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Abstract 

     An enhanced analytical technique for nonlinear oscillators having a harmonic restoring force is 
proposed. The approach is passed on the change of the auxiliary operator by another suitable one leads to 
obtain a periodic solution. The fundamental idea of the new approach is based on obtaining an alternative 
equation free of the harmonic restoring forces. This method is a modification of the homotopy 
perturbation method. The approach allows not only an actual periodic solution, but also the frequency of 
the problem as a function of the amplitude of oscillation. Three nonlinear oscillators including restoring 
force, the simple pendulum motion, the cubic Duffing oscillator, the Sine-Gordon equation are offered to 
clarify the effectiveness and usefulness of the proposed technique. This approach allows an effective 
mathematical approach to noise and uncertain properties of nonlinear vibrations arising in physics and 
engineering. 
 
Keywords: Homotopy Perturbation Method, Frequency Expansion, Periodic Solution, Pendulum Equation, Sine-
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1. INTRODUCTION 

     The motion of nanoparticles in the capillary fluid moves periodically with an extremely restoring force, 
and it plays an important role in enhancing mass, energy, and charge transfer in many nano/micro 
phenomena, from lithium batteries in micro/nanodevices, which are the footstone for nano-industriation. 
The restoring force of capillary vibration plays an important role in both nature and engineering, 
especially in nano/microdevices 1,2; the vibration is a balance of the force produced by the capillary's 
geometric potential3-5 and the gravity. The relationship between the frequency and the amplitude shows 
that an extremely restoring force is extremely helpful for mass and heat transfer through the nanofiber 
membrane6-9, and it is especially important for nutrition and air transfer in a living body. 
     Nonlinear oscillations are a significant fact in mechanical structures,  engineering problems, and 
physical science. All differential equations covering physical and engineering phenomena are nonlinear. 
The techniques of solutions of linear differential equations are relatively available and well determined. 
On the opposite, in the nonlinear differential equations, the methods of solutions are lowest available and 
therefore no exact solution and, overall, linear approximations are extremely used. A specific type of 
analytical solution specified nonlinear oscillator with a harmonic restoring force has a great quantity of 
importance, because, nearly of the phenomena that appear in mathematical physics and engineering scope 
can be described by it. Therefore, inspect strongly nonlinear oscillators with cubic and harmonic restoring 
force is becoming increasingly engaged in nonlinear sciences. Moreover, gain exact solutions for 
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nonlinear oscillatory problems has more difficulties. It is very difficult to gain the solution of nonlinear 
problems and in general, it is often more complicated to get an analytic approximate solution than a 
numerical one for a given nonlinear problem. To overcome the shortcomings, many new analytical 
techniques have been successfully developed. He and Jin2 supply a short review of analytical methods for 
the capillary oscillator in a nanoscale deformable tube. In their letter reviews some effective methods to 
solve analytically the frequency-amplitude relation of the capillary oscillator, including the variational 
principle, the variational iteration method, the homotopy perturbation method, He's frequency formulation 
and Taylor series method.  
    Yuste and Sánchez10  used the so-called cubication approach, which consists of replacing the system of 
restoring force )(xf  by an equivalent cubic polynomial expression ,3x  where the value of   is 
determined by using a weighted mean-square method or by using the principle of harmonic balance 11,12. 
Beléndez et al 13 used this idea and replaced the original second-order differential equation with the well-
known Duffing equation. Uwe Starossek14 studied the strongly nonlinear oscillator by assuming that the 
restoring force has a purely cubic function of the displacement variable. The investigation in nonlinear 
oscillators with cubic and harmonic restoring force solutions is becoming increasingly attractive in 
nonlinear sciences15-18. Moreover, obtaining exact solutions for nonlinear oscillatory problems has many 
difficulties. It is very problematic to solve nonlinear problems and overall, it is often more complicated to 
get an analytic approximation than a numerical one for an offered nonlinear problem. Only analytical 
approximate solutions are available, many new analytical methods have been successfully developed. 
There are some approximation techniques have been investigated. These include the Akbari-Ganji's 19, the 
cubication technique13, the pseudo-spectral method20, the frequency-amplitude formulation21, the rational 
variational approach22, and the closed-form numerical23 methods and the iteration method24-26. Besides, 
the harmonic balance 27-29,16 has been used to derive periodic solutions to strongly nonlinear oscillatory 
problems. Traditional perturbation methods 30-37 are the most widely used analytical methods for solving 
nonlinear equations, which is the most flexible tool available for nonlinear analysis of science and 
engineering problems. 
     Here in this paper, the main goal is to obtain a periodic solution by an analytical method for the 
strongly nonlinear oscillation including a harmonic restoring force. We proposed a new technique to relax 
such a restoring force. This approach based on obtaining an alternative system free of the trigonometric 
functions. The outcome system is easier to handle by any analytical perturbation method. Here, we apply 
the enhanced homotopy perturbation method38-40, which including the methodology of the expanded 
parameter41,42. The technology of two homotopy expanded parameters is used34, 45 to construct the 
homotopy equation. One of these parameters used to expand the homotopy equation and the other used to 
expand the frequency-amplitude equation. To illustrate the effectiveness of the current method, three test 
examples are considered in this proposal. 
 
