|

|

u1t||
p(x)−2 u1t − |

|

u2t||
p(x)−2 u2t

]

= |

|

v1||
q(x)−2 v1 − |

|

v2||
q(x)−2 v2,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
u (x, t) = )�u (x, t) = 0, x ∈ )Ω.

(11)

Multiplying (11) by ut = u1t − u2t and integrating over Ω × (0, t) , we obtain

1
2
‖

‖

ut‖‖
2 + 1

2
‖

‖

△u‖
‖

2 +

t

∫
0

‖

‖

▽u�‖‖
2 d�

+

t

∫
0

∫
Ω

[

|

|

u1t||
p(x)−2 u1t − |

|

u2t||
p(x)−2 u2t

]

(

u1t − u2t
)

dxd�

≤ 1
2
‖

‖

u1‖‖
2 + 1

2
‖

‖

△u0‖‖
2 +

t

∫
0

∫
Ω

(

f
(

v1
)

− f
(

v2
))

utdxd�. (12)
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Since
[

|

|

u1t||
p(x)−2 u1t − |

|

u2t||
p(x)−2 u2t

]

(

u1t − u2t
)

≥ 0 then (12) yields

1
2
‖

‖

ut‖‖
2 + 1

2
‖

‖

△u‖
‖

2 +

t

∫
0

‖

‖

▽u�‖‖
2 d�

≤ 1
2
‖

‖

u1‖‖
2 + 1

2
‖

‖

△u0‖‖
2 +

t

∫
0

∫
Ω

(

f
(

v1
)

− f
(

v2
))

utdxd�. (13)

We estimate the last term on the right-hand side of (13) as follows

∫
Ω

|

|

|

f
(

v1
)

− f
(

v2
)

|

|

|

|

|

ut|| dx = ∫
Ω

|

|

f ′ (�)|
|

|v| |
|

ut|| dx,

where v = v1 − v2 and � = �v1 + (1 − �) v2, 0 ≤ � ≤ 1. Thanks to Young’s inequality and since f (v) = |v|q(x)−2 v, we obtain

∫
Ω

|

|

|

f
(

v1
)

− f
(

v2
)

|

|

|

|

|

ut|| dx =
�
2 ∫
Ω

|

|

ut||
2 dx + 1

2� ∫
Ω

|

|

f ′ (�)|
|

2
|v|2 dx

≤ �
2
‖

‖

ut‖‖
2 +

(

p2 − 1
)2

2� ∫
Ω

|

|

�v1 + (1 − �) v2||
2(q(x)−2)

|v|2 dx

≤ �
2
‖

‖

ut‖‖
2 + c

⎛

⎜

⎜

⎝

∫
Ω

|v|
2n
n−2 dx

⎞

⎟

⎟

⎠

n−2
2
⎛

⎜

⎜

⎝

∫
Ω

|

|

�v1 + (1 − �) v2||
n(q(x)−2) dx

⎞

⎟

⎟

⎠

2
n

≤ �
2
‖

‖

ut‖‖
2 + c

⎛

⎜

⎜

⎝

∫
Ω

|v|
2n
n−2 dx

⎞

⎟

⎟

⎠

n−2
2 ⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

∫
Ω

|

|

�v1 + (1 − �) v2||
n(q+−2) dx

⎞

⎟

⎟

⎠

2
n

+
⎛

⎜

⎜

⎝

∫
Ω

|

|

�v1 + (1 − �) v2||
n(q−−2) dx

⎞

⎟

⎟

⎠

2
n ⎤

⎥

⎥

⎥

⎦

. (14)

Since 2 ≤ p− ≤ p (x) ≤ p+ ≤ 2(n−2)
n−4

(n > 4), we get

∫
Ω

|

|

|

f
(

v1
)

− f
(

v2
)

|

|

|

|

|

ut|| dx ≤ �
2
‖

‖

ut‖‖
2 + c ‖

‖

△v‖
‖

2 .
[

‖

‖

△v1‖‖
2(p+−2) + ‖

‖

△v1‖‖
2(p−−2)

+ ‖

‖

△v2‖‖
2(p+−2) + ‖

‖

△v2‖‖
2(p−−2)

]

≤ �
2
‖

‖

ut‖‖
2 + 4cM2(p+−2)

‖

‖

△v‖
‖

2 . (15)

By the combining (13) and (15), we obtain
1
2
‖u‖2XT

≤ �
2
T0 ‖u‖

2
XT
+ 4cM2(p+−2)T0 ‖v‖

2
XT
.

By choosing � small enough, we have
‖u‖2XT

≤ 8cM2(p+−2)T0 ‖v‖
2
XT
.

Now, we choose T0 sufficent enough so that
0 < 8cM2(p+−2)T0 < 1.

Thus, the map S is contraction. The Banach fixed point theorem implies the existence of a unique u ∈ XT satisfying S (u) = u.
Obviously, it is a solution of (1).
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Uniqueness: Suppose that (1) have two solutions u and v. Then w = u − v satisfies
⎧

⎪

⎨

⎪

⎩

wtt +△2w −△wt + |

|

ut||
p(x)−2 ut − |

|

vt||
p(x)−2 vt = |u|q(x)−2 u − |v|q(x)−2 v, (x, t) ∈ Ω × (0, T ) ,

w (x, 0) = 0, wt (x, 0) = 0, x ∈ Ω,
w (x, t) = )�w (x, t) = 0, x ∈ )Ω,

Multiplying by wt and integrate over Ω × (0, t) , we get

1
2
‖

‖

wt
‖

‖

2 + 1
2
‖

‖

△w‖
‖

2 +

t

∫
0

‖

‖

▽w�
‖

‖

2 d�

+

t

∫
0

∫
Ω

(

|

|

ut||
p(x)−2 ut − |

|

vt||
p(x)−2 vt

)

wtdxd�

=

t

∫
0

∫
Ω

(

|u|q(x)−2 u − |v|q(x)−2 v
)

wtdxd�.

Similarly (14), we have

‖

‖

wt
‖

‖

2 + ‖

‖

△w‖
‖

2 ≤ c

t

∫
0

∫
Ω

(

|

|

wt (�)||
2 + |

|

△w (�)|
|

2
)

dxd�.

Thanks to Gronwall inequality, we get
‖

‖

wt
‖

‖

2 + ‖

‖

△w‖
‖

2 = 0.
Thus w = 0. The proof is completed.

4 BLOW UP OF SOLUTIONS

In this part, we are going to consider the blow up of the solution for problem (1). Firstly, we give following lemma.
Lemma 4. 10. If q ∶ Ω→ [1,∞) is a measurable function and

{

2 ≤ q− ≤ q (x) ≤ q+ <∞; n ≤, 4
2 ≤ q− ≤ q (x) ≤ q+ < 2n

n−2
; n > 4 (16)

holds. Then, we have following inequalities:
i)

�
s
q−

q(.) (u) ≤ c
(

‖

‖

△u‖
‖

2 + �q(.) (u)
)

, (17)
ii)

‖u‖sq− ≤ c
(

‖

‖

△u‖
‖

2 + ‖u‖q
−

q−

)

, (18)
iii)

�
s
q−

q(.) (u) ≤ c
(

|H (t)| + ‖

‖

ut‖‖
2 + �q(.) (u)

)

, (19)
iv)

‖u‖sq− ≤ c
(

|H (t)| + ‖

‖

ut‖‖
2 + ‖u‖q

−

q−

)

, (20)
v)

c ‖u‖q
−

q− ≤ �q(.) (u) (21)
for any u ∈ H2

0 (Ω) and 2 ≤ s ≤ q−.Where c > 1 a positive constant andH (t) = −E (t) .

Now, we state and prove our blow up result.