2. THE PROPOSAL METHOD 

     We aim to apply the enhanced approach to obtain a periodic solution of the simple pendulum equation 
that has a restoring force. Thus, we consider the following equation: 

                                                             ,0)0(,)0(;sin    Aba                                                    (1) 

where a and b are real parameters. Also, this equation is used to describe the capillary oscillator and a 

detailed derivation was given in Jin et al.1 Several approximate solutions of (1) have been derived by using 
different techniques2. Here, we deal with the approximate periodic solutions to (1) that have been not 
derived before. Our approach doesn’t depend on expanded the sine-function, but to derive an alternative 
form of it, free of the harmonic function. 
    By expanding the sine-function reveals that the parameter a  is not the full natural frequency. At this 

end, a suitable primary periodic solution cannot be found. Because of the operator ( aDL  2 ), which is 
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the highest order derivative and is assumed to be easily invertible, does not the actual auxiliary operator. 
For convenience, the indeed linear natural frequency must be formulated as  

                                                                    .2
0 ba                                                                                 (2) 

To perform the periodic solution of equation (1), we need to remove the wrong auxiliary operator L  and 
replacing it by the correct auxiliary one. Without resorting to the expanded technique for the harmonic 
force, equation (1) can be re-arranged in another form. To illustrate the basic concept of the present 

proposal, let’s begin with the integration of equation (1) by applying the operator 1L on both sides, we get 

                                                              .sin0)( 2 
aD

b
t


                                                                     (3) 

To obtain an alternative form of equation (1), we re-build it so that the actual natural frequency 2
0 is 

working to get an analytical periodic solution. To illustrate this suggestion, the following process is 
offered: 

     Differentiating equation (3) twice to the variable ,t we find 

                                                           .sincos)( 2
2

2   



aD

b
tD                                                          (4) 

By the bits of help of the original equation (1) and its first-order derivative, one can remove the harmonic 

functions sin   and cos  from equation (4). At this end, the pendulum equation (1) is converted to the 
form 

                                                         .
1

)( 2
2

2
























 


 aa

aD
tD 




                                                (5) 

This formulation is free of the restoring forces, the parameter b  is disappearing through the process.  In 
formulating the modified equation, one can reset the role of the parameter, ,b  through the including of 

the natural frequency .2
0  At this end, the alternative form of the pendulum equation (1) is presented 

having a primary periodic solution when .ba   To analyze, such highly nonlinear equation, the 
perturbation technique is urgent. By applying the homotopy perturbation method 45, the homotopy 
equation can be constructed in the form  

                                       1,0;
1 2

2
2
0

2
0

2 



































 


 aa

aD
D 




                         (6) 

The additional frequency  is introduced through the frequency extension technology [41] as follows: 

                                                              ...2
2

1
2
0

2    ,                                                           (7) 

where the additional frequency   is unknown to be determined later. Employing the expansion (7) into 
the homotopy equation (6), the result is 

                               .
1

... 2
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













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











 


 aa

aD
D 




                            (8) 

Consider the solution  t  has been expanded in the form 

                                                         ...)()()( 2
2

10  tttt                                                           (9) 
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Substituting (9) into the above homotopy equation, equating the identical powers of   on both sides, we 

obtain the first-two unknowns )(0 t and )(1 t in the form 

                                                                ,cos)(0 tAt                                                                                   (10) 

                                               .
1

00
2
00

0

0
201

2
1

22
























 


 aa

aD
D 




                           (11) 

Insert (10) into the first-order equation (11) becomes 

                                               
.3cos

94

1
cos

4

1
2

2
2322

11
22 t

a

a
AtAAD 












                              (12) 

Avoiding the secular terms, we get 

                                                                         .
4

1 22
1  A                                                                              (13) 

Insert (13) into the expansion (7), letting ,1 we obtain 

                                                                         .
4

1
1

1
22

0
2









  A                                                                 (14) 

The first-order approximate solution of the pendulum equation (1) is found in the form 

                                                  
  .cos3cos
932

1
cos)( 2

2
3 tt

a

a
AtAt 


 




                                          (15) 

It is seen from (14) that the periodic solution is available when the following conditions have been 
satisfied: 

                                                        ba    and .42 A                                                                             (16) 
 
3. CUBIC NONLINEAR OSCILLATION HAVING THE HARMONIC RESTORING FORCE 

     A highly nonlinear oscillator with a cubic and harmonic restoring force is derived in the form 

                                                     ,0)0(,)0(;sin3    AbQa                                                  (17) 

Mathematically, this equation is considered as a modification of the equation (1), which characterized by 
included the Duffing parameter. Therefore, we follow the same procedure as the previous item. So, the  
alternative form of the equation (17) is found in the form 

                                          .6
1

)( 232
2

2











 


 



QQaa

aD
tD                                  (18) 

The modified homotopy equation includes the frequency expansion (7) with the two small parameters 
 1,0 and  ,1,0  is coming  in the form 

                                      .6
1

)( 222
2
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
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
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 


 



Qaa

aD
tD              (19) 

On using the expansion (9), the zero-order solution (10) is available and the first-order equation has the 
following configuration: 
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   
     

  .5cos
2516

3cos24
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94
cos
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12
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1
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2

2
2222
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t
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a

A
tA

a

A
QAAtD






















 
















   (20) 

The requiring condition for the uniform solution is 

                                                            
 .8

12

4

1
)(

2

2
2222

1
a

A
QAA







                                                     (21) 

The final first-order approximate solution for equation (17), where 1 and ,1 is performed as 

        .cos5cos
25384

cos3cos24
4

1

932
cos)(

2

5
222

2

3

tt
a

QA
ttAQAa

a

A
tAt 





 









 




        
(22) 

The frequency-amplitude equation can be derived by insert (21) into the expansion (7) yields 

                                                        
  .0

8

12
1

4

1
2

2
24222

0 










 

a

A
QAA


                                                (23) 

This is a complicated frequency-amplitude equation. The absence of the Duffing coefficient Q yields the 

same frequency formula (14). The perturbation technique is very suitable for analysis of the above 
frequency-amplitude equation46. To derive an approximate solution of the above equation, we use the 
following expansion: 

                                                            ...)( 2
2

1
2
0

2                                                                (24) 

Substituting this expansion into the equation (23), equating the identical powers of  on both sides we get 

                                                                   ,
4

1
1

1
22

0
2
0









  A                                                                      (25) 

                                                                  
 
  .
12

42 2
0

2

2

22
0

1
a

A

A

QA








                                                                 (26) 

In one iteration operation, we insert (25) and (26) into (24) and setting ,1 yields 

                                                   
 

  .
42

12
1

4

1
1

2

221
22

0
2






















 



baA

AQA
A                                                    (27) 

The periodic solution is available whence the following condition is presented, with ba  : 

                                                                 
  .0

42

12
1

4

1
1

2

22
2 




















 

baA

AQA
A                                                       (28) 

 
4. DERIVING A PERIODIC SOLUTION OF THE SINE-GORDON EQUATION 

   The sine-Gordon equation is a nonlinear partial differential equation, including the d'Alembert operator 
and the sine-function of the unknown variable. The equation, as well as several solution techniques, was 
known in the two-century ago in the course of the study of various problems of differential geometry. The 
Sine-Gordon equation appears in several physical applications47-49. The Sine-Gordon equation has 
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attracted wide interest over the years in the depiction of classical and quantum mechanical phenomena50. 
In the current section, we consider the well known Sine-Gordon equation that has the form 

                                                         ,sin2
0 yPyy xxtt                                                                  (29)                                                                    

where ),,( txyy  with the initial conditions .0)0,(),()0,(  xyxAxy t  where ,coordinatex  time,t  

.functionunknownthey The aim is to seek a modified equation free of the harmonic restoring force. 