Theorem 2. Letr the assumptions of Theorem 4, and the initial energy E (0) < 0 hold. Then the solution (1) blows up in finite
time T ∗, and

T ∗ ≤ 1 − �
��Ψ

�
1−� (0)

,

where Ψ (t) and � are given in (25) and (26) respectively.
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Proof. Multiplying ut on two sides of the problem (1), and integrating by part, we have

d
dt

⎡

⎢

⎢

⎣

1
2
‖

‖

ut‖‖
2 + 1

2
‖

‖

△u‖
‖

2 − ∫
Ω

1
q (x)

|u|q(x) dx
⎤

⎥

⎥

⎦

= −∫
Ω

1
p (x)

|

|

ut||
p(x) dx − ‖

‖

∇ut‖‖
2 ,

E′ (t) = −∫
Ω

1
p (x)

|

|

ut||
p(x) dx, (22)

where
E (t) = 1

2
‖

‖

ut‖‖
2 + 1

2
‖

‖

△u‖
‖

2 − ∫
Ω

1
q (x)

|u|q(x) dx (23)

Set
H (t) = −E (t)

then E (0) < 0 and (22) givesH (t) ≥ H (0) > 0. Also, by the definitionH (t) , we have

H (t) = −1
2
‖

‖

ut‖‖
2 − 1

2
‖

‖

△u‖
‖

2 + ∫
Ω

1
q (x)

|u|q(x) dx

≤ ∫
Ω

1
q (x)

|u|q(x) dx

≤ 1
q−
�q(.) (u) . (24)

Define
Ψ (t) = H1−� (t) + "∫

Ω

uutdx +
"
2
‖∇u‖2 , (25)

where " small to be chosen later and
0 < � ≤ min

{

q− − p+

(p+ − 1) q−
,
q− − 2
2q−

}

. (26)

Differentiating Ψ (t) with respect to t, and using Eq. (1), we have

Ψ′ (t) = (1 − �)H−� (t)H ′ (t) + "∫
Ω

(

u2t + uutt
)

dx + "∫
Ω

∇u∇utdx

= (1 − �)H−� (t)H ′ (t) + " ‖
‖

ut‖‖
2 − " ‖

‖

△u‖
‖

2

+"∫
Ω

|u|q(.) dx − "∫
Ω

uut ||ut||
p(.)−2 dx. (27)

By using the definition of theH (t) , it follows that

−"q− (1 − �)H (t) =
"q− (1 − �)

2
‖

‖

ut‖‖
2 +

"q− (1 − �)
2

‖

‖

△u‖
‖

2

−"q− (1 − �)∫
Ω

1
q (x)

|u|q(.) dx, (28)

where 0 < � < 1.
Adding and subtracting (28) into (27), we obtain

Ψ′ (t) ≥ (1 − �)H−� (t)H ′ (t) + "q− (1 − �)H (t)

+"
(

q− (1 − �)
2

+ 1
)

‖

‖

ut‖‖
2 + "

(

q− (1 − �)
2

− 1
)

‖

‖

△u‖
‖

2

+"� ∫
Ω

|u|q(.) dx − "∫
Ω

uut ||ut||
p(.)−2 dx. (29)
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Then, for � small enough, we get

Ψ′ (t) ≥ "�
[

H (t) + ‖

‖

ut‖‖
2 + ‖

‖

△u‖
‖

2 + �q(.) (u)
]

+ (1 − �)H−� (t)H ′ (t) − "∫
Ω

uut ||ut||
p(.)−2 dx (30)

where
� = min

{

q− (1 − �) , �,
q− (1 − �)

2
− 1,

q− (1 − �)
2

+ 1
}

> 0

and
�q(.) (u) = ∫

Ω

|u|q(.) dx.