To achieve this goal, we first remember that 

                                                             .sincossin 2 yyyyy ttttt                                                            (30) 

Using the fact 

                                                          .cossin yyy xx                                                                       (31) 

Thus, one can rewrite (30) in the form 

                                                      .sinsin 2 yy
y

y
y tx

x

tt
tt 








                                                           (32) 

By the bits of help of the original equation (29), one can remove the function ysin  from the formula (32), 

the result is     

                                                     .224
xxtttx

x

tt
xxtt Pyyy

y

y
yPDyD 








                                                  (33) 

Since the frequency 2
0 has disappeared through the replacing process, we restore it, by the addition 

method, as the auxiliary parameter. The corresponding homotopy equation is formulated as 

                         1,0;224
0

4
0

4 







  xxtttxxxttx

x

tt
xxtt PyyyPyy

y

y
yPDyyD              (34) 

To derive the periodic solution the parameter expansion technology is utilized so that 

                                                      ...21
2
0

2                                                                   (35) 

Employing the expansion (35) into the homotopy equation (34) becomes 

                   1,0;2 22
1

2244 







  xxtttxxxttx

x

tt
xxtt PyyyPyy

y

y
yPDyyD              (36) 

Consider, as usual, the solution is given by 

                                                 ...),(),(),(),( 2
2

10  txytxytxytxy                                             (37)   

It is noted that the zero-order solution, when ,0 is satisfied with 

                                                             ,cos)(0 txAy                                                                      (38) 

The first-order  is found to be 

    .3cos
4

1
cos

4

1

4

1
12 2222232
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A
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PAyD xxxx

x
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t 



























      (39) 

Its solution, without secular terms, has performed in the following configuration: 
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                                                  .cos3cos
320

),(
2

22

1 tt
PAAA

txy xx 



                                               (40) 

The first-order approximate solution has been getting in the form 

                              .cos3cos
320

cos)(lim),( 2

22

10
1

tt
PAAA

txAyytxy xx 









                    (41) 

This solution has been derived under the following condition: 

                                                         .
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1 
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
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
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
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A
A

A

A
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x

xxx                                            (42) 

To formulate the frequency-amplitude equation, we insert (42) into the expansion (35) and letting ,1  

yields 
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1
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


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

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
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A
A

A

A
PAx xx

x

xxx                             (43) 

The periodic solution is available when the following condition is satisfied: 

                                                  .0
4
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1
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0
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 
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4.1 Traveling wave solution for the Sine-Gordon equation 

    In this section, we try to find the traveling wave solution to the above equation (29) assuming that the 
initial conditions have sought as kxAxy cos)0,( 0  and ,sin)0,( 00 kxAxyt  where the parameter k

refers to the wave-number of the traveling wave and 0A denote to a constant amplitude. Follow the above 

procedure, equation (29) can perform as 

                                                                       .sin),(
2
0 y
P

txy
xxtt 




                                                           (45) 

As seen, it is a complicated nonlinear equation so we proceed as explained before, the harmonic function 
ysin can be relaxed so that the homotopy equation has the following configuration:    

                                   1,0;
1 22

0
2
0

2 























  xxtttx

x

tt

xxtt
t Pyyy

y

y

P
yyyD                         (46) 

Utilizing the approach of the parameter expansion as given by  

                                                                   ...2
2

10                                                                 (47) 

Employing  (47) into the above equation yields: 

                                    .
1

2 2
1

222
























 xxtttx

x

tt

xxtt
t Pyyy

y

y

P
yyD                            (48) 

In  using the expanded solution as given by (37), we have the primary solution as ,0 is satisfied with 

                                                                     ).cos(),( 00 kxtAtxy                                                             (49) 
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By the help of the above zero-order solution, yields the equation that covered the first-order in  has 
arranged in the form 

                        
 

kxAxyxy

kxtkxtAkxtAtxyD

t

t

sin)0,(,0)0,(

;)(3cos
9

1
)cos(

4

1
)cos(2),(

1011

23
0011

22











 

            (50) 

This equation has a bounded solution, because of the initial conditions, in the form 