In order to estimate the last term in (30), we make use of the following Young inequality

XY ≤ �kXk

k
+ �−lY l

l
,

where X, Y ≥ 0, � > 0, k, l ∈ R+ such that 1
k
+ 1

l
= 1. Consequently, applying the previous we have

∫
Ω

u |
|

ut||
p(.)−1 dx ≤ ∫

Ω

1
p (x)

�p(x) |u|p(x) dx + ∫
Ω

p (x) − 1
p (x)

�−
p(x)
p(x)−1 |

|

ut||
p(x) dx

≤ 1
p− ∫

Ω

�p(x) |u|p(x) dx +
p+ − 1
p+ ∫

Ω

�−
p(x)
p(x)−1 |

|

ut||
p(x) dx, (31)

where � is constant depending on the time t and specified later. Inserting estimate (31) into (30), we get

Ψ′ (t) ≥ "�
[

H (t) + ‖

‖

ut‖‖
2 + ‖

‖

△u‖
‖

2 + �q(.) (u)
]

+ (1 − �)H−� (t)H ′ (t)

−" 1
p− ∫

Ω

�p(x) |u|p(x) dx − "
p+ − 1
p+ ∫

Ω

�−
p(x)
p(x)−1 |

|

ut||
p(x) dx (32)

Let us choose � so that
�−

p(x)
p(x)−1 = k1H−� (t) ,

where k1, k2 > 0 are specified later, we obtain

Ψ′ (t) ≥ "�
[

H (t) + ‖

‖

ut‖‖
2 + ‖

‖

△u‖
‖

2 + �q(.) (u)
]

+ (1 − �)H−� (t)H ′ (t) − "k2H−� (t)H ′ (t)

−" 1
p− ∫

Ω

k1−p(x)1 H�(p(x)−1) (t) |u|p(x) dx − "
p+ − 1
p+ ∫

Ω

k1H
−� (t) |

|

ut||
p(x) dx

≥ "�
[

H (t) + ‖

‖

ut‖‖
2 + ‖

‖

△u‖
‖

2 + �q(.) (u)
]

+
(

1 − � − "k2
)

H−� (t)H ′ (t)

−"
k1−p

−

1

p−
H�(p+−1) (t)∫

Ω

|u|p(x) dx − "
(

p+ − 1
p+

)

k1H
−� (t)∫

Ω

|

|

ut||
p(x) dx

≥ "�
[

H (t) + ‖

‖

ut‖‖
2 + ‖

‖

△u‖
‖

2 + �q(.) (u)
]

+
[

(

1 − � − "k2
)

− "
(

p+ − 1
p+

)

k1

]

H−� (t)H ′ (t)

−"
k1−p

−

1

p−
H�(p+−1) (t)∫

Ω

|u|p(x) dx, (33)
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By using (21) and (24), we get

H�(p+−1) (t)∫
Ω

|u|p(x) dx ≤ H�(p+−1) (t)

⎡

⎢

⎢

⎢

⎣

∫
Ω−

|u|p
−
dx + ∫

Ω+

|u|p
+
dx

⎤

⎥

⎥

⎥

⎦

≤ H�(p+−1) (t) c

⎡

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

∫
Ω−

|u|q
−
dx

⎞

⎟

⎟

⎠

p−

q−

+

⎛

⎜

⎜

⎜

⎝

∫
Ω+

|u|q
−
dx

⎞

⎟

⎟

⎟

⎠

p+

q− ⎤

⎥

⎥

⎥

⎥

⎦

= H�(p+−1) (t) c
[

‖u‖p
−

q− + ‖u‖p
+

q−

]

≤ c
(

1
q−
�q(.) (u)

)�(p+−1) [
(

�q(.) (u)
)
p−

q− +
(

�q(.) (u)
)
p+

q−

]

= c1

[

(

�q(.) (u)
)
p−

q−
+�(p+−1) +

(

�q(.) (u)
)
p+

q−
+�(p+−1)

]

(34)

where Ω− = {x ∈ Ω ∶ |u| < 1} and Ω+ = {x ∈ Ω ∶ |u| ≥ 1}.
We then use Lemma 6 and (26), for

s = p− + �q−
(

p+ − 1
)

≤ q−

and
s = p+ + �q−

(

p+ − 1
)

≤ q−,
to deduce, from (34),

H�(p+−1) (t)∫
Ω

|u|p(x) dx ≤ c1
[

‖

‖

△u‖
‖

2 + �q(.) (u)
]

. (35)

Thus, inserting estimate (35) into (33), we have

Ψ′ (t) ≥ "

(

� −
k1−p

−

1

p−
c1

)