         
 .)(3cos)cos(18)cos(18)3cos()3cos(2

288

1 3
01 kxtkxtkxtkxtkxtAy           (51) 

The above solution is performed under the condition 

                                                                              .
8

1 2
01  A                                                                        (52) 

The final first-order solution can be derived by insert (51) and (53) in the expansion (37), letting ,1
yields 

                 

 .))cos(18)cos(18)3cos(2)3cos(
288

1

)(3cos
288

1
)cos(),(

3
0

3
00

kxtkxtkxtkxtA

kxtAkxtAtxy








              (53) 

Also, the frequency-amplitude equation can be performed as 

                                                                     .
8

1
1

1
2
00









  A                                                                     (55) 

 
4.2 A periodic solution for a generalized sine-Gordon equation 

     In the present subsection, a generalized sine-Gordon equation is considered in the form 

                                                             ,sin1cos 2
0

2
00

2
0 uuPuuPPu xxxtt                                             (56) 

where the initial conditions are  .sin)0,(,cos)0,( 000 kxAxukxAxu t  This equation can be rewritten  

in the form 

                                                                      ,sin1 0
2
0 uPPuu xxxxtt                                                     (57) 

where the following formula is used: 

                                                             .sincossin 2 uuuuu xxxxx                                                     (58) 

Applying the same procedure as in the previous subsection (4.1) to replace the function usin by its 
equivalent linear instruction in (57). Then equation (57) should be transformed into the following form:  

                                             
 
     .1
1 1

0
20

xxttxxtx
x

tt

xxtt

xx
tt PuuPu

u

u

P

P
u 













                                    (59) 

Construct the corresponding homotopy equation with including the parameter 2
0  in it as an auxiliary 

linear part, yields 
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                       
       1,0;1
1 1

0
202

0
2
0 


























   xxttxxtx
x

tt

xxtt

xx
tt PuuPu

u

u

P

P
uu             (60) 

Applying the homotopy perturbation technique to the above equation, yields 

                                                                  ),~cos(),( 00 kxtAtxu                                                                  (61) 

where ~ is unknown wave-frequency of the traveling wave solution and will determined later. This 
frequency is given similar to the expansion (47) in which each  is replaced by .~ The equation that 
covers the first-order perturbation in , is given by 

            
     

     

.sin~)0,(,0)0,(;

1
1~~2~~

1011

00
1

0
2
0

0

00
01

2
1

2

kxAxuxu

PuuPu
u

u

P

P
uu

t

xxttxxtx
x

tt

xxtt

xx
tt




















 

             (62) 

Employing (61) in (62), after simplification, we obtain its solution has the form 

                    

 
  

 ,)~cos(sin)~cos(sin
16

1

)~(3cos)3~cos()3~cos(2
1288

91
),(

3
0

2
0

2
03

01

kxtkxtA

kxtkxtkxt
kP

kP
Atxu












                            (63) 

where the frequency-amplitude formula (55) is still working. The final first-order approximate solution is 
found in the form 

                     

 
  

  ).~cos()~cos(sin)~cos(sin
16

1

)~(3cos)3~cos()3~cos(2
1288

91
),(

0
3
0

2
0

2
03

0

kxtAkxtkxtA

kxtkxtkxt
kP

kP
Atxu












                             (64) 

5. DISCUSSION AND CONCLUSIONS  

    The purpose of the article is to employ the modified HPM to find an analytical approximate periodic 
solution of a nonlinear oscillator with a harmonic restoring force. The approach developed here does not 
consist of the expanded of the harmonic restoring force, nor used the cubication approach, but to 
introduce an alternative form free of this force. The alternative equation is solvable by any perturbation 
method. In this proposal, we present some examples to illustrate the applicability and to establish the 
approximate analytical periodic solutions. Also, the traveling wave solution for the Sine-Gordon equation 
has been established. The frequency-amplitude equation has been performed in each case. Conditions for 
the validation of a periodic solution are performed. The method adopted here is a well-established 
procedure for determining analytical approximations to the periodic solutions of the nonlinear oscillators 
having a restoring force. The current work suggests an effective modification of the well-known 
homotopy perturbation method for solving differential equations having a restoring force, and some new 
findings were obtained. It can be concluded that this article gives an absolute new avenue of research in 
various fields such as mathematics, vibration theory, and engineering. This paper will open up a flood of 
opportunities for further research. 
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