[

H (t) + ‖

‖

ut‖‖
2 + ‖

‖

△u‖
‖

2 + �q(.) (u)
]

+
[

(

1 − � − "k2
)

− "
(

p+ − 1
p+

)

k1

]

H−� (t)H ′ (t) . (36)

Let us choose k1 large enough so that


 = � −
k1−p

−

1

p−
c1 > 0,

and picking " small enough such that
(

1 − � − "k2
)

− "
(

p+ − 1
p+

)

k1 > 0

and
Ψ (t) ≥ Ψ (0) = H1−� (0) + "∫

Ω

u0u1dx +
"
2
‖

‖

∇u0‖‖
2 > 0, ∀t ≥ 0. (37)

Consequently, (36) yields

Ψ′ (t) ≥ "

[

H (t) + ‖

‖

ut‖‖
2 + ‖

‖

△u‖
‖

2 + �q(.) (u)
]

≥ "

[

H (t) + ‖

‖

ut‖‖
2 + ‖

‖

△u‖
‖

2 + ‖u‖q
−

q−

]

, (38)

due to (21). Therefore we get
Ψ (t) ≥ Ψ (0) > 0, for all t ≥ 0.

On the other hand, applying Hölder inequality, we obtain

|

|

|

|

|

|

|

∫
Ω

uutdx

|

|

|

|

|

|

|

1
1−�

≤ ‖u‖
1
1−� ‖

‖

ut‖‖
1
1−�

≤ C
(

‖u‖
1
1−�
q−

‖

‖

ut‖‖
1
1−�

)

.
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Young inequality gives
|

|

|

|

|

|

|

∫
Ω

uutdx

|

|

|

|

|

|

|

1
1−�

≤ C
(

‖u‖
�
1−�
q− + ‖

‖

ut‖‖
�
1−�

)

, (39)

for 1
�
+ 1

�
= 1.We take � = 2 (1 − �) , to obtain �

1−�
= 2

1−2�
≤ q− by (26). Therefore, (39) becomes

|

|

|

|

|

|

|

∫
Ω

uutdx

|

|

|

|

|

|

|

1
1−�

≤ C
(

‖

‖

ut‖‖
2 + ‖u‖sq−

)

,

where 2
1−2�

≤ q−. By using (20), we get

|

|

|

|

|

|

|

∫
Ω

uutdx

|

|

|

|

|

|

|

1
1−�

≤ C
(

‖

‖

ut‖‖
2 + ‖u‖q

−

q− +H (t)
)

.

Thus, using exploiting the inequality
(

a1 + a2 + ... + am
)� ≤ 2(m−1)∕(�−1)

(

a�1 + a
�
2 + ... + a

�
m

)

,

(a1, a2, ..., am ≥ 0, � ≥ 1), we have

Ψ
1
1−� (t) =

⎡

⎢

⎢

⎣

H1−� (t) + "∫
Ω

uutdx +
"
2
‖∇u‖2

⎤

⎥

⎥

⎦

1
1−�

≤ 2
�
1−�

⎛

⎜

⎜

⎜

⎝

H (t) + "
1
1−�

|

|

|

|

|

|

|

∫
Ω

uutdx

|

|

|

|

|

|

|

1
1−� ⎞

⎟

⎟

⎟

⎠

≤ C
(

‖

‖

ut‖‖
2 + ‖u‖q

−

q− +H (t)
)

≤ C
(

H (t) + ‖

‖

ut‖‖
2 + ‖

‖

△u‖
‖

2 + ‖u‖q
−

q−

)

. (40)

By combining of (38) and (40), we arrive
Ψ′ (t) ≥ �Ψ

1
1−� (t) , (41)

where � is a positive constant.
A simple integration of (41) over (0, t) yields Ψ

�
1−� (t) ≥ 1

Ψ−
�
1−� (0)− ��t

1−�

, which implies that the solution blows up in a finite time
T ∗, with

T ∗ ≤ 1 − �
��Ψ

�
1−� (0)

.

This completes the proof of the theorem.
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